scale_info/
portable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
// Copyright 2019-2022 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! The registry stores type definitions in a space-efficient manner.
//!
//! This is done by deduplicating common types in order to reuse their
//! definitions which otherwise can grow arbitrarily large. A type is uniquely
//! identified by its type identifier that is therefore used to refer to types
//! and their definitions.
//!
//! Types with the same name are uniquely identifiable by introducing
//! namespaces. The normal Rust namespace of a type is used, except for the Rust
//! prelude types that live in the so-called root namespace which is empty.

use crate::{
    form::PortableForm,
    interner::Interner,
    prelude::{collections::BTreeMap, fmt::Debug, mem, vec::Vec},
    Path, Registry, Type, TypeDef, TypeDefPrimitive,
};
use scale::Encode;

/// A read-only registry containing types in their portable form for serialization.
#[cfg_attr(feature = "schema", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize))]
#[cfg_attr(all(feature = "serde", feature = "decode"), derive(serde::Deserialize))]
#[cfg_attr(any(feature = "std", feature = "decode"), derive(scale::Decode))]
#[derive(Clone, Debug, PartialEq, Eq, Encode)]
pub struct PortableRegistry {
    /// The types contained by the [`PortableRegistry`].
    pub types: Vec<PortableType>,
}

impl From<Registry> for PortableRegistry {
    fn from(registry: Registry) -> Self {
        PortableRegistry {
            types: registry
                .types()
                .map(|(k, v)| PortableType {
                    id: k.id,
                    ty: v.clone(),
                })
                .collect::<Vec<_>>(),
        }
    }
}

impl PortableRegistry {
    /// Returns the type definition for the given identifier, `None` if no type found for that ID.
    pub fn resolve(&self, id: u32) -> Option<&Type<PortableForm>> {
        self.types.get(id as usize).map(|ty| &ty.ty)
    }

    /// Returns all types with their associated identifiers.
    #[deprecated(
        since = "2.5.0",
        note = "Prefer to access the fields directly; this getter will be removed in the next major version"
    )]
    pub fn types(&self) -> &[PortableType] {
        &self.types
    }

    /// Retains only the portable types needed to express the provided ids.
    ///
    /// The type IDs retained are returned as key to the [`BTreeMap`].
    /// The value of the map represents the new ID of that type.
    ///
    /// # Note
    ///
    /// A given type ID can be defined by nesting type IDs, such as the case
    /// of a [`TypeDef::Composite`] and others. To retain a valid [`PortableRegistry`]
    /// all the types needed to express an ID are included. Therefore, the number of
    /// elements defined by the result equals or exceeds the number of provided IDs.
    pub fn retain<F>(&mut self, mut filter: F) -> BTreeMap<u32, u32>
    where
        F: FnMut(u32) -> bool,
    {
        let mut retained_mappings = BTreeMap::new();
        let mut new_types = crate::prelude::vec![];

        fn placeholder_type() -> PortableType {
            PortableType {
                id: u32::MAX,
                ty: Type {
                    type_def: TypeDef::Primitive(TypeDefPrimitive::Bool),
                    path: Path::default(),
                    type_params: crate::prelude::vec![],
                    docs: crate::prelude::vec![],
                },
            }
        }

        fn retain_type(
            id: u32,
            types: &mut [PortableType],
            new_types: &mut Vec<PortableType>,
            retained_mappings: &mut BTreeMap<u32, u32>,
        ) -> u32 {
            // Type already retained; just return the new ID for it:
            if let Some(id) = retained_mappings.get(&id) {
                return *id;
            }

            // First, save a spot for this type in our new registry. We do this straight away
            // so that we can add the type ID to the retained mappings _before_ recursing into
            // it below. This means that if a type contains itself, we'll bail above when we
            // see the same type again.
            let new_id = new_types.len() as u32;
            new_types.push(placeholder_type());
            retained_mappings.insert(id, new_id);

            // Now, take the actual type we'll be retaining out of the old registry,
            // swapping it with a placeholder type to avoid any allocations. Because of
            // the above, nothing should ever try to access this placeholder type anyway.
            let mut ty = mem::replace(&mut types[id as usize], placeholder_type());
            ty.id = new_id;

