1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
use crate::association::{
    state::{AckMode, AckState, AssociationState},
    stats::AssociationStats,
};
use crate::chunk::{
    chunk_abort::ChunkAbort, chunk_cookie_ack::ChunkCookieAck, chunk_cookie_echo::ChunkCookieEcho,
    chunk_error::ChunkError, chunk_forward_tsn::ChunkForwardTsn,
    chunk_forward_tsn::ChunkForwardTsnStream, chunk_heartbeat::ChunkHeartbeat,
    chunk_heartbeat_ack::ChunkHeartbeatAck, chunk_init::ChunkInit, chunk_init::ChunkInitAck,
    chunk_payload_data::ChunkPayloadData, chunk_payload_data::PayloadProtocolIdentifier,
    chunk_reconfig::ChunkReconfig, chunk_selective_ack::ChunkSelectiveAck,
    chunk_shutdown::ChunkShutdown, chunk_shutdown_ack::ChunkShutdownAck,
    chunk_shutdown_complete::ChunkShutdownComplete, chunk_type::CT_FORWARD_TSN, Chunk,
    ErrorCauseUnrecognizedChunkType, USER_INITIATED_ABORT,
};
use crate::config::{ServerConfig, TransportConfig, COMMON_HEADER_SIZE, DATA_CHUNK_HEADER_SIZE};
use crate::error::{Error, Result};
use crate::packet::{CommonHeader, Packet};
use crate::param::{
    param_heartbeat_info::ParamHeartbeatInfo,
    param_outgoing_reset_request::ParamOutgoingResetRequest,
    param_reconfig_response::{ParamReconfigResponse, ReconfigResult},
    param_state_cookie::ParamStateCookie,
    param_supported_extensions::ParamSupportedExtensions,
    Param,
};
use crate::queue::{payload_queue::PayloadQueue, pending_queue::PendingQueue};
use crate::shared::{AssociationEventInner, AssociationId, EndpointEvent, EndpointEventInner};
use crate::util::{sna16lt, sna32gt, sna32gte, sna32lt, sna32lte};
use crate::{AssociationEvent, Payload, Side, Transmit};
use stream::{ReliabilityType, Stream, StreamEvent, StreamId, StreamState};
use timer::{RtoManager, Timer, TimerTable, ACK_INTERVAL};

use crate::association::stream::RecvSendState;
use bytes::Bytes;
use fxhash::FxHashMap;
use log::{debug, error, trace, warn};
use rand::random;
use std::collections::{HashMap, VecDeque};
use std::net::{IpAddr, SocketAddr};
use std::str::FromStr;
use std::sync::Arc;
use std::time::{Duration, Instant};
use thiserror::Error;

pub(crate) mod state;
pub(crate) mod stats;
pub(crate) mod stream;
mod timer;

#[cfg(test)]
mod association_test;

/// Reasons why an association might be lost
#[derive(Debug, Error, Eq, Clone, PartialEq)]
pub enum AssociationError {
    /// Handshake failed
    #[error("{0}")]
    HandshakeFailed(#[from] Error),
    /// The peer violated the QUIC specification as understood by this implementation
    #[error("transport error")]
    TransportError,
    /// The peer's QUIC stack aborted the association automatically
    #[error("aborted by peer")]
    AssociationClosed,
    /// The peer closed the association
    #[error("closed by peer")]
    ApplicationClosed,
    /// The peer is unable to continue processing this association, usually due to having restarted
    #[error("reset by peer")]
    Reset,
    /// Communication with the peer has lapsed for longer than the negotiated idle timeout
    ///
    /// If neither side is sending keep-alives, an association will time out after a long enough idle
    /// period even if the peer is still reachable
    #[error("timed out")]
    TimedOut,
    /// The local application closed the association
    #[error("closed")]
    LocallyClosed,
}

/// Events of interest to the application
#[derive(Debug)]
pub enum Event {
    /// The association was successfully established
    Connected,
    /// The association was lost
    ///
    /// Emitted if the peer closes the association or an error is encountered.
    AssociationLost {
        /// Reason that the association was closed
        reason: AssociationError,
    },
    /// Stream events
    Stream(StreamEvent),
    /// One or more application datagrams have been received
    DatagramReceived,
}

///Association represents an SCTP association
//13.2.  Parameters Necessary per Association (i.e., the TCB)
//Peer : Tag value to be sent in every packet and is received
//Verification: in the INIT or INIT ACK chunk.
//Tag :
//
//My : Tag expected in every inbound packet and sent in the
//Verification: INIT or INIT ACK chunk.
//
//Tag :
//State : A state variable indicating what state the association
// : is in, i.e., COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED,
// : SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
// : SHUTDOWN-ACK-SENT.
//
// No Closed state is illustrated since if a
// association is Closed its TCB SHOULD be removed.
#[derive(Debug)]
pub struct Association {
    side: Side,
    state: AssociationState,
    handshake_completed: bool,
    max_message_size: u32,
    inflight_queue_length: usize,
    will_send_shutdown: bool,
    bytes_received: usize,
    bytes_sent: usize,

    peer_verification_tag: u32,
    my_verification_tag: u32,
    my_next_tsn: u32,
    peer_last_tsn: u32,
    // for RTT measurement
    min_tsn2measure_rtt: u32,
    will_send_forward_tsn: bool,
    will_retransmit_fast: bool,
    will_retransmit_reconfig: bool,

    will_send_shutdown_ack: bool,
    will_send_shutdown_complete: bool,

    // Reconfig
    my_next_rsn: u32,
    reconfigs: FxHashMap<u32, ChunkReconfig>,
    reconfig_requests: FxHashMap<u32, ParamOutgoingResetRequest>,

    // Non-RFC internal data
    remote_addr: SocketAddr,
    local_ip: Option<IpAddr>,
    source_port: u16,
    destination_port: u16,
    my_max_num_inbound_streams: u16,
    my_max_num_outbound_streams: u16,
    my_cookie: Option<ParamStateCookie>,

    payload_queue: PayloadQueue,
    inflight_queue: PayloadQueue,
    pending_queue: PendingQueue,
    control_queue: VecDeque<Packet>,
    stream_queue: VecDeque<u16>,

    pub(crate) mtu: u32,
    // max DATA chunk payload size
    max_payload_size: u32,
    cumulative_tsn_ack_point: u32,
    advanced_peer_tsn_ack_point: u32,
    use_forward_tsn: bool,

    pub(crate) rto_mgr: RtoManager,
    timers: TimerTable,

    // Congestion control parameters
    max_receive_buffer_size: u32,
    // my congestion window size
    pub(crate) cwnd: u32,
    // calculated peer's receiver windows size
    rwnd: u32,
    // slow start threshold
    pub(crate) ssthresh: u32,
    partial_bytes_acked: u32,
    pub(crate) in_fast_recovery: bool,
    fast_recover_exit_point: u32,

    // Chunks stored for retransmission
    stored_init: Option<ChunkInit>,
    stored_cookie_echo: Option<ChunkCookieEcho>,
    pub(crate) streams: FxHashMap<StreamId, StreamState>,

    events: VecDeque<Event>,
    endpoint_events: VecDeque<EndpointEventInner>,
    error: Option<AssociationError>,

    // per inbound packet context
    delayed_ack_triggered: bool,
    immediate_ack_triggered: bool,

    pub(crate) stats: AssociationStats,
    ack_state: AckState,

    // for testing
    pub(crate) ack_mode: AckMode,
}

impl Default for Association {
    fn default() -> Self {
        Association {
            side: Side::default(),
            state: AssociationState::default(),
            handshake_completed: false,
            max_message_size: 0,
            inflight_queue_length: 0,
            will_send_shutdown: false,
            bytes_received: 0,
            bytes_sent: 0,

            peer_verification_tag: 0,
            my_verification_tag: 0,
            my_next_tsn: 0,
            peer_last_tsn: 0,
            // for RTT measurement
            min_tsn2measure_rtt: 0,
            will_send_forward_tsn: false,
            will_retransmit_fast: false,
            will_retransmit_reconfig: false,

            will_send_shutdown_ack: false,
            will_send_shutdown_complete: false,

            // Reconfig
            my_next_rsn: 0,
            reconfigs: FxHashMap::default(),
            reconfig_requests: FxHashMap::default(),

            // Non-RFC internal data
            remote_addr: SocketAddr::from_str("0.0.0.0:0").unwrap(),
            local_ip: None,
            source_port: 0,
            destination_port: 0,
            my_max_num_inbound_streams: 0,
            my_max_num_outbound_streams: 0,
            my_cookie: None,

            payload_queue: PayloadQueue::default(),
            inflight_queue: PayloadQueue::default(),
            pending_queue: PendingQueue::default(),
            control_queue: VecDeque::default(),
            stream_queue: VecDeque::default(),

            mtu: 0,
            // max DATA chunk payload size
            max_payload_size: 0,
            cumulative_tsn_ack_point: 0,
            advanced_peer_tsn_ack_point: 0,
            use_forward_tsn: false,

            rto_mgr: RtoManager::default(),
            timers: TimerTable::default(),

            // Congestion control parameters
            max_receive_buffer_size: 0,
            // my congestion window size
            cwnd: 0,
            // calculated peer's receiver windows size
            rwnd: 0,
            // slow start threshold
            ssthresh: 0,
            partial_bytes_acked: 0,
            in_fast_recovery: false,
            fast_recover_exit_point: 0,

            // Chunks stored for retransmission
            stored_init: None,
            stored_cookie_echo: None,
            streams: FxHashMap::default(),

            events: VecDeque::default(),
            endpoint_events: VecDeque::default(),
            error: None,

            // per inbound packet context
            delayed_ack_triggered: false,
            immediate_ack_triggered: false,

            stats: AssociationStats::default(),
            ack_state: AckState::default(),

            // for testing
            ack_mode: AckMode::default(),
        }
    }
}

impl Association {
    pub(crate) fn new(
        server_config: Option<Arc<ServerConfig>>,
        config: Arc<TransportConfig>,
        max_payload_size: u32,
        local_aid: AssociationId,
        remote_addr: SocketAddr,
        local_ip: Option<IpAddr>,
        now: Instant,
    ) -> Self {
        let side = if server_config.is_some() {
            Side::Server
        } else {
            Side::Client
        };

        // It's a bit strange, but we're going backwards from the calculation in
        // config.rs to get max_payload_size from INITIAL_MTU.
        let mtu = max_payload_size + COMMON_HEADER_SIZE + DATA_CHUNK_HEADER_SIZE;

        // RFC 4690 Sec 7.2.1
        // The initial cwnd before DATA transmission or after a sufficiently
        // long idle period MUST be set to min(4*MTU, max (2*MTU, 4380bytes)).
        let cwnd = (2 * mtu).clamp(4380, 4 * mtu);
        let mut tsn = random::<u32>();
        if tsn == 0 {
            tsn += 1;
        }

        let mut this = Association {
            side,
            handshake_completed: false,
            max_receive_buffer_size: config.max_receive_buffer_size(),
            max_message_size: config.max_message_size(),
            my_max_num_outbound_streams: config.max_num_outbound_streams(),
            my_max_num_inbound_streams: config.max_num_inbound_streams(),
            max_payload_size,

            rto_mgr: RtoManager::new(),
            timers: TimerTable::new(),

            mtu,
            cwnd,
            remote_addr,
            local_ip,

            my_verification_tag: local_aid,
            my_next_tsn: tsn,
            my_next_rsn: tsn,
            min_tsn2measure_rtt: tsn,
            cumulative_tsn_ack_point: tsn - 1,
            advanced_peer_tsn_ack_point: tsn - 1,
            error: None,

