secp256k1_test/
key.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
// Bitcoin secp256k1 bindings
// Written in 2014 by
//   Dawid Ciężarkiewicz
//   Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Public and secret keys

use std::marker;
use arrayvec::ArrayVec;
use rand::Rng;
use serialize::{Decoder, Decodable, Encoder, Encodable};
use serde::{Serialize, Deserialize, Serializer, Deserializer};

use super::{Secp256k1, ContextFlag};
use super::Error::{self, IncapableContext, InvalidPublicKey, InvalidSecretKey};
use constants;
use ffi;

/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
impl_pretty_debug!(SecretKey);

/// The number 1 encoded as a secret key
/// Deprecated; `static` is not what I want; use `ONE_KEY` instead
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 1]);

/// The number 0 encoded as a secret key
pub const ZERO_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0]);

/// The number 1 encoded as a secret key
pub const ONE_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 1]);

/// A Secp256k1 public key, used for verification of signatures
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct PublicKey(ffi::PublicKey);


fn random_32_bytes<R: Rng>(rng: &mut R) -> [u8; 32] {
    let mut ret = [0u8; 32];
    rng.fill_bytes(&mut ret);
    ret
}

impl SecretKey {
    /// Creates a new random secret key
    #[inline]
    pub fn new<R: Rng>(secp: &Secp256k1, rng: &mut R) -> SecretKey {
        let mut data = random_32_bytes(rng);
        unsafe {
            while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
                data = random_32_bytes(rng);
            }
        }
        SecretKey(data)
    }

    /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
    #[inline]
    pub fn from_slice(secp: &Secp256k1, data: &[u8])
                        -> Result<SecretKey, Error> {
        match data.len() {
            constants::SECRET_KEY_SIZE => {
                let mut ret = [0; constants::SECRET_KEY_SIZE];
                unsafe {
                    if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
                        return Err(InvalidSecretKey);
                    }
                }
                ret[..].copy_from_slice(data);
                Ok(SecretKey(ret))
            }
            _ => Err(InvalidSecretKey)
        }
    }

    #[inline]
    /// Adds one secret key to another, modulo the curve order
    pub fn add_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
                     -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
                Err(InvalidSecretKey)
            } else {
                Ok(())
            }
        }
    }

    #[inline]
    /// Multiplies one secret key by another, modulo the curve order
    pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
                     -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_privkey_tweak_mul(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
                Err(InvalidSecretKey)
            } else {
                Ok(())
            }
        }
    }
}

impl PublicKey {
    /// Creates a new zeroed out public key
    #[inline]
    pub fn new() -> PublicKey {
        PublicKey(ffi::PublicKey::new())
    }

    /// Determines whether a pubkey is valid
    #[inline]
    pub fn is_valid(&self) -> bool {
        // The only invalid pubkey the API should be able to create is
        // the zero one.
        self.0[..].iter().any(|&x| x != 0)
    }

    /// Obtains a raw pointer suitable for use with FFI functions
    #[inline]
    pub fn as_ptr(&self) -> *const ffi::PublicKey {
        &self.0 as *const _
    }

    /// Creates a new public key from a secret key.
    #[inline]
    pub fn from_secret_key(secp: &Secp256k1,
                           sk: &SecretKey)
                           -> Result<PublicKey, Error> {
        if secp.caps == ContextFlag::VerifyOnly || secp.caps == ContextFlag::None {
            return Err(IncapableContext);
        }
        let mut pk = unsafe { ffi::PublicKey::blank() };
        unsafe {
            // We can assume the return value because it's not possible to construct
            // an invalid `SecretKey` without transmute trickery or something
            let res = ffi::secp256k1_ec_pubkey_create(secp.ctx, &mut pk, sk.as_ptr());
            debug_assert_eq!(res, 1);
        }
        Ok(PublicKey(pk))
    }

    /// Creates a public key directly from a slice
    #[inline]
    pub fn from_slice(secp: &Secp256k1, data: &[u8])
                      -> Result<PublicKey, Error> {

        let mut pk = unsafe { ffi::PublicKey::blank() };
        unsafe {
            if ffi::secp256k1_ec_pubkey_parse(secp.ctx, &mut pk, data.as_ptr(),
                                              data.len() as ::libc::size_t) == 1 {
                Ok(PublicKey(pk))
            } else {
                Err(InvalidPublicKey)
            }
        }
    }