            // Now we recursively retain any type parameters in the type we're retaining.
            // Update their IDs to point to the new locations of the retained types.
            for param in ty.ty.type_params.iter_mut() {
                let Some(param_ty) = &param.ty else { continue };
                let new_id = retain_type(param_ty.id, types, new_types, retained_mappings);
                param.ty = Some(Into::into(new_id));
            }

            // Also recurse into any types inside this type to retain them too. Update their IDs
            // to point to the new locations of the retained types.
            match &mut ty.ty.type_def {
                TypeDef::Composite(composite) => {
                    for field in composite.fields.iter_mut() {
                        let new_id = retain_type(field.ty.id, types, new_types, retained_mappings);
                        field.ty = new_id.into();
                    }
                }
                TypeDef::Variant(variant) => {
                    for var in variant.variants.iter_mut() {
                        for field in var.fields.iter_mut() {
                            let new_id =
                                retain_type(field.ty.id, types, new_types, retained_mappings);
                            field.ty = new_id.into();
                        }
                    }
                }
                TypeDef::Sequence(sequence) => {
                    let new_id =
                        retain_type(sequence.type_param.id, types, new_types, retained_mappings);
                    sequence.type_param = new_id.into();
                }
                TypeDef::Array(array) => {
                    let new_id =
                        retain_type(array.type_param.id, types, new_types, retained_mappings);
                    array.type_param = new_id.into();
                }
                TypeDef::Tuple(tuple) => {
                    for ty in tuple.fields.iter_mut() {
                        let new_id = retain_type(ty.id, types, new_types, retained_mappings);
                        *ty = new_id.into();
                    }
                }
                TypeDef::Primitive(_) => (),
                TypeDef::Compact(compact) => {
                    let new_id =
                        retain_type(compact.type_param.id, types, new_types, retained_mappings);
                    compact.type_param = new_id.into();
                }
                TypeDef::BitSequence(bit_seq) => {
                    let bit_store_id = retain_type(
                        bit_seq.bit_store_type.id,
                        types,
                        new_types,
                        retained_mappings,
                    );
                    let bit_order_id = retain_type(
                        bit_seq.bit_order_type.id,
                        types,
                        new_types,
                        retained_mappings,
                    );

                    bit_seq.bit_store_type = bit_store_id.into();
                    bit_seq.bit_order_type = bit_order_id.into();
                }
            }

            // Now we've updated the IDs etc of this type, we put it into the new registry
            // and override our placeholder type that was saving its space for us.
            new_types[new_id as usize] = ty;
            new_id
        }

        for id in 0..self.types.len() as u32 {
            // We don't care about the type; move on:
            if !filter(id) {
                continue;
            }

            retain_type(id, &mut self.types, &mut new_types, &mut retained_mappings);
        }

        self.types = new_types;
        retained_mappings
    }
}

/// Represent a type in it's portable form.
#[cfg_attr(feature = "schema", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize))]
#[cfg_attr(all(feature = "serde", feature = "decode"), derive(serde::Deserialize))]
#[cfg_attr(any(feature = "std", feature = "decode"), derive(scale::Decode))]
#[derive(Clone, Debug, PartialEq, Eq, Encode)]
pub struct PortableType {
    /// The ID of the portable type.
    #[codec(compact)]
    pub id: u32,
    /// The portable form of the type.
    #[cfg_attr(feature = "serde", serde(rename = "type"))]
    pub ty: Type<PortableForm>,
}

impl PortableType {
    /// Construct a custom `PortableType`.
    pub fn new(id: u32, ty: Type<PortableForm>) -> Self {
        Self { id, ty }
    }

    /// Returns the index of the [`PortableType`].
    #[deprecated(
        since = "2.5.0",
        note = "Prefer to access the fields directly; this getter will be removed in the next major version"
    )]
    pub fn id(&self) -> u32 {
        self.id
    }

    /// Returns the type of the [`PortableType`].
    #[deprecated(
        since = "2.5.0",
        note = "Prefer to access the fields directly; this getter will be removed in the next major version"
    )]
    pub fn ty(&self) -> &Type<PortableForm> {
        &self.ty
    }
}