            ..Default::default()
        };

        if side.is_client() {
            let mut init = ChunkInit {
                initial_tsn: this.my_next_tsn,
                num_outbound_streams: this.my_max_num_outbound_streams,
                num_inbound_streams: this.my_max_num_inbound_streams,
                initiate_tag: this.my_verification_tag,
                advertised_receiver_window_credit: this.max_receive_buffer_size,
                ..Default::default()
            };
            init.set_supported_extensions();

            this.set_state(AssociationState::CookieWait);
            this.stored_init = Some(init);
            let _ = this.send_init();
            this.timers
                .start(Timer::T1Init, now, this.rto_mgr.get_rto());
        }

        this
    }

    /// Returns application-facing event
    ///
    /// Associations should be polled for events after:
    /// - a call was made to `handle_event`
    /// - a call was made to `handle_timeout`
    #[must_use]
    pub fn poll(&mut self) -> Option<Event> {
        if let Some(x) = self.events.pop_front() {
            return Some(x);
        }

        /*TODO: if let Some(event) = self.streams.poll() {
            return Some(Event::Stream(event));
        }*/

        if let Some(err) = self.error.take() {
            return Some(Event::AssociationLost { reason: err });
        }

        None
    }

    /// Return endpoint-facing event
    #[must_use]
    pub fn poll_endpoint_event(&mut self) -> Option<EndpointEvent> {
        self.endpoint_events.pop_front().map(EndpointEvent)
    }

    /// Returns the next time at which `handle_timeout` should be called
    ///
    /// The value returned may change after:
    /// - the application performed some I/O on the association
    /// - a call was made to `handle_transmit`
    /// - a call to `poll_transmit` returned `Some`
    /// - a call was made to `handle_timeout`
    #[must_use]
    pub fn poll_timeout(&mut self) -> Option<Instant> {
        self.timers.next_timeout()
    }

    /// Returns packets to transmit
    ///
    /// Associations should be polled for transmit after:
    /// - the application performed some I/O on the Association
    /// - a call was made to `handle_event`
    /// - a call was made to `handle_timeout`
    #[must_use]
    pub fn poll_transmit(&mut self, now: Instant) -> Option<Transmit> {
        let (contents, _) = self.gather_outbound(now);
        if contents.is_empty() {
            None
        } else {
            trace!(
                "[{}] sending {} bytes (total {} datagrams)",
                self.side,
                contents.iter().fold(0, |l, c| l + c.len()),
                contents.len()
            );
            Some(Transmit {
                now,
                remote: self.remote_addr,
                payload: Payload::RawEncode(contents),
                ecn: None,
                local_ip: self.local_ip,
            })
        }
    }

    /// Process timer expirations
    ///
    /// Executes protocol logic, potentially preparing signals (including application `Event`s,
    /// `EndpointEvent`s and outgoing datagrams) that should be extracted through the relevant
    /// methods.
    ///
    /// It is most efficient to call this immediately after the system clock reaches the latest
    /// `Instant` that was output by `poll_timeout`; however spurious extra calls will simply
    /// no-op and therefore are safe.
    pub fn handle_timeout(&mut self, now: Instant) {
        for &timer in &Timer::VALUES {
            let (expired, failure, n_rtos) = self.timers.is_expired(timer, now);
            if !expired {
                continue;
            }
            self.timers.set(timer, None);
            //trace!("{:?} timeout", timer);

            if timer == Timer::Ack {
                self.on_ack_timeout();
            } else if failure {
                self.on_retransmission_failure(timer);
            } else {
                self.on_retransmission_timeout(timer, n_rtos);
                self.timers.start(timer, now, self.rto_mgr.get_rto());
            }
        }
    }

    /// Process `AssociationEvent`s generated by the associated `Endpoint`
    ///
    /// Will execute protocol logic upon receipt of an association event, in turn preparing signals
    /// (including application `Event`s, `EndpointEvent`s and outgoing datagrams) that should be
    /// extracted through the relevant methods.
    pub fn handle_event(&mut self, event: AssociationEvent) {
        match event.0 {
            AssociationEventInner::Datagram(transmit) => {
                // If this packet could initiate a migration and we're a client or a server that
                // forbids migration, drop the datagram. This could be relaxed to heuristically
                // permit NAT-rebinding-like migration.
                /*TODO:if remote != self.remote && self.server_config.as_ref().map_or(true, |x| !x.migration)
                {
                    trace!("discarding packet from unrecognized peer {}", remote);
                    return;
                }*/

                if let Payload::PartialDecode(partial_decode) = transmit.payload {
                    trace!(
                        "[{}] receiving {} bytes",
                        self.side,
                        COMMON_HEADER_SIZE as usize + partial_decode.remaining.len()
                    );

                    let pkt = match partial_decode.finish() {
                        Ok(p) => p,
                        Err(err) => {
                            warn!("[{}] unable to parse SCTP packet {}", self.side, err);
                            return;
                        }
                    };

                    if let Err(err) = self.handle_inbound(pkt, transmit.now) {
                        error!("handle_inbound got err: {}", err);
                        let _ = self.close();
                    }
                } else {
                    trace!("discarding invalid partial_decode");
                }
            } //TODO:
        }
    }

    /// Returns Association statistics
    pub fn stats(&self) -> AssociationStats {
        self.stats
    }

    /// Whether the Association is in the process of being established
    ///
    /// If this returns `false`, the Association may be either established or closed, signaled by the
    /// emission of a `Connected` or `AssociationLost` message respectively.
    pub fn is_handshaking(&self) -> bool {
        !self.handshake_completed
    }

    /// Whether the Association is closed
    ///
    /// Closed Associations cannot transport any further data. An association becomes closed when
    /// either peer application intentionally closes it, or when either transport layer detects an
    /// error such as a time-out or certificate validation failure.
    ///
    /// A `AssociationLost` event is emitted with details when the association becomes closed.
    pub fn is_closed(&self) -> bool {
        self.state == AssociationState::Closed
    }

    /// Whether there is no longer any need to keep the association around
    ///
    /// Closed associations become drained after a brief timeout to absorb any remaining in-flight
    /// packets from the peer. All drained associations have been closed.
    pub fn is_drained(&self) -> bool {
        self.state.is_drained()
    }

    /// Look up whether we're the client or server of this Association
    pub fn side(&self) -> Side {
        self.side
    }

    /// The latest socket address for this Association's peer
    pub fn remote_addr(&self) -> SocketAddr {
        self.remote_addr
    }

    /// Current best estimate of this Association's latency (round-trip-time)
    pub fn rtt(&self) -> Duration {
        Duration::from_millis(self.rto_mgr.get_rto())
    }

    /// The local IP address which was used when the peer established
    /// the association
    ///
    /// This can be different from the address the endpoint is bound to, in case
    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
    ///
    /// This will return `None` for clients.
    ///
    /// Retrieving the local IP address is currently supported on the following
    /// platforms:
    /// - Linux
    ///
    /// On all non-supported platforms the local IP address will not be available,
    /// and the method will return `None`.
    pub fn local_ip(&self) -> Option<IpAddr> {
        self.local_ip
    }

    /// Shutdown initiates the shutdown sequence. The method blocks until the
    /// shutdown sequence is completed and the association is closed, or until the
    /// passed context is done, in which case the context's error is returned.
    pub fn shutdown(&mut self) -> Result<()> {
        debug!("[{}] closing association..", self.side);

        let state = self.state();
        if state != AssociationState::Established {
            return Err(Error::ErrShutdownNonEstablished);
        }

        // Attempt a graceful shutdown.
        self.set_state(AssociationState::ShutdownPending);

        if self.inflight_queue_length == 0 {
            // No more outstanding, send shutdown.
            self.will_send_shutdown = true;
            self.awake_write_loop();
            self.set_state(AssociationState::ShutdownSent);
        }

        self.endpoint_events.push_back(EndpointEventInner::Drained);

        Ok(())
    }

    /// Close ends the SCTP Association and cleans up any state
    pub fn close(&mut self) -> Result<()> {
        if self.state() != AssociationState::Closed {
            self.set_state(AssociationState::Closed);

            debug!("[{}] closing association..", self.side);

            self.close_all_timers();

            for si in self.streams.keys().cloned().collect::<Vec<u16>>() {
                self.unregister_stream(si);
            }

            debug!("[{}] association closed", self.side);
            debug!(
                "[{}] stats nDATAs (in) : {}",
                self.side,
                self.stats.get_num_datas()
            );
            debug!(
                "[{}] stats nSACKs (in) : {}",
                self.side,
                self.stats.get_num_sacks()
            );
            debug!(
                "[{}] stats nT3Timeouts : {}",
                self.side,
                self.stats.get_num_t3timeouts()
            );
            debug!(
                "[{}] stats nAckTimeouts: {}",
                self.side,
                self.stats.get_num_ack_timeouts()
            );
            debug!(
                "[{}] stats nFastRetrans: {}",
                self.side,
                self.stats.get_num_fast_retrans()
            );
        }

        Ok(())
    }

    /// open_stream opens a stream
    pub fn open_stream(
        &mut self,
        stream_identifier: StreamId,
        default_payload_type: PayloadProtocolIdentifier,
    ) -> Result<Stream<'_>> {
        if self.streams.contains_key(&stream_identifier) {
            return Err(Error::ErrStreamAlreadyExist);
        }

        if let Some(s) = self.create_stream(stream_identifier, false, default_payload_type) {
            Ok(s)
        } else {
            Err(Error::ErrStreamCreateFailed)
        }
    }

    /// accept_stream accepts a stream
    pub fn accept_stream(&mut self) -> Option<Stream<'_>> {
        self.stream_queue
            .pop_front()
            .map(move |stream_identifier| Stream {
                stream_identifier,
                association: self,
            })
    }

    /// stream returns a stream
    pub fn stream(&mut self, stream_identifier: StreamId) -> Result<Stream<'_>> {
        if !self.streams.contains_key(&stream_identifier) {
            Err(Error::ErrStreamNotExisted)
        } else {
            Ok(Stream {
                stream_identifier,
                association: self,
            })
        }
    }

    /// bytes_sent returns the number of bytes sent
    pub(crate) fn bytes_sent(&self) -> usize {
        self.bytes_sent
    }

    /// bytes_received returns the number of bytes received
    pub(crate) fn bytes_received(&self) -> usize {
        self.bytes_received
    }

    /// max_message_size returns the maximum message size you can send.
    pub(crate) fn max_message_size(&self) -> u32 {
        self.max_message_size
    }

    /// set_max_message_size sets the maximum message size you can send.
    pub(crate) fn set_max_message_size(&mut self, max_message_size: u32) {
        self.max_message_size = max_message_size;
    }

    /// unregister_stream un-registers a stream from the association
    /// The caller should hold the association write lock.
    fn unregister_stream(&mut self, stream_identifier: StreamId) {
        if let Some(mut s) = self.streams.remove(&stream_identifier) {
            debug!("[{}] unregister_stream {}", self.side, stream_identifier);
            s.state = RecvSendState::Closed;
        }
    }

    /// set_state atomically sets the state of the Association.
    fn set_state(&mut self, new_state: AssociationState) {
        if new_state != self.state {
            debug!(
                "[{}] state change: '{}' => '{}'",
                self.side, self.state, new_state,
            );
        }
        self.state = new_state;
    }

    /// state atomically returns the state of the Association.
    pub(crate) fn state(&self) -> AssociationState {
        self.state
    }

    /// caller must hold self.lock
    fn send_init(&mut self) -> Result<()> {
        if let Some(stored_init) = &self.stored_init {
            debug!("[{}] sending INIT", self.side);

            self.source_port = 5000; // Spec??
            self.destination_port = 5000; // Spec??

            let outbound = Packet {
                common_header: CommonHeader {
                    source_port: self.source_port,
                    destination_port: self.destination_port,
                    verification_tag: self.peer_verification_tag,
                },
                chunks: vec![Box::new(stored_init.clone())],
            };

            self.control_queue.push_back(outbound);
            self.awake_write_loop();

            Ok(())
        } else {
            Err(Error::ErrInitNotStoredToSend)
        }
    }

