scoped_pool/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#![cfg_attr(test, deny(warnings))]
#![deny(missing_docs)]

//! # scoped-pool
//!
//! A flexible thread pool providing scoped threads.
//!

extern crate variance;
extern crate crossbeam;

#[macro_use]
extern crate scopeguard;

use variance::InvariantLifetime as Id;
use crossbeam::sync::MsQueue;

use std::{thread, mem};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex, Condvar};

/// A thread-pool providing scoped and unscoped threads.
///
/// The primary ways of interacting with the `Pool` are
/// the `spawn` and `scoped` convenience methods or through
/// the `Scope` type directly.
#[derive(Clone, Default)]
pub struct Pool {
    wait: Arc<WaitGroup>,
    inner: Arc<PoolInner>
}

impl Pool {
    /// Create a new Pool with `size` threads.
    ///
    /// If `size` is zero, no threads will be spawned. Threads can
    /// be added later via `expand`.
    ///
    /// NOTE: Since Pool can be freely cloned, it does not represent a unique
    /// handle to the thread pool. As a consequence, the thread pool is not
    /// automatically shut down; you must explicitly call `Pool::shutdown` to
    /// shut down the pool.
    #[inline]
    pub fn new(size: usize) -> Pool {
        // Create an empty pool.
        let pool = Pool::empty();

        // Start the requested number of threads.
        for _ in 0..size { pool.expand(); }

        pool
    }

    /// Create a new Pool with `size` threads and given thread config.
    ///
    /// If `size` is zero, no threads will be spawned. Threads can
    /// be added later via `expand`.
    ///
    /// NOTE: Since Pool can be freely cloned, it does not represent a unique
    /// handle to the thread pool. As a consequence, the thread pool is not
    /// automatically shut down; you must explicitly call `Pool::shutdown` to
    /// shut down the pool.
    #[inline]
    pub fn with_thread_config(size: usize, thread_config: ThreadConfig) -> Pool {
        // Create an empty pool with configuration.
        let pool = Pool {
            inner: Arc::new(PoolInner::with_thread_config(thread_config)),
            ..Pool::default()
        };

        // Start the requested number of threads.
        for _ in 0..size { pool.expand(); }

        pool
    }

    /// Create an empty Pool, with no threads.
    ///
    /// Note that no jobs will run until `expand` is called and
    /// worker threads are added.
    #[inline]
    pub fn empty() -> Pool {
        Pool::default()
    }

    /// How many worker threads are currently active.
    #[inline]
    pub fn workers(&self) -> usize {
        // All threads submit themselves when they start and
        // complete when they stop, so the threads we are waiting
        // for are still active.
        self.wait.waiting()
    }

    /// Spawn a `'static'` job to be run on this pool.
    ///
    /// We do not wait on the job to complete.
    ///
    /// Panics in the job will propogate to the calling thread.
    #[inline]
    pub fn spawn<F: FnOnce() + Send + 'static>(&self, job: F) {
        // Run the job on a scope which lasts forever, and won't block.
        Scope::forever(self.clone()).execute(job)
    }

    /// Create a Scope for scheduling a group of jobs in `'scope'`.
    ///
    /// `scoped` will return only when the `scheduler` function and
    /// all jobs queued on the given Scope have been run.
    ///
    /// Panics in any of the jobs or in the scheduler function itself
    /// will propogate to the calling thread.
    #[inline]
    pub fn scoped<'scope, F, R>(&self, scheduler: F) -> R
    where F: FnOnce(&Scope<'scope>) -> R {
        // Zoom to the correct scope, then run the scheduler.
        Scope::forever(self.clone()).zoom(scheduler)
    }

    /// Shutdown the Pool.
    ///
    /// WARNING: Extreme care should be taken to not call shutdown concurrently
    /// with any scoped calls, or deadlock can occur.
    ///
    /// All threads will be shut down eventually, but only threads started before the
    /// call to shutdown are guaranteed to be shut down before the call to shutdown
    /// returns.
    #[inline]
    pub fn shutdown(&self) {
        // Start the shutdown process.
        self.inner.queue.push(PoolMessage::Quit);