/// Construct a [`PortableRegistry`].
///
/// Guarantees that the resulting [`PortableRegistry`] has the list of types in the correct order,
/// since downstream libs assume that a `u32` type id corresponds to the index of the type
/// definition type table.
#[derive(Debug, Default)]
pub struct PortableRegistryBuilder {
    types: Interner<Type<PortableForm>>,
}

impl PortableRegistryBuilder {
    /// Create a new [`PortableRegistryBuilder`].
    pub fn new() -> Self {
        Default::default()
    }

    /// Register a type, returning the assigned ID.
    ///
    /// If the type is already registered it will return the existing ID.
    pub fn register_type(&mut self, ty: Type<PortableForm>) -> u32 {
        self.types.intern_or_get(ty).1.into_untracked().id
    }

    /// Returns the type id that would be assigned to a newly registered type.
    pub fn next_type_id(&self) -> u32 {
        self.types.elements().len() as u32
    }

    /// Returns a reference to the type registered at the given ID (if any).
    pub fn get(&self, id: u32) -> Option<&Type<PortableForm>> {
        self.types.elements().get(id as usize)
    }

    /// Finalize and return a valid [`PortableRegistry`] instance.
    pub fn finish(&self) -> PortableRegistry {
        let types = self
            .types
            .elements()
            .iter()
            .enumerate()
            .map(|(i, ty)| PortableType {
                id: i as u32,
                ty: ty.clone(),
            })
            .collect();
        PortableRegistry { types }
    }
}

#[cfg(test)]
mod tests {
    use scale::Compact;

    use super::*;
    use crate::ty::TypeDefPrimitive;
    use crate::{build::*, prelude::vec, *};

    fn ty<T: TypeInfo + 'static>() -> MetaType {
        MetaType::new::<T>()
    }

    fn make_registry(tys: impl IntoIterator<Item = MetaType>) -> (Vec<u32>, PortableRegistry) {
        // Register our types, recording the corresponding IDs.
        let mut types = Registry::new();
        let mut ids = vec![];
        for ty in tys.into_iter() {
            let id = types.register_type(&ty);
            ids.push(id.id);
        }

        let registry = types.into();
        (ids, registry)
    }

    #[test]
    fn retain_seq_type() {
        let (ids, mut registry) = make_registry([ty::<bool>(), ty::<Vec<u32>>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 4);

        // Retain only the vec.
        let vec_id = ids[1];
        let retained_ids = registry.retain(|id| id == vec_id);

        assert_eq!(retained_ids.len(), 2);
        assert_eq!(registry.types.len(), 2);

        // Check that vec was retained and has correct ID.
        let new_vec_id = *retained_ids
            .get(&vec_id)
            .expect("vec should have been retained");
        let registry_ty = registry
            .types
            .get(new_vec_id as usize)
            .expect("vec should exist");

        assert_eq!(registry_ty.id, new_vec_id);

        // Check that vec type info is as expected.
        let seq = match &registry_ty.ty.type_def {
            TypeDef::Sequence(s) => s,
            def => panic!("Expected a sequence type, got {def:?}"),
        };

        let vec_param = registry
            .resolve(seq.type_param.id)
            .expect("vec param should be exist");
        assert!(matches!(
            vec_param.type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
    }

    #[test]
    fn retain_array_type() {
        let (ids, mut registry) = make_registry([ty::<bool>(), ty::<[u32; 16]>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 4);

        // Retain only the array.
        let arr_id = ids[1];
        let retained_ids = registry.retain(|id| id == arr_id);

        assert_eq!(retained_ids.len(), 2);
        assert_eq!(registry.types.len(), 2);

        // Check that array was retained and has correct ID.
        let new_arr_id = *retained_ids
            .get(&arr_id)
            .expect("array should have been retained");
        let registry_ty = registry
            .types
            .get(new_arr_id as usize)
            .expect("array should exist");

        assert_eq!(registry_ty.id, new_arr_id);