    /// caller must hold self.lock
    fn send_cookie_echo(&mut self) -> Result<()> {
        if let Some(stored_cookie_echo) = &self.stored_cookie_echo {
            debug!("[{}] sending COOKIE-ECHO", self.side);

            let outbound = Packet {
                common_header: CommonHeader {
                    source_port: self.source_port,
                    destination_port: self.destination_port,
                    verification_tag: self.peer_verification_tag,
                },
                chunks: vec![Box::new(stored_cookie_echo.clone())],
            };

            self.control_queue.push_back(outbound);
            self.awake_write_loop();

            Ok(())
        } else {
            Err(Error::ErrCookieEchoNotStoredToSend)
        }
    }

    /// handle_inbound parses incoming raw packets
    fn handle_inbound(&mut self, p: Packet, now: Instant) -> Result<()> {
        if let Err(err) = p.check_packet() {
            warn!("[{}] failed validating packet {}", self.side, err);
            return Ok(());
        }

        self.handle_chunk_start();

        for c in &p.chunks {
            self.handle_chunk(&p, c, now)?;
        }

        self.handle_chunk_end(now);

        Ok(())
    }

    fn handle_chunk_start(&mut self) {
        self.delayed_ack_triggered = false;
        self.immediate_ack_triggered = false;
    }

    fn handle_chunk_end(&mut self, now: Instant) {
        if self.immediate_ack_triggered {
            self.ack_state = AckState::Immediate;
            self.timers.stop(Timer::Ack);
            self.awake_write_loop();
        } else if self.delayed_ack_triggered {
            // Will send delayed ack in the next ack timeout
            self.ack_state = AckState::Delay;
            self.timers.start(Timer::Ack, now, ACK_INTERVAL);
        }
    }

    #[allow(clippy::borrowed_box)]
    fn handle_chunk(
        &mut self,
        p: &Packet,
        chunk: &Box<dyn Chunk + Send + Sync>,
        now: Instant,
    ) -> Result<()> {
        chunk.check()?;
        let chunk_any = chunk.as_any();
        let packets = if let Some(c) = chunk_any.downcast_ref::<ChunkInit>() {
            if c.is_ack {
                self.handle_init_ack(p, c, now)?
            } else {
                self.handle_init(p, c)?
            }
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkAbort>() {
            let mut err_str = String::new();
            for e in &c.error_causes {
                if matches!(e.code, USER_INITIATED_ABORT) {
                    debug!("User initiated abort received");
                    let _ = self.close();
                    return Ok(());
                }
                err_str += &format!("({})", e);
            }
            return Err(Error::ErrAbortChunk(err_str));
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkError>() {
            let mut err_str = String::new();
            for e in &c.error_causes {
                err_str += &format!("({})", e);
            }
            return Err(Error::ErrAbortChunk(err_str));
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkHeartbeat>() {
            self.handle_heartbeat(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkCookieEcho>() {
            self.handle_cookie_echo(c)?
        } else if chunk_any.downcast_ref::<ChunkCookieAck>().is_some() {
            self.handle_cookie_ack()?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkPayloadData>() {
            self.handle_data(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkSelectiveAck>() {
            self.handle_sack(c, now)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkReconfig>() {
            self.handle_reconfig(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkForwardTsn>() {
            self.handle_forward_tsn(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkShutdown>() {
            self.handle_shutdown(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkShutdownAck>() {
            self.handle_shutdown_ack(c)?
        } else if let Some(c) = chunk_any.downcast_ref::<ChunkShutdownComplete>() {
            self.handle_shutdown_complete(c)?
        } else {
            return Err(Error::ErrChunkTypeUnhandled);
        };

        if !packets.is_empty() {
            let mut buf: VecDeque<_> = packets.into_iter().collect();
            self.control_queue.append(&mut buf);
            self.awake_write_loop();
        }

        Ok(())
    }

    fn handle_init(&mut self, p: &Packet, i: &ChunkInit) -> Result<Vec<Packet>> {
        let state = self.state();
        debug!("[{}] chunkInit received in state '{}'", self.side, state);

        // https://tools.ietf.org/html/rfc4960#section-5.2.1
        // Upon receipt of an INIT in the COOKIE-WAIT state, an endpoint MUST
        // respond with an INIT ACK using the same parameters it sent in its
        // original INIT chunk (including its Initiate Tag, unchanged).  When
        // responding, the endpoint MUST send the INIT ACK back to the same
        // address that the original INIT (sent by this endpoint) was sent.

        if state != AssociationState::Closed
            && state != AssociationState::CookieWait
            && state != AssociationState::CookieEchoed
        {
            // 5.2.2.  Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED,
            //        COOKIE-WAIT, and SHUTDOWN-ACK-SENT
            return Err(Error::ErrHandleInitState);
        }

        // Should we be setting any of these permanently until we've ACKed further?
        self.my_max_num_inbound_streams =
            std::cmp::min(i.num_inbound_streams, self.my_max_num_inbound_streams);
        self.my_max_num_outbound_streams =
            std::cmp::min(i.num_outbound_streams, self.my_max_num_outbound_streams);
        self.peer_verification_tag = i.initiate_tag;
        self.source_port = p.common_header.destination_port;
        self.destination_port = p.common_header.source_port;

        // 13.2 This is the last TSN received in sequence.  This value
        // is set initially by taking the peer's initial TSN,
        // received in the INIT or INIT ACK chunk, and
        // subtracting one from it.
        self.peer_last_tsn = if i.initial_tsn == 0 {
            u32::MAX
        } else {
            i.initial_tsn - 1
        };

        for param in &i.params {
            if let Some(v) = param.as_any().downcast_ref::<ParamSupportedExtensions>() {
                for t in &v.chunk_types {
                    if *t == CT_FORWARD_TSN {
                        debug!("[{}] use ForwardTSN (on init)", self.side);
                        self.use_forward_tsn = true;
                    }
                }
            }
        }
        if !self.use_forward_tsn {
            warn!("[{}] not using ForwardTSN (on init)", self.side);
        }

        let mut outbound = Packet {
            common_header: CommonHeader {
                verification_tag: self.peer_verification_tag,
                source_port: self.source_port,
                destination_port: self.destination_port,
            },
            chunks: vec![],
        };

        let mut init_ack = ChunkInit {
            is_ack: true,
            initial_tsn: self.my_next_tsn,
            num_outbound_streams: self.my_max_num_outbound_streams,
            num_inbound_streams: self.my_max_num_inbound_streams,
            initiate_tag: self.my_verification_tag,
            advertised_receiver_window_credit: self.max_receive_buffer_size,
            ..Default::default()
        };

        if self.my_cookie.is_none() {
            self.my_cookie = Some(ParamStateCookie::new());
        }

        if let Some(my_cookie) = &self.my_cookie {
            init_ack.params = vec![Box::new(my_cookie.clone())];
        }

        init_ack.set_supported_extensions();

        outbound.chunks = vec![Box::new(init_ack)];

        Ok(vec![outbound])
    }

    fn handle_init_ack(
        &mut self,
        p: &Packet,
        i: &ChunkInitAck,
        now: Instant,
    ) -> Result<Vec<Packet>> {
        let state = self.state();
        debug!("[{}] chunkInitAck received in state '{}'", self.side, state);
        if state != AssociationState::CookieWait {
            // RFC 4960
            // 5.2.3.  Unexpected INIT ACK
            //   If an INIT ACK is received by an endpoint in any state other than the
            //   COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk.
            //   An unexpected INIT ACK usually indicates the processing of an old or
            //   duplicated INIT chunk.
            return Ok(vec![]);
        }

        self.my_max_num_inbound_streams =
            std::cmp::min(i.num_inbound_streams, self.my_max_num_inbound_streams);
        self.my_max_num_outbound_streams =
            std::cmp::min(i.num_outbound_streams, self.my_max_num_outbound_streams);
        self.peer_verification_tag = i.initiate_tag;
        self.peer_last_tsn = if i.initial_tsn == 0 {
            u32::MAX
        } else {
            i.initial_tsn - 1
        };
        if self.source_port != p.common_header.destination_port
            || self.destination_port != p.common_header.source_port
        {
            warn!("[{}] handle_init_ack: port mismatch", self.side);
            return Ok(vec![]);
        }

        self.rwnd = i.advertised_receiver_window_credit;
        debug!("[{}] initial rwnd={}", self.side, self.rwnd);

        // RFC 4690 Sec 7.2.1
        //  o  The initial value of ssthresh MAY be arbitrarily high (for
        //     example, implementations MAY use the size of the receiver
        //     advertised window).
        self.ssthresh = self.rwnd;
        trace!(
            "[{}] updated cwnd={} ssthresh={} inflight={} (INI)",
            self.side,
            self.cwnd,
            self.ssthresh,
            self.inflight_queue.get_num_bytes()
        );

        self.timers.stop(Timer::T1Init);
        self.stored_init = None;

        let mut cookie_param = None;
        for param in &i.params {
            if let Some(v) = param.as_any().downcast_ref::<ParamStateCookie>() {
                cookie_param = Some(v);
            } else if let Some(v) = param.as_any().downcast_ref::<ParamSupportedExtensions>() {
                for t in &v.chunk_types {
                    if *t == CT_FORWARD_TSN {
                        debug!("[{}] use ForwardTSN (on initAck)", self.side);
                        self.use_forward_tsn = true;
                    }
                }
            }
        }
        if !self.use_forward_tsn {
            warn!("[{}] not using ForwardTSN (on initAck)", self.side);
        }

        if let Some(v) = cookie_param {
            self.stored_cookie_echo = Some(ChunkCookieEcho {
                cookie: v.cookie.clone(),
            });

            self.send_cookie_echo()?;

            self.timers
                .start(Timer::T1Cookie, now, self.rto_mgr.get_rto());

            self.set_state(AssociationState::CookieEchoed);

            Ok(vec![])
        } else {
            Err(Error::ErrInitAckNoCookie)
        }
    }

    fn handle_heartbeat(&self, c: &ChunkHeartbeat) -> Result<Vec<Packet>> {
        trace!("[{}] chunkHeartbeat", self.side);
        if let Some(p) = c.params.first() {
            if let Some(hbi) = p.as_any().downcast_ref::<ParamHeartbeatInfo>() {
                return Ok(vec![Packet {
                    common_header: CommonHeader {
                        verification_tag: self.peer_verification_tag,
                        source_port: self.source_port,
                        destination_port: self.destination_port,
                    },
                    chunks: vec![Box::new(ChunkHeartbeatAck {
                        params: vec![Box::new(ParamHeartbeatInfo {
                            heartbeat_information: hbi.heartbeat_information.clone(),
                        })],
                    })],
                }]);
            } else {
                warn!(
                    "[{}] failed to handle Heartbeat, no ParamHeartbeatInfo",
                    self.side,
                );
            }
        }

        Ok(vec![])
    }

    fn handle_cookie_echo(&mut self, c: &ChunkCookieEcho) -> Result<Vec<Packet>> {
        let state = self.state();
        debug!("[{}] COOKIE-ECHO received in state '{}'", self.side, state);

        if let Some(my_cookie) = &self.my_cookie {
            match state {
                AssociationState::Established => {
                    if my_cookie.cookie != c.cookie {
                        return Ok(vec![]);
                    }
                }
                AssociationState::Closed
                | AssociationState::CookieWait
                | AssociationState::CookieEchoed => {
                    if my_cookie.cookie != c.cookie {
                        return Ok(vec![]);
                    }

                    self.timers.stop(Timer::T1Init);
                    self.stored_init = None;

                    self.timers.stop(Timer::T1Cookie);
                    self.stored_cookie_echo = None;

                    self.events.push_back(Event::Connected);
                    self.set_state(AssociationState::Established);
                    self.handshake_completed = true;
                }
                _ => return Ok(vec![]),
            };
        } else {
            debug!("[{}] COOKIE-ECHO received before initialization", self.side);
            return Ok(vec![]);
        }