        // Wait for it to complete.
        self.wait.join()
    }

    /// Expand the Pool by spawning an additional thread.
    ///
    /// Can accelerate the completion of running jobs.
    #[inline]
    pub fn expand(&self) {
        let pool = self.clone();

        // Submit the new thread to the thread waitgroup.
        pool.wait.submit();

        let thread_number = self.inner.thread_counter.fetch_add(1, Ordering::SeqCst);

        // Deal with thread configuration.
        let mut builder = thread::Builder::new();
        if let Some(ref prefix) = self.inner.thread_config.prefix {
            let name = format!("{}{}", prefix, thread_number);
            builder = builder.name(name);
        }
        if let Some(stack_size) = self.inner.thread_config.stack_size {
            builder = builder.stack_size(stack_size);
        }

        // Start the actual thread.
        builder.spawn(move || pool.run_thread()).unwrap();
    }

    fn run_thread(self) {
        // Create a sentinel to capture panics on this thread.
        let mut thread_sentinel = ThreadSentinel(Some(self.clone()));

        loop {
            match self.inner.queue.pop() {
                // On Quit, repropogate and quit.
                PoolMessage::Quit => {
                    // Repropogate the Quit message to other threads.
                    self.inner.queue.push(PoolMessage::Quit);

                    // Cancel the thread sentinel so we don't panic waiting
                    // shutdown threads, and don't restart the thread.
                    thread_sentinel.cancel();

                    // Terminate the thread.
                    break
                },

                // On Task, run the task then complete the WaitGroup.
                PoolMessage::Task(job, wait) => {
                    let sentinel = Sentinel(self.clone(), Some(wait.clone()));
                    job.run();
                    sentinel.cancel();
                }
            }
        }
    }
}

struct PoolInner {
    queue: MsQueue<PoolMessage>,
    thread_config: ThreadConfig,
    thread_counter: AtomicUsize
}

impl PoolInner {
    fn with_thread_config(thread_config: ThreadConfig) -> Self {
        PoolInner { thread_config: thread_config, ..Self::default() }
    }
}

impl Default for PoolInner {
    fn default() -> Self {
        PoolInner {
            queue: MsQueue::new(),
            thread_config: ThreadConfig::default(),
            thread_counter: AtomicUsize::new(1)
        }
    }
}

/// Thread configuration. Provides detailed control over the properties and behavior of new
/// threads.
#[derive(Default)]
pub struct ThreadConfig {
    prefix: Option<String>,
    stack_size: Option<usize>,
}

impl ThreadConfig {
    /// Generates the base configuration for spawning a thread, from which configuration methods
    /// can be chained.
    pub fn new() -> ThreadConfig {
        ThreadConfig {
            prefix: None,
            stack_size: None,
        }
    }

    /// Name prefix of spawned threads. Thread number will be appended to this prefix to form each
    /// thread's unique name. Currently the name is used for identification only in panic
    /// messages.
    pub fn prefix<S: Into<String>>(self, prefix: S) -> ThreadConfig {
        ThreadConfig {
            prefix: Some(prefix.into()),
            ..self
        }
    }

    /// Sets the size of the stack for the new thread.
    pub fn stack_size(self, stack_size: usize) -> ThreadConfig {
        ThreadConfig {
            stack_size: Some(stack_size),
            ..self
        }
    }
}

/// An execution scope, represents a set of jobs running on a Pool.
///
/// ## Understanding Scope lifetimes
///
/// Besides `Scope<'static>`, all `Scope` objects are accessed behind a
/// reference of the form `&'scheduler Scope<'scope>`.
///
/// `'scheduler` is the lifetime associated with the *body* of the
/// "scheduler" function (functions passed to `zoom`/`scoped`).
///
/// `'scope` is the lifetime which data captured in `execute` or `recurse`
/// closures must outlive - in other words, `'scope` is the maximum lifetime
/// of all jobs scheduler on a `Scope`.
///
/// Note that since `'scope: 'scheduler` (`'scope` outlives `'scheduler`)
/// `&'scheduler Scope<'scope>` can't be captured in an `execute` closure;
/// this is the reason for the existence of the `recurse` API, which will
/// inject the same scope with a new `'scheduler` lifetime (this time set
/// to the body of the function passed to `recurse`).
pub struct Scope<'scope> {
    pool: Pool,
    wait: Arc<WaitGroup>,
    _scope: Id<'scope>
}

impl<'scope> Scope<'scope> {
    /// Create a Scope which lasts forever.
    #[inline]
    pub fn forever(pool: Pool) -> Scope<'static> {
        Scope {
            pool: pool,
            wait: Arc::new(WaitGroup::new()),
            _scope: Id::default()
        }
    }