        // Check that array type info is as expected.
        let arr = match &registry_ty.ty.type_def {
            TypeDef::Array(a) => a,
            def => panic!("Expected an array type, got {def:?}"),
        };

        let array_param = registry
            .resolve(arr.type_param.id)
            .expect("array param should be exist");
        assert!(matches!(
            array_param.type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
    }

    #[test]
    fn retain_tuple_type() {
        let (ids, mut registry) =
            make_registry([ty::<bool>(), ty::<(u32, [u8; 32], bool)>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 6);

        // Retain only the tuple.
        let tuple_id = ids[1];
        let retained_ids = registry.retain(|id| id == tuple_id);

        // We only actually ditch the String when retaining:
        assert_eq!(retained_ids.len(), 5);
        assert_eq!(registry.types.len(), 5);

        // Check that tuple was retained and has correct ID.
        let new_tuple_id = *retained_ids
            .get(&tuple_id)
            .expect("tuple should have been retained");
        let registry_ty = registry
            .types
            .get(new_tuple_id as usize)
            .expect("tuple should exist");

        assert_eq!(registry_ty.id, new_tuple_id);

        // Check that tuple type info is as expected.
        let tup = match &registry_ty.ty.type_def {
            TypeDef::Tuple(t) => t,
            def => panic!("Expected an tuple type, got {def:?}"),
        };

        // Check that tuple fields are as expected.
        assert!(matches!(
            registry.resolve(tup.fields[0].id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
        assert!(matches!(
            registry.resolve(tup.fields[1].id).unwrap().type_def,
            TypeDef::Array(_)
        ));
        assert!(matches!(
            registry.resolve(tup.fields[2].id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::Bool)
        ));
    }

    #[test]
    fn retain_composite_type() {
        #[derive(scale_info_derive::TypeInfo)]
        #[allow(dead_code)]
        struct Foo {
            a: u32,
            b: [u8; 32],
            c: bool,
        }

        let (ids, mut registry) = make_registry([ty::<bool>(), ty::<Foo>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 6);

        // Retain only the struct.
        let struct_id = ids[1];
        let retained_ids = registry.retain(|id| id == struct_id);

        // We only actually ditch the String when retaining:
        assert_eq!(retained_ids.len(), 5);
        assert_eq!(registry.types.len(), 5);

        // Check that struct was retained and has correct ID.
        let struct_id = *retained_ids
            .get(&struct_id)
            .expect("struct should have been retained");
        let registry_ty = registry
            .types
            .get(struct_id as usize)
            .expect("struct should exist");

        assert_eq!(registry_ty.id, struct_id);

        // Check that struct type info is as expected.
        let struc = match &registry_ty.ty.type_def {
            TypeDef::Composite(s) => s,
            def => panic!("Expected an struct type, got {def:?}"),
        };

        // Check that struct fields are as expected.
        assert_eq!(struc.fields.len(), 3);
        assert_eq!(struc.fields[0].name, Some("a".to_owned()));
        assert!(matches!(
            registry.resolve(struc.fields[0].ty.id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
        assert_eq!(struc.fields[1].name, Some("b".to_owned()));
        assert!(matches!(
            registry.resolve(struc.fields[1].ty.id).unwrap().type_def,
            TypeDef::Array(_)
        ));
        assert_eq!(struc.fields[2].name, Some("c".to_owned()));
        assert!(matches!(
            registry.resolve(struc.fields[2].ty.id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::Bool)
        ));
    }

    #[test]
    fn retain_variant_type() {
        #[derive(scale_info_derive::TypeInfo)]
        #[allow(dead_code)]
        enum Foo {
            A(u32),
            B(bool),
        }

        let (ids, mut registry) = make_registry([ty::<bool>(), ty::<Foo>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 4);

        // Retain only the variant.
        let variant_id = ids[1];
        let retained_ids = registry.retain(|id| id == variant_id);

        // We only actually ditch the String when retaining:
        assert_eq!(retained_ids.len(), 3);
        assert_eq!(registry.types.len(), 3);