        Ok(vec![Packet {
            common_header: CommonHeader {
                verification_tag: self.peer_verification_tag,
                source_port: self.source_port,
                destination_port: self.destination_port,
            },
            chunks: vec![Box::new(ChunkCookieAck {})],
        }])
    }

    fn handle_cookie_ack(&mut self) -> Result<Vec<Packet>> {
        let state = self.state();
        debug!("[{}] COOKIE-ACK received in state '{}'", self.side, state);
        if state != AssociationState::CookieEchoed {
            // RFC 4960
            // 5.2.5.  Handle Duplicate COOKIE-ACK.
            //   At any state other than COOKIE-ECHOED, an endpoint should silently
            //   discard a received COOKIE ACK chunk.
            return Ok(vec![]);
        }

        self.timers.stop(Timer::T1Cookie);
        self.stored_cookie_echo = None;

        self.events.push_back(Event::Connected);
        self.set_state(AssociationState::Established);
        self.handshake_completed = true;

        Ok(vec![])
    }

    fn handle_data(&mut self, d: &ChunkPayloadData) -> Result<Vec<Packet>> {
        trace!(
            "[{}] DATA: tsn={} immediateSack={} len={}",
            self.side,
            d.tsn,
            d.immediate_sack,
            d.user_data.len()
        );
        self.stats.inc_datas();

        let can_push = self.payload_queue.can_push(d, self.peer_last_tsn);
        let mut stream_handle_data = false;
        if can_push {
            if self.get_or_create_stream(d.stream_identifier).is_some() {
                if self.get_my_receiver_window_credit() > 0 {
                    // Pass the new chunk to stream level as soon as it arrives
                    self.payload_queue.push(d.clone(), self.peer_last_tsn);
                    stream_handle_data = true;
                } else {
                    // Receive buffer is full
                    if let Some(last_tsn) = self.payload_queue.get_last_tsn_received() {
                        if sna32lt(d.tsn, *last_tsn) {
                            debug!("[{}] receive buffer full, but accepted as this is a missing chunk with tsn={} ssn={}", self.side, d.tsn, d.stream_sequence_number);
                            self.payload_queue.push(d.clone(), self.peer_last_tsn);
                            stream_handle_data = true; //s.handle_data(d.clone());
                        }
                    } else {
                        debug!(
                            "[{}] receive buffer full. dropping DATA with tsn={} ssn={}",
                            self.side, d.tsn, d.stream_sequence_number
                        );
                    }
                }
            } else {
                // silently discard the data. (sender will retry on T3-rtx timeout)
                // see pion/sctp#30
                debug!("[{}] discard {}", self.side, d.stream_sequence_number);
                return Ok(vec![]);
            }
        }

        let immediate_sack = d.immediate_sack;

        if stream_handle_data {
            if let Some(s) = self.streams.get_mut(&d.stream_identifier) {
                self.events.push_back(Event::DatagramReceived);
                s.handle_data(d);
                if s.reassembly_queue.is_readable() {
                    self.events.push_back(Event::Stream(StreamEvent::Readable {
                        id: d.stream_identifier,
                    }))
                }
            }
        }

        self.handle_peer_last_tsn_and_acknowledgement(immediate_sack)
    }

    fn handle_sack(&mut self, d: &ChunkSelectiveAck, now: Instant) -> Result<Vec<Packet>> {
        trace!(
            "[{}] {}, SACK: cumTSN={} a_rwnd={}",
            self.side,
            self.cumulative_tsn_ack_point,
            d.cumulative_tsn_ack,
            d.advertised_receiver_window_credit
        );
        let state = self.state();
        if state != AssociationState::Established
            && state != AssociationState::ShutdownPending
            && state != AssociationState::ShutdownReceived
        {
            return Ok(vec![]);
        }

        self.stats.inc_sacks();

        if sna32gt(self.cumulative_tsn_ack_point, d.cumulative_tsn_ack) {
            // RFC 4960 sec 6.2.1.  Processing a Received SACK
            // D)
            //   i) If Cumulative TSN Ack is less than the Cumulative TSN Ack
            //      Point, then drop the SACK.  Since Cumulative TSN Ack is
            //      monotonically increasing, a SACK whose Cumulative TSN Ack is
            //      less than the Cumulative TSN Ack Point indicates an out-of-
            //      order SACK.

            debug!(
                "[{}] SACK Cumulative ACK {} is older than ACK point {}",
                self.side, d.cumulative_tsn_ack, self.cumulative_tsn_ack_point
            );

            return Ok(vec![]);
        }

        // Process selective ack
        let (bytes_acked_per_stream, htna) = self.process_selective_ack(d, now)?;

        let mut total_bytes_acked = 0;
        for n_bytes_acked in bytes_acked_per_stream.values() {
            total_bytes_acked += *n_bytes_acked;
        }

        let mut cum_tsn_ack_point_advanced = false;
        if sna32lt(self.cumulative_tsn_ack_point, d.cumulative_tsn_ack) {
            trace!(
                "[{}] SACK: cumTSN advanced: {} -> {}",
                self.side,
                self.cumulative_tsn_ack_point,
                d.cumulative_tsn_ack
            );

            self.cumulative_tsn_ack_point = d.cumulative_tsn_ack;
            cum_tsn_ack_point_advanced = true;
            self.on_cumulative_tsn_ack_point_advanced(total_bytes_acked, now);
        }

        for (si, n_bytes_acked) in &bytes_acked_per_stream {
            if let Some(s) = self.streams.get_mut(si) {
                if s.on_buffer_released(*n_bytes_acked) {
                    self.events
                        .push_back(Event::Stream(StreamEvent::BufferedAmountLow { id: *si }))
                }
            }
        }

        // New rwnd value
        // RFC 4960 sec 6.2.1.  Processing a Received SACK
        // D)
        //   ii) Set rwnd equal to the newly received a_rwnd minus the number
        //       of bytes still outstanding after processing the Cumulative
        //       TSN Ack and the Gap Ack Blocks.

        // bytes acked were already subtracted by markAsAcked() method
        let bytes_outstanding = self.inflight_queue.get_num_bytes() as u32;
        if bytes_outstanding >= d.advertised_receiver_window_credit {
            self.rwnd = 0;
        } else {
            self.rwnd = d.advertised_receiver_window_credit - bytes_outstanding;
        }

        self.process_fast_retransmission(d.cumulative_tsn_ack, htna, cum_tsn_ack_point_advanced)?;

        if self.use_forward_tsn {
            // RFC 3758 Sec 3.5 C1
            if sna32lt(
                self.advanced_peer_tsn_ack_point,
                self.cumulative_tsn_ack_point,
            ) {
                self.advanced_peer_tsn_ack_point = self.cumulative_tsn_ack_point
            }

            // RFC 3758 Sec 3.5 C2
            let mut i = self.advanced_peer_tsn_ack_point + 1;
            while let Some(c) = self.inflight_queue.get(i) {
                if !c.abandoned() {
                    break;
                }
                self.advanced_peer_tsn_ack_point = i;
                i += 1;
            }

            // RFC 3758 Sec 3.5 C3
            if sna32gt(
                self.advanced_peer_tsn_ack_point,
                self.cumulative_tsn_ack_point,
            ) {
                self.will_send_forward_tsn = true;
                debug!(
                    "[{}] handleSack {}: sna32GT({}, {})",
                    self.side,
                    self.will_send_forward_tsn,
                    self.advanced_peer_tsn_ack_point,
                    self.cumulative_tsn_ack_point
                );
            }
            self.awake_write_loop();
        }

        self.postprocess_sack(state, cum_tsn_ack_point_advanced, now);

        Ok(vec![])
    }

    fn handle_reconfig(&mut self, c: &ChunkReconfig) -> Result<Vec<Packet>> {
        trace!("[{}] handle_reconfig", self.side);

        let mut pp = vec![];

        if let Some(param_a) = &c.param_a {
            self.handle_reconfig_param(param_a, &mut pp)?;
        }

        if let Some(param_b) = &c.param_b {
            self.handle_reconfig_param(param_b, &mut pp)?;
        }

        Ok(pp)
    }

    fn handle_forward_tsn(&mut self, c: &ChunkForwardTsn) -> Result<Vec<Packet>> {
        trace!("[{}] FwdTSN: {}", self.side, c.to_string());

        if !self.use_forward_tsn {
            warn!("[{}] received FwdTSN but not enabled", self.side);
            // Return an error chunk
            let cerr = ChunkError {
                error_causes: vec![ErrorCauseUnrecognizedChunkType::default()],
            };

            let outbound = Packet {
                common_header: CommonHeader {
                    verification_tag: self.peer_verification_tag,
                    source_port: self.source_port,
                    destination_port: self.destination_port,
                },
                chunks: vec![Box::new(cerr)],
            };
            return Ok(vec![outbound]);
        }

        // From RFC 3758 Sec 3.6:
        //   Note, if the "New Cumulative TSN" value carried in the arrived
        //   FORWARD TSN chunk is found to be behind or at the current cumulative
        //   TSN point, the data receiver MUST treat this FORWARD TSN as out-of-
        //   date and MUST NOT update its Cumulative TSN.  The receiver SHOULD
        //   send a SACK to its peer (the sender of the FORWARD TSN) since such a
        //   duplicate may indicate the previous SACK was lost in the network.

        trace!(
            "[{}] should send ack? newCumTSN={} peer_last_tsn={}",
            self.side,
            c.new_cumulative_tsn,
            self.peer_last_tsn
        );
        if sna32lte(c.new_cumulative_tsn, self.peer_last_tsn) {
            trace!("[{}] sending ack on Forward TSN", self.side);
            self.ack_state = AckState::Immediate;
            self.timers.stop(Timer::Ack);
            self.awake_write_loop();
            return Ok(vec![]);
        }

        // From RFC 3758 Sec 3.6:
        //   the receiver MUST perform the same TSN handling, including duplicate
        //   detection, gap detection, SACK generation, cumulative TSN
        //   advancement, etc. as defined in RFC 2960 [2]---with the following
        //   exceptions and additions.

        //   When a FORWARD TSN chunk arrives, the data receiver MUST first update
        //   its cumulative TSN point to the value carried in the FORWARD TSN
        //   chunk,

        // Advance peer_last_tsn
        while sna32lt(self.peer_last_tsn, c.new_cumulative_tsn) {
            self.payload_queue.pop(self.peer_last_tsn + 1); // may not exist
            self.peer_last_tsn += 1;
        }

        // Report new peer_last_tsn value and abandoned largest SSN value to
        // corresponding streams so that the abandoned chunks can be removed
        // from the reassemblyQueue.
        for forwarded in &c.streams {
            if let Some(s) = self.streams.get_mut(&forwarded.identifier) {
                s.handle_forward_tsn_for_ordered(forwarded.sequence);
            }
        }

        // TSN may be forewared for unordered chunks. ForwardTSN chunk does not
        // report which stream identifier it skipped for unordered chunks.
        // Therefore, we need to broadcast this event to all existing streams for
        // unordered chunks.
        // See https://github.com/pion/sctp/issues/106
        for s in self.streams.values_mut() {
            s.handle_forward_tsn_for_unordered(c.new_cumulative_tsn);
        }

        self.handle_peer_last_tsn_and_acknowledgement(false)
    }

    fn handle_shutdown(&mut self, _: &ChunkShutdown) -> Result<Vec<Packet>> {
        let state = self.state();

        if state == AssociationState::Established {
            if !self.inflight_queue.is_empty() {
                self.set_state(AssociationState::ShutdownReceived);
            } else {
                // No more outstanding, send shutdown ack.
                self.will_send_shutdown_ack = true;
                self.set_state(AssociationState::ShutdownAckSent);

                self.awake_write_loop();
            }
        } else if state == AssociationState::ShutdownSent {
            // self.cumulative_tsn_ack_point = c.cumulative_tsn_ack

            self.will_send_shutdown_ack = true;
            self.set_state(AssociationState::ShutdownAckSent);

            self.awake_write_loop();
        }

        Ok(vec![])
    }

    fn handle_shutdown_ack(&mut self, _: &ChunkShutdownAck) -> Result<Vec<Packet>> {
        let state = self.state();
        if state == AssociationState::ShutdownSent || state == AssociationState::ShutdownAckSent {
            self.timers.stop(Timer::T2Shutdown);
            self.will_send_shutdown_complete = true;

            self.awake_write_loop();
        }

        Ok(vec![])
    }

    fn handle_shutdown_complete(&mut self, _: &ChunkShutdownComplete) -> Result<Vec<Packet>> {
        let state = self.state();
        if state == AssociationState::ShutdownAckSent {
            self.timers.stop(Timer::T2Shutdown);
            self.close()?;
        }