    /// Add a job to this scope.
    ///
    /// Subsequent calls to `join` will wait for this job to complete.
    pub fn execute<F>(&self, job: F)
    where F: FnOnce() + Send + 'scope {
        // Submit the job *before* submitting it to the queue.
        self.wait.submit();

        let task = unsafe {
            // Safe because we will ensure the task finishes executing before
            // 'scope via joining before the resolution of `'scope`.
            mem::transmute::<Box<Task + Send + 'scope>,
                             Box<Task + Send + 'static>>(Box::new(job))
        };

        // Submit the task to be executed.
        self.pool.inner.queue.push(PoolMessage::Task(task, self.wait.clone()));
    }

    /// Add a job to this scope which itself will get access to the scope.
    ///
    /// Like with `execute`, subsequent calls to `join` will wait for this
    /// job (and all jobs scheduled on the scope it receives) to complete.
    pub fn recurse<F>(&self, job: F)
    where F: FnOnce(&Self) + Send + 'scope {
        // Create another scope with the *same* lifetime.
        let this = unsafe { self.clone() };

        self.execute(move || job(&this));
    }

    /// Create a new subscope, bound to a lifetime smaller than our existing Scope.
    ///
    /// The subscope has a different job set, and is joined before zoom returns.
    pub fn zoom<'smaller, F, R>(&self, scheduler: F) -> R
    where F: FnOnce(&Scope<'smaller>) -> R,
          'scope: 'smaller {
        let scope = unsafe { self.refine::<'smaller>() };

        // Join the scope either on completion of the scheduler or panic.
        defer!(scope.join());

        // Schedule all tasks then join all tasks
        scheduler(&scope)
    }

    /// Awaits all jobs submitted on this Scope to be completed.
    ///
    /// Only guaranteed to join jobs which where `execute`d logically
    /// prior to `join`. Jobs `execute`d concurrently with `join` may
    /// or may not be completed before `join` returns.
    #[inline]
    pub fn join(&self) {
        self.wait.join()
    }

    #[inline]
    unsafe fn clone(&self) -> Self {
        Scope {
            pool: self.pool.clone(),
            wait: self.wait.clone(),
            _scope: Id::default()
        }
    }

    // Create a new scope with a smaller lifetime on the same pool.
    #[inline]
    unsafe fn refine<'other>(&self) -> Scope<'other> where 'scope: 'other {
        Scope {
            pool: self.pool.clone(),
            wait: Arc::new(WaitGroup::new()),
            _scope: Id::default()
        }
    }
}

enum PoolMessage {
    Quit,
    Task(Box<Task + Send>, Arc<WaitGroup>)
}

/// A synchronization primitive for awaiting a set of actions.
///
/// Adding new jobs is done with `submit`, jobs are completed with `complete`,
/// and any thread may wait for all jobs to be `complete`d with `join`.
pub struct WaitGroup {
    pending: AtomicUsize,
    poisoned: AtomicBool,
    lock: Mutex<()>,
    cond: Condvar
}

impl Default for WaitGroup {
    fn default() -> Self {
        WaitGroup {
            pending: AtomicUsize::new(0),
            poisoned: AtomicBool::new(false),
            lock: Mutex::new(()),
            cond: Condvar::new()
        }
    }
}

impl WaitGroup {
    /// Create a new empty WaitGroup.
    #[inline]
    pub fn new() -> Self {
        WaitGroup::default()
    }

    /// How many submitted tasks are waiting for completion.
    #[inline]
    pub fn waiting(&self) -> usize {
        self.pending.load(Ordering::SeqCst)
    }

    /// Submit to this WaitGroup, causing `join` to wait
    /// for an additional `complete`.
    #[inline]
    pub fn submit(&self) {
        self.pending.fetch_add(1, Ordering::SeqCst);
    }