        // Check that variant was retained and has correct ID.
        let variant_id = *retained_ids
            .get(&variant_id)
            .expect("variant should have been retained");
        let registry_ty = registry
            .types
            .get(variant_id as usize)
            .expect("variant should exist");

        assert_eq!(registry_ty.id, variant_id);

        // Check that variant type info is as expected.
        let var = match &registry_ty.ty.type_def {
            TypeDef::Variant(v) => v,
            def => panic!("Expected a variant type, got {def:?}"),
        };

        assert_eq!(var.variants.len(), 2);
        assert_eq!(var.variants[0].name, "A".to_owned());
        assert_eq!(var.variants[0].fields.len(), 1);
        assert!(matches!(
            registry
                .resolve(var.variants[0].fields[0].ty.id)
                .unwrap()
                .type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));

        assert_eq!(var.variants[1].name, "B".to_owned());
        assert_eq!(var.variants[1].fields.len(), 1);
        assert!(matches!(
            registry
                .resolve(var.variants[1].fields[0].ty.id)
                .unwrap()
                .type_def,
            TypeDef::Primitive(TypeDefPrimitive::Bool)
        ));
    }

    #[test]
    fn retain_compact_type() {
        let (ids, mut registry) =
            make_registry([ty::<bool>(), ty::<String>(), ty::<Compact<u32>>()]);

        assert_eq!(registry.types.len(), 4);

        // Retain only the compact.
        let compact_id = ids[2];
        let retained_ids = registry.retain(|id| id == compact_id);

        assert_eq!(retained_ids.len(), 2);
        assert_eq!(registry.types.len(), 2);

        // Check that compact was retained and has correct ID.
        let compact_id = *retained_ids
            .get(&compact_id)
            .expect("compact should have been retained");
        let registry_ty = registry
            .types
            .get(compact_id as usize)
            .expect("compact should exist");

        assert_eq!(registry_ty.id, compact_id);

        // Check that compact type info is as expected.
        let compact = match &registry_ty.ty.type_def {
            TypeDef::Compact(c) => c,
            def => panic!("Expected a compact type, got {def:?}"),
        };

        // And the compact param should be a u32.
        assert!(matches!(
            registry.resolve(compact.type_param.id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
    }

    #[test]
    fn retain_bitsequence_type() {
        // Use a more verbose method to build the registry to avoid
        // needing to pull in BitVec as a dev dep:
        let mut builder = PortableRegistryBuilder::new();

        // Register a couple of primitives:
        let bool_type = Type::new(Path::default(), vec![], TypeDefPrimitive::Bool, vec![]);
        let _bool_type_id = builder.register_type(bool_type);

        let u32_type = Type::new(Path::default(), vec![], TypeDefPrimitive::U32, vec![]);
        let u32_type_id = builder.register_type(u32_type);

        let u64_type = Type::new(Path::default(), vec![], TypeDefPrimitive::U64, vec![]);
        let u64_type_id = builder.register_type(u64_type);

        // Register a bit sequence:
        let bit_seq_type = Type::new(
            Path::default(),
            vec![],
            TypeDefBitSequence::new_portable(u32_type_id.into(), u64_type_id.into()),
            vec![],
        );
        let bit_seq_type_id = builder.register_type(bit_seq_type);

        // Now we have a registry with the above types in:
        let mut registry = builder.finish();

        assert_eq!(registry.types.len(), 4);

        // Retain only the bitseq.
        let retained_ids = registry.retain(|id| id == bit_seq_type_id);

        // One bitsequence entry + 2 params for it:
        assert_eq!(retained_ids.len(), 3);
        assert_eq!(registry.types.len(), 3);

        // Check that bitseq was retained and has correct ID.
        let bitseq_id = *retained_ids
            .get(&bit_seq_type_id)
            .expect("bitseq should have been retained");
        let registry_ty = registry
            .types
            .get(bitseq_id as usize)
            .expect("bitseq should exist");

        assert_eq!(registry_ty.id, bitseq_id);