        Ok(vec![])
    }

    /// A common routine for handle_data and handle_forward_tsn routines
    fn handle_peer_last_tsn_and_acknowledgement(
        &mut self,
        sack_immediately: bool,
    ) -> Result<Vec<Packet>> {
        let mut reply = vec![];

        // Try to advance peer_last_tsn

        // From RFC 3758 Sec 3.6:
        //   .. and then MUST further advance its cumulative TSN point locally
        //   if possible
        // Meaning, if peer_last_tsn+1 points to a chunk that is received,
        // advance peer_last_tsn until peer_last_tsn+1 points to unreceived chunk.
        //debug!("[{}] peer_last_tsn = {}", self.side, self.peer_last_tsn);
        while self.payload_queue.pop(self.peer_last_tsn + 1).is_some() {
            self.peer_last_tsn += 1;
            //debug!("[{}] peer_last_tsn = {}", self.side, self.peer_last_tsn);

            let rst_reqs: Vec<ParamOutgoingResetRequest> =
                self.reconfig_requests.values().cloned().collect();
            for rst_req in rst_reqs {
                self.reset_streams_if_any(&rst_req, false, &mut reply)?;
            }
        }

        let has_packet_loss = !self.payload_queue.is_empty();
        if has_packet_loss {
            trace!(
                "[{}] packetloss: {}",
                self.side,
                self.payload_queue
                    .get_gap_ack_blocks_string(self.peer_last_tsn)
            );
        }

        if (self.ack_state != AckState::Immediate
            && !sack_immediately
            && !has_packet_loss
            && self.ack_mode == AckMode::Normal)
            || self.ack_mode == AckMode::AlwaysDelay
        {
            if self.ack_state == AckState::Idle {
                self.delayed_ack_triggered = true;
            } else {
                self.immediate_ack_triggered = true;
            }
        } else {
            self.immediate_ack_triggered = true;
        }

        Ok(reply)
    }

    #[allow(clippy::borrowed_box)]
    fn handle_reconfig_param(
        &mut self,
        raw: &Box<dyn Param + Send + Sync>,
        reply: &mut Vec<Packet>,
    ) -> Result<()> {
        if let Some(p) = raw.as_any().downcast_ref::<ParamOutgoingResetRequest>() {
            self.reconfig_requests
                .insert(p.reconfig_request_sequence_number, p.clone());
            self.reset_streams_if_any(p, true, reply)?;
            Ok(())
        } else if let Some(p) = raw.as_any().downcast_ref::<ParamReconfigResponse>() {
            self.reconfigs.remove(&p.reconfig_response_sequence_number);
            if self.reconfigs.is_empty() {
                self.timers.stop(Timer::Reconfig);
            }
            Ok(())
        } else {
            Err(Error::ErrParameterType)
        }
    }

    fn process_selective_ack(
        &mut self,
        d: &ChunkSelectiveAck,
        now: Instant,
    ) -> Result<(HashMap<u16, i64>, u32)> {
        let mut bytes_acked_per_stream = HashMap::new();

        // New ack point, so pop all ACKed packets from inflight_queue
        // We add 1 because the "currentAckPoint" has already been popped from the inflight queue
        // For the first SACK we take care of this by setting the ackpoint to cumAck - 1
        let mut i = self.cumulative_tsn_ack_point + 1;
        //log::debug!("[{}] i={} d={}", self.name, i, d.cumulative_tsn_ack);
        while sna32lte(i, d.cumulative_tsn_ack) {
            if let Some(c) = self.inflight_queue.pop(i) {
                if !c.acked {
                    // RFC 4096 sec 6.3.2.  Retransmission Timer Rules
                    //   R3)  Whenever a SACK is received that acknowledges the DATA chunk
                    //        with the earliest outstanding TSN for that address, restart the
                    //        T3-rtx timer for that address with its current RTO (if there is
                    //        still outstanding data on that address).
                    if i == self.cumulative_tsn_ack_point + 1 {
                        // T3 timer needs to be reset. Stop it for now.
                        self.timers.stop(Timer::T3RTX);
                    }

                    let n_bytes_acked = c.user_data.len() as i64;

                    // Sum the number of bytes acknowledged per stream
                    if let Some(amount) = bytes_acked_per_stream.get_mut(&c.stream_identifier) {
                        *amount += n_bytes_acked;
                    } else {
                        bytes_acked_per_stream.insert(c.stream_identifier, n_bytes_acked);
                    }

                    // RFC 4960 sec 6.3.1.  RTO Calculation
                    //   C4)  When data is in flight and when allowed by rule C5 below, a new
                    //        RTT measurement MUST be made each round trip.  Furthermore, new
                    //        RTT measurements SHOULD be made no more than once per round trip
                    //        for a given destination transport address.
                    //   C5)  Karn's algorithm: RTT measurements MUST NOT be made using
                    //        packets that were retransmitted (and thus for which it is
                    //        ambiguous whether the reply was for the first instance of the
                    //        chunk or for a later instance)
                    if c.nsent == 1 && sna32gte(c.tsn, self.min_tsn2measure_rtt) {
                        self.min_tsn2measure_rtt = self.my_next_tsn;
                        if let Some(since) = &c.since {
                            let rtt = now.duration_since(*since);
                            let srtt = self.rto_mgr.set_new_rtt(rtt.as_millis() as u64);
                            trace!(
                                "[{}] SACK: measured-rtt={} srtt={} new-rto={}",
                                self.side,
                                rtt.as_millis(),
                                srtt,
                                self.rto_mgr.get_rto()
                            );
                        } else {
                            error!("[{}] invalid c.since", self.side);
                        }
                    }
                }

                if self.in_fast_recovery && c.tsn == self.fast_recover_exit_point {
                    debug!("[{}] exit fast-recovery", self.side);
                    self.in_fast_recovery = false;
                }
            } else {
                return Err(Error::ErrInflightQueueTsnPop);
            }

            i += 1;
        }

        let mut htna = d.cumulative_tsn_ack;

        // Mark selectively acknowledged chunks as "acked"
        for g in &d.gap_ack_blocks {
            for i in g.start..=g.end {
                let tsn = d.cumulative_tsn_ack + i as u32;

                let (is_existed, is_acked) = if let Some(c) = self.inflight_queue.get(tsn) {
                    (true, c.acked)
                } else {
                    (false, false)
                };
                let n_bytes_acked = if is_existed && !is_acked {
                    self.inflight_queue.mark_as_acked(tsn) as i64
                } else {
                    0
                };

                if let Some(c) = self.inflight_queue.get(tsn) {
                    if !is_acked {
                        // Sum the number of bytes acknowledged per stream
                        if let Some(amount) = bytes_acked_per_stream.get_mut(&c.stream_identifier) {
                            *amount += n_bytes_acked;
                        } else {
                            bytes_acked_per_stream.insert(c.stream_identifier, n_bytes_acked);
                        }

                        trace!("[{}] tsn={} has been sacked", self.side, c.tsn);

                        if c.nsent == 1 {
                            self.min_tsn2measure_rtt = self.my_next_tsn;
                            if let Some(since) = &c.since {
                                let rtt = now.duration_since(*since);
                                let srtt = self.rto_mgr.set_new_rtt(rtt.as_millis() as u64);
                                trace!(
                                    "[{}] SACK: measured-rtt={} srtt={} new-rto={}",
                                    self.side,
                                    rtt.as_millis(),
                                    srtt,
                                    self.rto_mgr.get_rto()
                                );
                            } else {
                                error!("[{}] invalid c.since", self.side);
                            }
                        }

                        if sna32lt(htna, tsn) {
                            htna = tsn;
                        }
                    }
                } else {
                    return Err(Error::ErrTsnRequestNotExist);
                }
            }
        }

        Ok((bytes_acked_per_stream, htna))
    }

    fn on_cumulative_tsn_ack_point_advanced(&mut self, total_bytes_acked: i64, now: Instant) {
        // RFC 4096, sec 6.3.2.  Retransmission Timer Rules
        //   R2)  Whenever all outstanding data sent to an address have been
        //        acknowledged, turn off the T3-rtx timer of that address.
        if self.inflight_queue.is_empty() {
            trace!(
                "[{}] SACK: no more packet in-flight (pending={})",
                self.side,
                self.pending_queue.len()
            );
            self.timers.stop(Timer::T3RTX);
        } else {
            trace!("[{}] T3-rtx timer start (pt2)", self.side);
            self.timers
                .restart_if_stale(Timer::T3RTX, now, self.rto_mgr.get_rto());
        }

        // Update congestion control parameters
        if self.cwnd <= self.ssthresh {
            // RFC 4096, sec 7.2.1.  Slow-Start
            //   o  When cwnd is less than or equal to ssthresh, an SCTP endpoint MUST
            //		use the slow-start algorithm to increase cwnd only if the current
            //      congestion window is being fully utilized, an incoming SACK
            //      advances the Cumulative TSN Ack Point, and the data sender is not
            //      in Fast Recovery.  Only when these three conditions are met can
            //      the cwnd be increased; otherwise, the cwnd MUST not be increased.
            //		If these conditions are met, then cwnd MUST be increased by, at
            //      most, the lesser of 1) the total size of the previously
            //      outstanding DATA chunk(s) acknowledged, and 2) the destination's
            //      path MTU.
            if !self.in_fast_recovery && !self.pending_queue.is_empty() {
                self.cwnd += std::cmp::min(total_bytes_acked as u32, self.cwnd); // TCP way
                                                                                 // self.cwnd += min32(uint32(total_bytes_acked), self.mtu) // SCTP way (slow)
                trace!(
                    "[{}] updated cwnd={} ssthresh={} acked={} (SS)",
                    self.side,
                    self.cwnd,
                    self.ssthresh,
                    total_bytes_acked
                );
            } else {
                trace!(
                    "[{}] cwnd did not grow: cwnd={} ssthresh={} acked={} FR={} pending={}",
                    self.side,
                    self.cwnd,
                    self.ssthresh,
                    total_bytes_acked,
                    self.in_fast_recovery,
                    self.pending_queue.len()
                );
            }
        } else {
            // RFC 4096, sec 7.2.2.  Congestion Avoidance
            //   o  Whenever cwnd is greater than ssthresh, upon each SACK arrival
            //      that advances the Cumulative TSN Ack Point, increase
            //      partial_bytes_acked by the total number of bytes of all new chunks
            //      acknowledged in that SACK including chunks acknowledged by the new
            //      Cumulative TSN Ack and by Gap Ack Blocks.
            self.partial_bytes_acked += total_bytes_acked as u32;