    /// Complete a previous `submit`.
    #[inline]
    pub fn complete(&self) {
        // Mark the current job complete.
        let old = self.pending.fetch_sub(1, Ordering::SeqCst);

        // If that was the last job, wake joiners.
        if old == 1 {
            let _lock = self.lock.lock().unwrap();
            self.cond.notify_all()
        }
    }

    /// Poison the WaitGroup so all `join`ing threads panic.
    #[inline]
    pub fn poison(&self) {
        // Poison the waitgroup.
        self.poisoned.store(true, Ordering::SeqCst);

        // Mark the current job complete.
        let old = self.pending.fetch_sub(1, Ordering::SeqCst);

        // If that was the last job, wake joiners.
        if old == 1 {
            let _lock = self.lock.lock().unwrap();
            self.cond.notify_all()
        }
    }

    /// Wait for `submit`s to this WaitGroup to be `complete`d.
    ///
    /// Submits occuring completely before joins will always be waited on.
    ///
    /// Submits occuring concurrently with a `join` may or may not
    /// be waited for.
    ///
    /// Before submitting, `join` will always return immediately.
    #[inline]
    pub fn join(&self) {
        let mut lock = self.lock.lock().unwrap();

        while self.pending.load(Ordering::SeqCst) > 0 {
            lock = self.cond.wait(lock).unwrap();
        }

        if self.poisoned.load(Ordering::SeqCst) {
            panic!("WaitGroup explicitly poisoned!")
        }
    }
}

// Poisons the given pool on drop unless canceled.
//
// Used to ensure panic propogation between jobs and waiting threads.
struct Sentinel(Pool, Option<Arc<WaitGroup>>);

impl Sentinel {
    fn cancel(mut self) {
        self.1.take().map(|wait| wait.complete());
    }
}

impl Drop for Sentinel {
    fn drop(&mut self) {
        self.1.take().map(|wait| wait.poison());
    }
}

struct ThreadSentinel(Option<Pool>);

impl ThreadSentinel {
    fn cancel(&mut self) {
        self.0.take().map(|pool| {
            pool.wait.complete();
        });
    }
}

impl Drop for ThreadSentinel {
    fn drop(&mut self) {
        self.0.take().map(|pool| {
            // NOTE: We restart the thread first so we don't accidentally
            // hit zero threads before restarting.

            // Restart the thread.
            pool.expand();

            // Poison the pool.
            pool.wait.poison();
        });
    }
}

trait Task {
    fn run(self: Box<Self>);
}

impl<F: FnOnce()> Task for F {
    fn run(self: Box<Self>) { (*self)() }
}

#[cfg(test)]
mod test {
    use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
    use std::time::Duration;
    use std::thread::sleep;

    use {Pool, Scope, ThreadConfig};

    #[test]
    fn test_simple_use() {
        let pool = Pool::new(4);

        let mut buf = [0, 0, 0, 0];

        pool.scoped(|scope| {
            for i in &mut buf {
                scope.execute(move || *i += 1);
            }
        });

        assert_eq!(&buf, &[1, 1, 1, 1]);
    }

    #[test]
    fn test_zoom() {
        let pool = Pool::new(4);

        let mut outer = 0;

        pool.scoped(|scope| {
            let mut inner = 0;
            scope.zoom(|scope2| scope2.execute(|| inner = 1));
            assert_eq!(inner, 1);

            outer = 1;
        });

        assert_eq!(outer, 1);
    }

    #[test]
    fn test_recurse() {
        let pool = Pool::new(12);

        let mut buf = [0, 0, 0, 0];

        pool.scoped(|next| {
            next.recurse(|next| {
                buf[0] = 1;

                next.execute(|| {
                    buf[1] = 1;
                });
            });
        });

        assert_eq!(&buf, &[1, 1, 0, 0]);
    }

    #[test]
    fn test_spawn_doesnt_hang() {
        let pool = Pool::new(1);
        pool.spawn(move || loop {});
    }