        // Check that bitseq type info is as expected.
        let bitseq = match &registry_ty.ty.type_def {
            TypeDef::BitSequence(b) => b,
            def => panic!("Expected a bit sequence type, got {def:?}"),
        };
        assert!(matches!(
            registry.resolve(bitseq.bit_store_type.id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::U32)
        ));
        assert!(matches!(
            registry.resolve(bitseq.bit_order_type.id).unwrap().type_def,
            TypeDef::Primitive(TypeDefPrimitive::U64)
        ));
    }

    #[test]
    fn retain_recursive_type() {
        #[derive(scale_info_derive::TypeInfo)]
        #[allow(dead_code)]
        enum Recursive {
            Value(Box<Recursive>),
            Empty,
        }

        let (ids, mut registry) = make_registry([ty::<bool>(), ty::<Recursive>(), ty::<String>()]);

        assert_eq!(registry.types.len(), 3);

        // Retain only the recursive type.
        let variant_id = ids[1];
        let retained_ids = registry.retain(|id| id == variant_id);

        assert_eq!(retained_ids.len(), 1);
        assert_eq!(registry.types.len(), 1);

        // Check that variant was retained and has correct ID.
        let variant_id = *retained_ids
            .get(&variant_id)
            .expect("variant should have been retained");
        let registry_ty = registry
            .types
            .get(variant_id as usize)
            .expect("variant should exist");

        assert_eq!(registry_ty.id, variant_id);

        // Check that variant type info is as expected.
        let var = match &registry_ty.ty.type_def {
            TypeDef::Variant(v) => v,
            def => panic!("Expected a variant type, got {def:?}"),
        };

        assert_eq!(var.variants.len(), 2);
        assert_eq!(var.variants[0].name, "Value".to_owned());
        assert_eq!(var.variants[0].fields.len(), 1);
        assert!(matches!(
            registry
                .resolve(var.variants[0].fields[0].ty.id)
                .unwrap()
                .type_def,
            TypeDef::Variant(_)
        ));

        assert_eq!(var.variants[1].name, "Empty".to_owned());
        assert_eq!(var.variants[1].fields.len(), 0);
    }

    #[test]
    fn type_ids_are_sequential() {
        let mut registry = Registry::new();
        registry.register_type(&MetaType::new::<u32>());
        registry.register_type(&MetaType::new::<bool>());
        registry.register_type(&MetaType::new::<Option<(u32, bool)>>());

        let readonly: PortableRegistry = registry.into();

        assert_eq!(4, readonly.types.len());

        for (expected, ty) in readonly.types.iter().enumerate() {
            assert_eq!(expected as u32, ty.id);
        }
    }

    #[test]
    fn construct_portable_registry() {
        let mut builder = PortableRegistryBuilder::new();
        let u32_type = Type::new(Path::default(), vec![], TypeDefPrimitive::U32, vec![]);
        let u32_type_id = builder.register_type(u32_type.clone());

        let vec_u32_type = Type::new(
            Path::default(),
            vec![],
            TypeDefSequence::new(u32_type_id.into()),
            vec![],
        );
        let vec_u32_type_id = builder.register_type(vec_u32_type.clone());

        let self_referential_type_id = builder.next_type_id();

        let composite_type = Type::builder_portable()
            .path(Path::from_segments_unchecked(["MyStruct".into()]))
            .composite(
                Fields::named()
                    .field_portable(|f| f.name("primitive".into()).ty(u32_type_id))
                    .field_portable(|f| f.name("vec_of_u32".into()).ty(vec_u32_type_id))
                    .field_portable(|f| {
                        f.name("self_referential".into())
                            .ty(self_referential_type_id)
                    }),
            );
        let composite_type_id = builder.register_type(composite_type.clone());

        assert_eq!(self_referential_type_id, composite_type_id);

        assert_eq!(builder.get(u32_type_id).unwrap(), &u32_type);
        assert_eq!(builder.get(vec_u32_type_id).unwrap(), &vec_u32_type);
        assert_eq!(builder.get(composite_type_id).unwrap(), &composite_type);

        let registry = builder.finish();

        assert_eq!(Some(&u32_type), registry.resolve(u32_type_id));
        assert_eq!(Some(&vec_u32_type), registry.resolve(vec_u32_type_id));
        assert_eq!(Some(&composite_type), registry.resolve(composite_type_id));
    }
}