            //   o  When partial_bytes_acked is equal to or greater than cwnd and
            //      before the arrival of the SACK the sender had cwnd or more bytes
            //      of data outstanding (i.e., before arrival of the SACK, flight size
            //      was greater than or equal to cwnd), increase cwnd by MTU, and
            //      reset partial_bytes_acked to (partial_bytes_acked - cwnd).
            if self.partial_bytes_acked >= self.cwnd && !self.pending_queue.is_empty() {
                self.partial_bytes_acked -= self.cwnd;
                self.cwnd += self.mtu;
                trace!(
                    "[{}] updated cwnd={} ssthresh={} acked={} (CA)",
                    self.side,
                    self.cwnd,
                    self.ssthresh,
                    total_bytes_acked
                );
            }
        }
    }

    fn process_fast_retransmission(
        &mut self,
        cum_tsn_ack_point: u32,
        htna: u32,
        cum_tsn_ack_point_advanced: bool,
    ) -> Result<()> {
        // HTNA algorithm - RFC 4960 Sec 7.2.4
        // Increment missIndicator of each chunks that the SACK reported missing
        // when either of the following is met:
        // a)  Not in fast-recovery
        //     miss indications are incremented only for missing TSNs prior to the
        //     highest TSN newly acknowledged in the SACK.
        // b)  In fast-recovery AND the Cumulative TSN Ack Point advanced
        //     the miss indications are incremented for all TSNs reported missing
        //     in the SACK.
        if !self.in_fast_recovery || cum_tsn_ack_point_advanced {
            let max_tsn = if !self.in_fast_recovery {
                // a) increment only for missing TSNs prior to the HTNA
                htna
            } else {
                // b) increment for all TSNs reported missing
                cum_tsn_ack_point + (self.inflight_queue.len() as u32) + 1
            };

            let mut tsn = cum_tsn_ack_point + 1;
            while sna32lt(tsn, max_tsn) {
                if let Some(c) = self.inflight_queue.get_mut(tsn) {
                    if !c.acked && !c.abandoned() && c.miss_indicator < 3 {
                        c.miss_indicator += 1;
                        if c.miss_indicator == 3 && !self.in_fast_recovery {
                            // 2)  If not in Fast Recovery, adjust the ssthresh and cwnd of the
                            //     destination address(es) to which the missing DATA chunks were
                            //     last sent, according to the formula described in Section 7.2.3.
                            self.in_fast_recovery = true;
                            self.fast_recover_exit_point = htna;
                            self.ssthresh = std::cmp::max(self.cwnd / 2, 4 * self.mtu);
                            self.cwnd = self.ssthresh;
                            self.partial_bytes_acked = 0;
                            self.will_retransmit_fast = true;

                            trace!(
                                "[{}] updated cwnd={} ssthresh={} inflight={} (FR)",
                                self.side,
                                self.cwnd,
                                self.ssthresh,
                                self.inflight_queue.get_num_bytes()
                            );
                        }
                    }
                } else {
                    return Err(Error::ErrTsnRequestNotExist);
                }

                tsn += 1;
            }
        }

        if self.in_fast_recovery && cum_tsn_ack_point_advanced {
            self.will_retransmit_fast = true;
        }

        Ok(())
    }

    /// The caller must hold the lock. This method was only added because the
    /// linter was complaining about the "cognitive complexity" of handle_sack.
    fn postprocess_sack(
        &mut self,
        state: AssociationState,
        mut should_awake_write_loop: bool,
        now: Instant,
    ) {
        if !self.inflight_queue.is_empty() {
            // Start timer. (noop if already started)
            trace!("[{}] T3-rtx timer start (pt3)", self.side);
            self.timers
                .restart_if_stale(Timer::T3RTX, now, self.rto_mgr.get_rto());
        } else if state == AssociationState::ShutdownPending {
            // No more outstanding, send shutdown.
            should_awake_write_loop = true;
            self.will_send_shutdown = true;
            self.set_state(AssociationState::ShutdownSent);
        } else if state == AssociationState::ShutdownReceived {
            // No more outstanding, send shutdown ack.
            should_awake_write_loop = true;
            self.will_send_shutdown_ack = true;
            self.set_state(AssociationState::ShutdownAckSent);
        }

        if should_awake_write_loop {
            self.awake_write_loop();
        }
    }

    fn reset_streams_if_any(
        &mut self,
        p: &ParamOutgoingResetRequest,
        respond: bool,
        reply: &mut Vec<Packet>,
    ) -> Result<()> {
        let mut result = ReconfigResult::SuccessPerformed;
        let mut sis_to_reset = vec![];

        if sna32lte(p.sender_last_tsn, self.peer_last_tsn) {
            debug!(
                "[{}] resetStream(): senderLastTSN={} <= peer_last_tsn={}",
                self.side, p.sender_last_tsn, self.peer_last_tsn
            );
            for id in &p.stream_identifiers {
                if self.streams.contains_key(id) {
                    if respond {
                        sis_to_reset.push(*id);
                    }
                    self.unregister_stream(*id);
                }
            }
            self.reconfig_requests
                .remove(&p.reconfig_request_sequence_number);
        } else {
            debug!(
                "[{}] resetStream(): senderLastTSN={} > peer_last_tsn={}",
                self.side, p.sender_last_tsn, self.peer_last_tsn
            );
            result = ReconfigResult::InProgress;
        }

        // Answer incoming reset requests with the same reset request, but with
        // reconfig_response_sequence_number.
        if !sis_to_reset.is_empty() {
            let rsn = self.generate_next_rsn();
            let tsn = self.my_next_tsn - 1;

            let c = ChunkReconfig {
                param_a: Some(Box::new(ParamOutgoingResetRequest {
                    reconfig_request_sequence_number: rsn,
                    reconfig_response_sequence_number: p.reconfig_request_sequence_number,
                    sender_last_tsn: tsn,
                    stream_identifiers: sis_to_reset,
                })),
                ..Default::default()
            };

            self.reconfigs.insert(rsn, c.clone()); // store in the map for retransmission

            let p = self.create_packet(vec![Box::new(c)]);
            reply.push(p);
        }

        let packet = self.create_packet(vec![Box::new(ChunkReconfig {
            param_a: Some(Box::new(ParamReconfigResponse {
                reconfig_response_sequence_number: p.reconfig_request_sequence_number,
                result,
            })),
            param_b: None,
        })]);

        debug!("[{}] RESET RESPONSE: {}", self.side, packet);

        reply.push(packet);

        Ok(())
    }

    /// create_packet wraps chunks in a packet.
    /// The caller should hold the read lock.
    pub(crate) fn create_packet(&self, chunks: Vec<Box<dyn Chunk + Send + Sync>>) -> Packet {
        Packet {
            common_header: CommonHeader {
                verification_tag: self.peer_verification_tag,
                source_port: self.source_port,
                destination_port: self.destination_port,
            },
            chunks,
        }
    }

    /// create_stream creates a stream. The caller should hold the lock and check no stream exists for this id.
    fn create_stream(
        &mut self,
        stream_identifier: StreamId,
        accept: bool,
        default_payload_type: PayloadProtocolIdentifier,
    ) -> Option<Stream<'_>> {
        let s = StreamState::new(
            self.side,
            stream_identifier,
            self.max_payload_size,
            default_payload_type,
        );

        if accept {
            self.stream_queue.push_back(stream_identifier);
            self.events.push_back(Event::Stream(StreamEvent::Opened));
        }

        self.streams.insert(stream_identifier, s);

        Some(Stream {
            stream_identifier,
            association: self,
        })
    }

    /// get_or_create_stream gets or creates a stream. The caller should hold the lock.
    fn get_or_create_stream(&mut self, stream_identifier: StreamId) -> Option<Stream<'_>> {
        if self.streams.contains_key(&stream_identifier) {
            Some(Stream {
                stream_identifier,
                association: self,
            })
        } else {
            self.create_stream(
                stream_identifier,
                true,
                PayloadProtocolIdentifier::default(),
            )
        }
    }

    pub(crate) fn get_my_receiver_window_credit(&self) -> u32 {
        let mut bytes_queued = 0;
        for s in self.streams.values() {
            bytes_queued += s.get_num_bytes_in_reassembly_queue() as u32;
        }

        if bytes_queued >= self.max_receive_buffer_size {
            0
        } else {
            self.max_receive_buffer_size - bytes_queued
        }
    }

    /// gather_outbound gathers outgoing packets. The returned bool value set to
    /// false means the association should be closed down after the final send.
    fn gather_outbound(&mut self, now: Instant) -> (Vec<Bytes>, bool) {
        let mut raw_packets = vec![];

        if !self.control_queue.is_empty() {
            for p in self.control_queue.drain(..) {
                if let Ok(raw) = p.marshal() {
                    raw_packets.push(raw);
                } else {
                    warn!("[{}] failed to serialize a control packet", self.side);
                    continue;
                }
            }
        }

        let state = self.state();
        match state {
            AssociationState::Established => {
                raw_packets = self.gather_data_packets_to_retransmit(raw_packets, now);
                raw_packets = self.gather_outbound_data_and_reconfig_packets(raw_packets, now);
                raw_packets = self.gather_outbound_fast_retransmission_packets(raw_packets, now);
                raw_packets = self.gather_outbound_sack_packets(raw_packets);
                raw_packets = self.gather_outbound_forward_tsn_packets(raw_packets);
                (raw_packets, true)
            }
            AssociationState::ShutdownPending
            | AssociationState::ShutdownSent
            | AssociationState::ShutdownReceived => {
                raw_packets = self.gather_data_packets_to_retransmit(raw_packets, now);
                raw_packets = self.gather_outbound_fast_retransmission_packets(raw_packets, now);
                raw_packets = self.gather_outbound_sack_packets(raw_packets);
                self.gather_outbound_shutdown_packets(raw_packets, now)
            }
            AssociationState::ShutdownAckSent => {
                self.gather_outbound_shutdown_packets(raw_packets, now)
            }
            _ => (raw_packets, true),
        }
    }

    fn gather_data_packets_to_retransmit(
        &mut self,
        mut raw_packets: Vec<Bytes>,
        now: Instant,
    ) -> Vec<Bytes> {
        for p in &self.get_data_packets_to_retransmit(now) {
            if let Ok(raw) = p.marshal() {
                raw_packets.push(raw);
            } else {
                warn!(
                    "[{}] failed to serialize a DATA packet to be retransmitted",
                    self.side
                );
            }
        }

        raw_packets
    }

    fn gather_outbound_data_and_reconfig_packets(
        &mut self,
        mut raw_packets: Vec<Bytes>,
        now: Instant,
    ) -> Vec<Bytes> {
        // Pop unsent data chunks from the pending queue to send as much as
        // cwnd and rwnd allow.
        let (chunks, sis_to_reset) = self.pop_pending_data_chunks_to_send(now);
        if !chunks.is_empty() {
            // Start timer. (noop if already started)
            trace!("[{}] T3-rtx timer start (pt1)", self.side);
            self.timers
                .restart_if_stale(Timer::T3RTX, now, self.rto_mgr.get_rto());

            for p in &self.bundle_data_chunks_into_packets(chunks) {
                if let Ok(raw) = p.marshal() {
                    raw_packets.push(raw);
                } else {
                    warn!("[{}] failed to serialize a DATA packet", self.side);
                }
            }
        }

        if !sis_to_reset.is_empty() || self.will_retransmit_reconfig {
            if self.will_retransmit_reconfig {
                self.will_retransmit_reconfig = false;
                debug!(
                    "[{}] retransmit {} RECONFIG chunk(s)",
                    self.side,
                    self.reconfigs.len()
                );
                for c in self.reconfigs.values() {
                    let p = self.create_packet(vec![Box::new(c.clone())]);
                    if let Ok(raw) = p.marshal() {
                        raw_packets.push(raw);
                    } else {
                        warn!(
                            "[{}] failed to serialize a RECONFIG packet to be retransmitted",
                            self.side,
                        );
                    }
                }
            }

            if !sis_to_reset.is_empty() {
                let rsn = self.generate_next_rsn();
                let tsn = self.my_next_tsn - 1;
                debug!(
                    "[{}] sending RECONFIG: rsn={} tsn={} streams={:?}",
                    self.side,
                    rsn,
                    self.my_next_tsn - 1,
                    sis_to_reset
                );

                let c = ChunkReconfig {
                    param_a: Some(Box::new(ParamOutgoingResetRequest {
                        reconfig_request_sequence_number: rsn,
                        sender_last_tsn: tsn,
                        stream_identifiers: sis_to_reset,
                        ..Default::default()
                    })),
                    ..Default::default()
                };
                self.reconfigs.insert(rsn, c.clone()); // store in the map for retransmission

                let p = self.create_packet(vec![Box::new(c)]);
                if let Ok(raw) = p.marshal() {
                    raw_packets.push(raw);
                } else {
                    warn!(
                        "[{}] failed to serialize a RECONFIG packet to be transmitted",
                        self.side
                    );
                }
            }

            if !self.reconfigs.is_empty() {
                self.timers
                    .start(Timer::Reconfig, now, self.rto_mgr.get_rto());
            }
        }

        raw_packets
    }

    fn gather_outbound_fast_retransmission_packets(
        &mut self,
        mut raw_packets: Vec<Bytes>,
        now: Instant,
    ) -> Vec<Bytes> {
        if self.will_retransmit_fast {
            self.will_retransmit_fast = false;

            let mut to_fast_retrans: Vec<Box<dyn Chunk + Send + Sync>> = vec![];
            let mut fast_retrans_size = COMMON_HEADER_SIZE;

            let mut i = 0;
            loop {
                let tsn = self.cumulative_tsn_ack_point + i + 1;
                if let Some(c) = self.inflight_queue.get_mut(tsn) {
                    if c.acked || c.abandoned() || c.nsent > 1 || c.miss_indicator < 3 {
                        i += 1;
                        continue;
                    }