    #[test]
    fn test_forever_zoom() {
        let pool = Pool::new(16);
        let forever = Scope::forever(pool.clone());

        let ran = AtomicBool::new(false);

        forever.zoom(|scope| scope.execute(|| ran.store(true, Ordering::SeqCst)));

        assert!(ran.load(Ordering::SeqCst));
    }

    #[test]
    fn test_shutdown() {
        let pool = Pool::new(4);
        pool.shutdown();
    }

    #[test]
    #[should_panic]
    fn test_scheduler_panic() {
        let pool = Pool::new(4);
        pool.scoped(|_| panic!());
    }

    #[test]
    #[should_panic]
    fn test_scoped_execute_panic() {
        let pool = Pool::new(4);
        pool.scoped(|scope| scope.execute(|| panic!()));
    }

    #[test]
    #[should_panic]
    fn test_pool_panic() {
        let _pool = Pool::new(1);
        panic!();
    }

    #[test]
    #[should_panic]
    fn test_zoomed_scoped_execute_panic() {
        let pool = Pool::new(4);
        pool.scoped(|scope| scope.zoom(|scope2| scope2.execute(|| panic!())));
    }

    #[test]
    #[should_panic]
    fn test_recurse_scheduler_panic() {
        let pool = Pool::new(4);
        pool.scoped(|scope| scope.recurse(|_| panic!()));
    }

    #[test]
    #[should_panic]
    fn test_recurse_execute_panic() {
        let pool = Pool::new(4);
        pool.scoped(|scope| scope.recurse(|scope2| scope2.execute(|| panic!())));
    }

    struct Canary<'a> {
        drops: DropCounter<'a>,
        expected: usize
    }

    #[derive(Clone)]
    struct DropCounter<'a>(&'a AtomicUsize);

    impl<'a> Drop for DropCounter<'a> {
        fn drop(&mut self) {
            self.0.fetch_add(1, Ordering::SeqCst);
        }
    }

    impl<'a> Drop for Canary<'a> {
        fn drop(&mut self) {
            let drops = self.drops.0.load(Ordering::SeqCst);
            assert_eq!(drops, self.expected);
        }
    }

    #[test]
    #[should_panic]
    fn test_scoped_panic_waits_for_all_tasks() {
        let tasks = 50;
        let panicking_task_fraction = 10;
        let panicking_tasks = tasks / panicking_task_fraction;
        let expected_drops = tasks + panicking_tasks;

        let counter = Box::new(AtomicUsize::new(0));
        let drops = DropCounter(&*counter);

        // Actual check occurs on drop of this during unwinding.
        let _canary = Canary {
            drops: drops.clone(),
            expected: expected_drops
        };

        let pool = Pool::new(12);

        pool.scoped(|scope| {
            for task in 0..tasks {
                let drop_counter = drops.clone();

                scope.execute(move || {
                    sleep(Duration::from_millis(10));

                    drop::<DropCounter>(drop_counter);
                });

                if task % panicking_task_fraction == 0 {
                    let drop_counter = drops.clone();

                    scope.execute(move || {
                        // Just make sure we capture it.
                        let _drops = drop_counter;
                        panic!();
                    });
                }
            }
        });
    }

    #[test]
    #[should_panic]
    fn test_scheduler_panic_waits_for_tasks() {
        let tasks = 50;
        let counter = Box::new(AtomicUsize::new(0));
        let drops = DropCounter(&*counter);

        let _canary = Canary {
            drops: drops.clone(),
            expected: tasks
        };

        let pool = Pool::new(12);

        pool.scoped(|scope| {
            for _ in 0..tasks {
                let drop_counter = drops.clone();

                scope.execute(move || {
                    sleep(Duration::from_millis(25));
                    drop::<DropCounter>(drop_counter);
                });
            }

            panic!();
        });
    }

    #[test]
    fn test_no_thread_config() {
        let pool = Pool::new(1);

        pool.scoped(|scope| {
            scope.execute(|| {
                assert!(::std::thread::current().name().is_none());
            });
        });
    }

    #[test]
    fn test_with_thread_config() {
        let config = ThreadConfig::new().prefix("pool-");

        let pool = Pool::with_thread_config(1, config);

        pool.scoped(|scope| {
            scope.execute(|| {
                assert_eq!(::std::thread::current().name().unwrap(), "pool-1");
            });
        });
    }
}