                    // RFC 4960 Sec 7.2.4 Fast Retransmit on Gap Reports
                    //  3)  Determine how many of the earliest (i.e., lowest TSN) DATA chunks
                    //      marked for retransmission will fit into a single packet, subject
                    //      to constraint of the path MTU of the destination transport
                    //      address to which the packet is being sent.  Call this value K.
                    //      Retransmit those K DATA chunks in a single packet.  When a Fast
                    //      Retransmit is being performed, the sender SHOULD ignore the value
                    //      of cwnd and SHOULD NOT delay retransmission for this single
                    //		packet.

                    let data_chunk_size = DATA_CHUNK_HEADER_SIZE + c.user_data.len() as u32;
                    if self.mtu < fast_retrans_size + data_chunk_size {
                        break;
                    }

                    fast_retrans_size += data_chunk_size;
                    self.stats.inc_fast_retrans();
                    c.nsent += 1;
                } else {
                    break; // end of pending data
                }

                if let Some(c) = self.inflight_queue.get_mut(tsn) {
                    Association::check_partial_reliability_status(
                        c,
                        now,
                        self.use_forward_tsn,
                        self.side,
                        &self.streams,
                    );
                    to_fast_retrans.push(Box::new(c.clone()));
                    trace!(
                        "[{}] fast-retransmit: tsn={} sent={} htna={}",
                        self.side,
                        c.tsn,
                        c.nsent,
                        self.fast_recover_exit_point
                    );
                }
                i += 1;
            }

            if !to_fast_retrans.is_empty() {
                if let Ok(raw) = self.create_packet(to_fast_retrans).marshal() {
                    raw_packets.push(raw);
                } else {
                    warn!(
                        "[{}] failed to serialize a DATA packet to be fast-retransmitted",
                        self.side
                    );
                }
            }
        }

        raw_packets
    }

    fn gather_outbound_sack_packets(&mut self, mut raw_packets: Vec<Bytes>) -> Vec<Bytes> {
        if self.ack_state == AckState::Immediate {
            self.ack_state = AckState::Idle;
            let sack = self.create_selective_ack_chunk();
            trace!("[{}] sending SACK: {}", self.side, sack);
            if let Ok(raw) = self.create_packet(vec![Box::new(sack)]).marshal() {
                raw_packets.push(raw);
            } else {
                warn!("[{}] failed to serialize a SACK packet", self.side);
            }
        }

        raw_packets
    }

    fn gather_outbound_forward_tsn_packets(&mut self, mut raw_packets: Vec<Bytes>) -> Vec<Bytes> {
        /*log::debug!(
            "[{}] gatherOutboundForwardTSNPackets {}",
            self.name,
            self.will_send_forward_tsn
        );*/
        if self.will_send_forward_tsn {
            self.will_send_forward_tsn = false;
            if sna32gt(
                self.advanced_peer_tsn_ack_point,
                self.cumulative_tsn_ack_point,
            ) {
                let fwd_tsn = self.create_forward_tsn();
                if let Ok(raw) = self.create_packet(vec![Box::new(fwd_tsn)]).marshal() {
                    raw_packets.push(raw);
                } else {
                    warn!("[{}] failed to serialize a Forward TSN packet", self.side);
                }
            }
        }

        raw_packets
    }

    fn gather_outbound_shutdown_packets(
        &mut self,
        mut raw_packets: Vec<Bytes>,
        now: Instant,
    ) -> (Vec<Bytes>, bool) {
        let mut ok = true;

        if self.will_send_shutdown {
            self.will_send_shutdown = false;

            let shutdown = ChunkShutdown {
                cumulative_tsn_ack: self.cumulative_tsn_ack_point,
            };

            if let Ok(raw) = self.create_packet(vec![Box::new(shutdown)]).marshal() {
                self.timers
                    .start(Timer::T2Shutdown, now, self.rto_mgr.get_rto());
                raw_packets.push(raw);
            } else {
                warn!("[{}] failed to serialize a Shutdown packet", self.side);
            }
        } else if self.will_send_shutdown_ack {
            self.will_send_shutdown_ack = false;

            let shutdown_ack = ChunkShutdownAck {};

            if let Ok(raw) = self.create_packet(vec![Box::new(shutdown_ack)]).marshal() {
                self.timers
                    .start(Timer::T2Shutdown, now, self.rto_mgr.get_rto());
                raw_packets.push(raw);
            } else {
                warn!("[{}] failed to serialize a ShutdownAck packet", self.side);
            }
        } else if self.will_send_shutdown_complete {
            self.will_send_shutdown_complete = false;

            let shutdown_complete = ChunkShutdownComplete {};

            if let Ok(raw) = self
                .create_packet(vec![Box::new(shutdown_complete)])
                .marshal()
            {
                raw_packets.push(raw);
                ok = false;
            } else {
                warn!(
                    "[{}] failed to serialize a ShutdownComplete packet",
                    self.side
                );
            }
        }

        (raw_packets, ok)
    }

    /// get_data_packets_to_retransmit is called when T3-rtx is timed out and retransmit outstanding data chunks
    /// that are not acked or abandoned yet.
    fn get_data_packets_to_retransmit(&mut self, now: Instant) -> Vec<Packet> {
        let awnd = std::cmp::min(self.cwnd, self.rwnd);
        let mut chunks = vec![];
        let mut bytes_to_send = 0;
        let mut done = false;
        let mut i = 0;
        while !done {
            let tsn = self.cumulative_tsn_ack_point + i + 1;
            if let Some(c) = self.inflight_queue.get_mut(tsn) {
                if !c.retransmit {
                    i += 1;
                    continue;
                }

                if i == 0 && self.rwnd < c.user_data.len() as u32 {
                    // Send it as a zero window probe
                    done = true;
                } else if bytes_to_send + c.user_data.len() > awnd as usize {
                    break;
                }

                // reset the retransmit flag not to retransmit again before the next
                // t3-rtx timer fires
                c.retransmit = false;
                bytes_to_send += c.user_data.len();

                c.nsent += 1;
            } else {
                break; // end of pending data
            }

            if let Some(c) = self.inflight_queue.get_mut(tsn) {
                Association::check_partial_reliability_status(
                    c,
                    now,
                    self.use_forward_tsn,
                    self.side,
                    &self.streams,
                );

                trace!(
                    "[{}] retransmitting tsn={} ssn={} sent={}",
                    self.side,
                    c.tsn,
                    c.stream_sequence_number,
                    c.nsent
                );

                chunks.push(c.clone());
            }
            i += 1;
        }

        self.bundle_data_chunks_into_packets(chunks)
    }

    /// pop_pending_data_chunks_to_send pops chunks from the pending queues as many as
    /// the cwnd and rwnd allows to send.
    fn pop_pending_data_chunks_to_send(
        &mut self,
        now: Instant,
    ) -> (Vec<ChunkPayloadData>, Vec<u16>) {
        let mut chunks = vec![];
        let mut sis_to_reset = vec![]; // stream identifiers to reset
        if !self.pending_queue.is_empty() {
            // RFC 4960 sec 6.1.  Transmission of DATA Chunks
            //   A) At any given time, the data sender MUST NOT transmit new data to
            //      any destination transport address if its peer's rwnd indicates
            //      that the peer has no buffer space (i.e., rwnd is 0; see Section
            //      6.2.1).  However, regardless of the value of rwnd (including if it
            //      is 0), the data sender can always have one DATA chunk in flight to
            //      the receiver if allowed by cwnd (see rule B, below).

            while let Some(c) = self.pending_queue.peek() {
                let (beginning_fragment, unordered, data_len, stream_identifier) = (
                    c.beginning_fragment,
                    c.unordered,
                    c.user_data.len(),
                    c.stream_identifier,
                );

                if data_len == 0 {
                    sis_to_reset.push(stream_identifier);
                    if self
                        .pending_queue
                        .pop(beginning_fragment, unordered)
                        .is_none()
                    {
                        error!("[{}] failed to pop from pending queue", self.side);
                    }
                    continue;
                }

                if self.inflight_queue.get_num_bytes() + data_len > self.cwnd as usize {
                    break; // would exceeds cwnd
                }

                if data_len > self.rwnd as usize {
                    break; // no more rwnd
                }

                self.rwnd -= data_len as u32;

                if let Some(chunk) = self.move_pending_data_chunk_to_inflight_queue(
                    beginning_fragment,
                    unordered,
                    now,
                ) {
                    chunks.push(chunk);
                }
            }

            // the data sender can always have one DATA chunk in flight to the receiver
            if chunks.is_empty() && self.inflight_queue.is_empty() {
                // Send zero window probe
                if let Some(c) = self.pending_queue.peek() {
                    let (beginning_fragment, unordered) = (c.beginning_fragment, c.unordered);

                    if let Some(chunk) = self.move_pending_data_chunk_to_inflight_queue(
                        beginning_fragment,
                        unordered,
                        now,
                    ) {
                        chunks.push(chunk);
                    }
                }
            }
        }

        (chunks, sis_to_reset)
    }

    /// bundle_data_chunks_into_packets packs DATA chunks into packets. It tries to bundle
    /// DATA chunks into a packet so long as the resulting packet size does not exceed
    /// the path MTU.
    fn bundle_data_chunks_into_packets(&self, chunks: Vec<ChunkPayloadData>) -> Vec<Packet> {
        let mut packets = vec![];
        let mut chunks_to_send = vec![];
        let mut bytes_in_packet = COMMON_HEADER_SIZE;

        for c in chunks {
            // RFC 4960 sec 6.1.  Transmission of DATA Chunks
            //   Multiple DATA chunks committed for transmission MAY be bundled in a
            //   single packet.  Furthermore, DATA chunks being retransmitted MAY be
            //   bundled with new DATA chunks, as long as the resulting packet size
            //   does not exceed the path MTU.
            if bytes_in_packet + c.user_data.len() as u32 > self.mtu {
                packets.push(self.create_packet(chunks_to_send));
                chunks_to_send = vec![];
                bytes_in_packet = COMMON_HEADER_SIZE;
            }

            bytes_in_packet += DATA_CHUNK_HEADER_SIZE + c.user_data.len() as u32;
            chunks_to_send.push(Box::new(c));
        }

        if !chunks_to_send.is_empty() {
            packets.push(self.create_packet(chunks_to_send));
        }

        packets
    }

    /// generate_next_tsn returns the my_next_tsn and increases it. The caller should hold the lock.
    fn generate_next_tsn(&mut self) -> u32 {
        let tsn = self.my_next_tsn;
        self.my_next_tsn += 1;
        tsn
    }

    /// generate_next_rsn returns the my_next_rsn and increases it. The caller should hold the lock.
    fn generate_next_rsn(&mut self) -> u32 {
        let rsn = self.my_next_rsn;
        self.my_next_rsn += 1;
        rsn
    }

    fn check_partial_reliability_status(
        c: &mut ChunkPayloadData,
        now: Instant,
        use_forward_tsn: bool,
        side: Side,
        streams: &FxHashMap<u16, StreamState>,
    ) {
        if !use_forward_tsn {
            return;
        }

        // draft-ietf-rtcweb-data-protocol-09.txt section 6
        //	6.  Procedures
        //		All Data Channel Establishment Protocol messages MUST be sent using
        //		ordered delivery and reliable transmission.
        //
        if c.payload_type == PayloadProtocolIdentifier::Dcep {
            return;
        }

        // PR-SCTP
        if let Some(s) = streams.get(&c.stream_identifier) {
            let reliability_type: ReliabilityType = s.reliability_type;
            let reliability_value = s.reliability_value;

            if reliability_type == ReliabilityType::Rexmit {
                if c.nsent >= reliability_value {
                    c.set_abandoned(true);
                    trace!(
                        "[{}] marked as abandoned: tsn={} ppi={} (remix: {})",
                        side,
                        c.tsn,
                        c.payload_type,
                        c.nsent
                    );
                }
            } else if reliability_type == ReliabilityType::Timed {
                if let Some(since) = &c.since {
                    let elapsed = now.duration_since(*since);
                    if elapsed.as_millis() as u32 >= reliability_value {
                        c.set_abandoned(true);
                        trace!(
                            "[{}] marked as abandoned: tsn={} ppi={} (timed: {:?})",
                            side,
                            c.tsn,
                            c.payload_type,
                            elapsed
                        );
                    }
                } else {
                    error!("[{}] invalid c.since", side);
                }
            }
        } else {
            error!("[{}] stream {} not found)", side, c.stream_identifier);
        }
    }

    fn create_selective_ack_chunk(&mut self) -> ChunkSelectiveAck {
        ChunkSelectiveAck {
            cumulative_tsn_ack: self.peer_last_tsn,
            advertised_receiver_window_credit: self.get_my_receiver_window_credit(),
            gap_ack_blocks: self.payload_queue.get_gap_ack_blocks(self.peer_last_tsn),
            duplicate_tsn: self.payload_queue.pop_duplicates(),
        }
    }

    /// create_forward_tsn generates ForwardTSN chunk.
    /// This method will be be called if use_forward_tsn is set to false.
    fn create_forward_tsn(&self) -> ChunkForwardTsn {
        // RFC 3758 Sec 3.5 C4
        let mut stream_map: HashMap<u16, u16> = HashMap::new(); // to report only once per SI
        let mut i = self.cumulative_tsn_ack_point + 1;
        while sna32lte(i, self.advanced_peer_tsn_ack_point) {
            if let Some(c) = self.inflight_queue.get(i) {
                if let Some(ssn) = stream_map.get(&c.stream_identifier) {
                    if sna16lt(*ssn, c.stream_sequence_number) {
                        // to report only once with greatest SSN
                        stream_map.insert(c.stream_identifier, c.stream_sequence_number);
                    }
                } else {
                    stream_map.insert(c.stream_identifier, c.stream_sequence_number);
                }
            } else {
                break;
            }

            i += 1;
        }

        let mut fwd_tsn = ChunkForwardTsn {
            new_cumulative_tsn: self.advanced_peer_tsn_ack_point,
            streams: vec![],
        };

        let mut stream_str = String::new();
        for (si, ssn) in &stream_map {
            stream_str += format!("(si={} ssn={})", si, ssn).as_str();
            fwd_tsn.streams.push(ChunkForwardTsnStream {
                identifier: *si,
                sequence: *ssn,
            });
        }
        trace!(
            "[{}] building fwd_tsn: newCumulativeTSN={} cumTSN={} - {}",
            self.side,
            fwd_tsn.new_cumulative_tsn,
            self.cumulative_tsn_ack_point,
            stream_str
        );

        fwd_tsn
    }

    /// Move the chunk peeked with self.pending_queue.peek() to the inflight_queue.
    fn move_pending_data_chunk_to_inflight_queue(
        &mut self,
        beginning_fragment: bool,
        unordered: bool,
        now: Instant,
    ) -> Option<ChunkPayloadData> {
        if let Some(mut c) = self.pending_queue.pop(beginning_fragment, unordered) {
            // Mark all fragements are in-flight now
            if c.ending_fragment {
                c.set_all_inflight();
            }

            // Assign TSN
            c.tsn = self.generate_next_tsn();

            c.since = Some(now); // use to calculate RTT and also for maxPacketLifeTime
            c.nsent = 1; // being sent for the first time

            Association::check_partial_reliability_status(
                &mut c,
                now,
                self.use_forward_tsn,
                self.side,
                &self.streams,
            );

            trace!(
                "[{}] sending ppi={} tsn={} ssn={} sent={} len={} ({},{})",
                self.side,
                c.payload_type as u32,
                c.tsn,
                c.stream_sequence_number,
                c.nsent,
                c.user_data.len(),
                c.beginning_fragment,
                c.ending_fragment
            );

            self.inflight_queue.push_no_check(c.clone());

            Some(c)
        } else {
            error!("[{}] failed to pop from pending queue", self.side);
            None
        }
    }

    pub(crate) fn send_reset_request(&mut self, stream_identifier: StreamId) -> Result<()> {
        let state = self.state();
        if state != AssociationState::Established {
            return Err(Error::ErrResetPacketInStateNotExist);
        }

        // Create DATA chunk which only contains valid stream identifier with
        // nil userData and use it as a EOS from the stream.
        let c = ChunkPayloadData {
            stream_identifier,
            beginning_fragment: true,
            ending_fragment: true,
            user_data: Bytes::new(),
            ..Default::default()
        };

        self.pending_queue.push(c);
        self.awake_write_loop();

        Ok(())
    }

    /// send_payload_data sends the data chunks.
    pub(crate) fn send_payload_data(&mut self, chunks: Vec<ChunkPayloadData>) -> Result<()> {
        let state = self.state();
        if state != AssociationState::Established {
            return Err(Error::ErrPayloadDataStateNotExist);
        }

        // Push the chunks into the pending queue first.
        for c in chunks {
            self.pending_queue.push(c);
        }

        self.awake_write_loop();
        Ok(())
    }

    /// buffered_amount returns total amount (in bytes) of currently buffered user data.
    /// This is used only by testing.
    pub(crate) fn buffered_amount(&self) -> usize {
        self.pending_queue.get_num_bytes() + self.inflight_queue.get_num_bytes()
    }

    fn awake_write_loop(&self) {
        // No Op on Purpose
    }

    fn close_all_timers(&mut self) {
        // Close all retransmission & ack timers
        for timer in Timer::VALUES {
            self.timers.stop(timer);
        }
    }

    fn on_ack_timeout(&mut self) {
        trace!(
            "[{}] ack timed out (ack_state: {})",
            self.side,
            self.ack_state
        );
        self.stats.inc_ack_timeouts();
        self.ack_state = AckState::Immediate;
        self.awake_write_loop();
    }

    fn on_retransmission_timeout(&mut self, timer_id: Timer, n_rtos: usize) {
        match timer_id {
            Timer::T1Init => {
                if let Err(err) = self.send_init() {
                    debug!(
                        "[{}] failed to retransmit init (n_rtos={}): {:?}",
                        self.side, n_rtos, err
                    );
                }
            }

            Timer::T1Cookie => {
                if let Err(err) = self.send_cookie_echo() {
                    debug!(
                        "[{}] failed to retransmit cookie-echo (n_rtos={}): {:?}",
                        self.side, n_rtos, err
                    );
                }
            }

            Timer::T2Shutdown => {
                debug!(
                    "[{}] retransmission of shutdown timeout (n_rtos={})",
                    self.side, n_rtos
                );
                let state = self.state();
                match state {
                    AssociationState::ShutdownSent => {
                        self.will_send_shutdown = true;
                        self.awake_write_loop();
                    }
                    AssociationState::ShutdownAckSent => {
                        self.will_send_shutdown_ack = true;
                        self.awake_write_loop();
                    }
                    _ => {}
                }
            }

            Timer::T3RTX => {
                self.stats.inc_t3timeouts();

                // RFC 4960 sec 6.3.3
                //  E1)  For the destination address for which the timer expires, adjust
                //       its ssthresh with rules defined in Section 7.2.3 and set the
                //       cwnd <- MTU.
                // RFC 4960 sec 7.2.3
                //   When the T3-rtx timer expires on an address, SCTP should perform slow
                //   start by:
                //      ssthresh = max(cwnd/2, 4*MTU)
                //      cwnd = 1*MTU

                self.ssthresh = std::cmp::max(self.cwnd / 2, 4 * self.mtu);
                self.cwnd = self.mtu;
                trace!(
                    "[{}] updated cwnd={} ssthresh={} inflight={} (RTO)",
                    self.side,
                    self.cwnd,
                    self.ssthresh,
                    self.inflight_queue.get_num_bytes()
                );

                // RFC 3758 sec 3.5
                //  A5) Any time the T3-rtx timer expires, on any destination, the sender
                //  SHOULD try to advance the "Advanced.Peer.Ack.Point" by following
                //  the procedures outlined in C2 - C5.
                if self.use_forward_tsn {
                    // RFC 3758 Sec 3.5 C2
                    let mut i = self.advanced_peer_tsn_ack_point + 1;
                    while let Some(c) = self.inflight_queue.get(i) {
                        if !c.abandoned() {
                            break;
                        }
                        self.advanced_peer_tsn_ack_point = i;
                        i += 1;
                    }

                    // RFC 3758 Sec 3.5 C3
                    if sna32gt(
                        self.advanced_peer_tsn_ack_point,
                        self.cumulative_tsn_ack_point,
                    ) {
                        self.will_send_forward_tsn = true;
                        debug!(
                            "[{}] on_retransmission_timeout {}: sna32GT({}, {})",
                            self.side,
                            self.will_send_forward_tsn,
                            self.advanced_peer_tsn_ack_point,
                            self.cumulative_tsn_ack_point
                        );
                    }
                }

                debug!(
                    "[{}] T3-rtx timed out: n_rtos={} cwnd={} ssthresh={}",
                    self.side, n_rtos, self.cwnd, self.ssthresh
                );

                self.inflight_queue.mark_all_to_retrasmit();
                self.awake_write_loop();
            }

            Timer::Reconfig => {
                self.will_retransmit_reconfig = true;
                self.awake_write_loop();
            }

            _ => {}
        }
    }

    fn on_retransmission_failure(&mut self, id: Timer) {
        match id {
            Timer::T1Init => {
                error!("[{}] retransmission failure: T1-init", self.side);
                self.error = Some(AssociationError::HandshakeFailed(
                    Error::ErrHandshakeInitAck,
                ));
            }

            Timer::T1Cookie => {
                error!("[{}] retransmission failure: T1-cookie", self.side);
                self.error = Some(AssociationError::HandshakeFailed(
                    Error::ErrHandshakeCookieEcho,
                ));
            }

            Timer::T2Shutdown => {
                error!("[{}] retransmission failure: T2-shutdown", self.side);
            }

            Timer::T3RTX => {
                // T3-rtx timer will not fail by design
                // Justifications:
                //  * ICE would fail if the connectivity is lost
                //  * WebRTC spec is not clear how this incident should be reported to ULP
                error!("[{}] retransmission failure: T3-rtx (DATA)", self.side);
            }

            _ => {}
        }
    }

    /// Whether no timers are running
    #[cfg(test)]
    pub(crate) fn is_idle(&self) -> bool {
        Timer::VALUES
            .iter()
            //.filter(|&&t| t != Timer::KeepAlive && t != Timer::PushNewCid)
            .filter_map(|&t| Some((t, self.timers.get(t)?)))
            .min_by_key(|&(_, time)| time)
            //.map_or(true, |(timer, _)| timer == Timer::Idle)
            .is_none()
    }
}