    #[inline]
    /// Serialize the key as a byte-encoded pair of values. In compressed form
    /// the y-coordinate is represented by only a single bit, as x determines
    /// it up to one bit.
    pub fn serialize_vec(&self, secp: &Secp256k1, compressed: bool) -> ArrayVec<[u8; constants::PUBLIC_KEY_SIZE]> {
        let mut ret = ArrayVec::new();

        unsafe {
            let mut ret_len = constants::PUBLIC_KEY_SIZE as ::libc::size_t;
            let compressed = if compressed { ffi::SECP256K1_SER_COMPRESSED } else { ffi::SECP256K1_SER_UNCOMPRESSED };
            let err = ffi::secp256k1_ec_pubkey_serialize(secp.ctx, ret.as_ptr(),
                                                         &mut ret_len, self.as_ptr(),
                                                         compressed);
            debug_assert_eq!(err, 1);
            ret.set_len(ret_len as usize);
        }
        ret
    }

    #[inline]
    /// Adds the pk corresponding to `other` to the pk `self` in place
    pub fn add_exp_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
                         -> Result<(), Error> {
        if secp.caps == ContextFlag::SignOnly || secp.caps == ContextFlag::None {
            return Err(IncapableContext);
        }
        unsafe {
            if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, &mut self.0 as *mut _,
                                                  other.as_ptr()) == 1 {
                Ok(())
            } else {
                Err(InvalidSecretKey)
            }
        }
    }

    #[inline]
    /// Muliplies the pk `self` in place by the scalar `other`
    pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
                         -> Result<(), Error> {
        if secp.caps == ContextFlag::SignOnly || secp.caps == ContextFlag::None {
            return Err(IncapableContext);
        }
        unsafe {
            if ffi::secp256k1_ec_pubkey_tweak_mul(secp.ctx, &mut self.0 as *mut _,
                                                  other.as_ptr()) == 1 {
                Ok(())
            } else {
                Err(InvalidSecretKey)
            }
        }
    }
}

impl Decodable for PublicKey {
    fn decode<D: Decoder>(d: &mut D) -> Result<PublicKey, D::Error> {
        d.read_seq(|d, len| {
            let s = Secp256k1::with_caps(::ContextFlag::None);
            if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
                unsafe {
                    use std::mem;
                    let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
                    for i in 0..len {
                        ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
                    }
                    PublicKey::from_slice(&s, &ret).map_err(|_| d.error("invalid public key"))
                }
            } else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
                unsafe {
                    use std::mem;
                    let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
                    for i in 0..len {
                        ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
                    }
                    PublicKey::from_slice(&s, &ret).map_err(|_| d.error("invalid public key"))
                }
            } else {
                Err(d.error("Invalid length"))
            }
        })
    }
}

/// Creates a new public key from a FFI public key
impl From<ffi::PublicKey> for PublicKey {
    #[inline]
    fn from(pk: ffi::PublicKey) -> PublicKey {
        PublicKey(pk)
    }
}


impl Encodable for PublicKey {
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        let secp = Secp256k1::with_caps(::ContextFlag::None);
        self.serialize_vec(&secp, true).encode(s)
    }
}

impl<'de> Deserialize<'de> for PublicKey {
    fn deserialize<D>(d: D) -> Result<PublicKey, D::Error>
        where D: Deserializer<'de>
    {
        use serde::de;
        struct Visitor {
            marker: marker::PhantomData<PublicKey>,
        }
        impl<'de> de::Visitor<'de> for Visitor {
            type Value = PublicKey;

            #[inline]
            fn visit_seq<A>(self, mut a: A) -> Result<PublicKey, A::Error>
                where A: de::SeqAccess<'de>
            {
                debug_assert!(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE >= constants::COMPRESSED_PUBLIC_KEY_SIZE);

                let s = Secp256k1::with_caps(::ContextFlag::None);
                unsafe {
                    use std::mem;
                    let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();

                    let mut read_len = 0;
                    while read_len < constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
                        let read_ch = match try!(a.next_element()) {
                            Some(c) => c,
                            None => break
                        };
                        ret[read_len] = read_ch;
                        read_len += 1;
                    }
                    let one_after_last : Option<u8> = try!(a.next_element());
                    if one_after_last.is_some() {
                        return Err(de::Error::invalid_length(read_len + 1, &self));
                    }

                    match read_len {
                        constants::UNCOMPRESSED_PUBLIC_KEY_SIZE | constants::COMPRESSED_PUBLIC_KEY_SIZE
                            => PublicKey::from_slice(&s, &ret[..read_len]).map_err(
                                |e| match e {
                                        InvalidPublicKey => de::Error::invalid_value(de::Unexpected::Seq, &self),
                                        _ => de::Error::custom(&e.to_string()),
                                    }
                                ),
                        _ => Err(de::Error::invalid_length(read_len, &self)),
                    }
                }
            }

            fn expecting(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                write!(f, "a sequence of {} or {} bytes representing a valid compressed or uncompressed public key",
                       constants::COMPRESSED_PUBLIC_KEY_SIZE, constants::UNCOMPRESSED_PUBLIC_KEY_SIZE)
            }
        }

        // Begin actual function
        d.deserialize_seq(Visitor { marker: ::std::marker::PhantomData })
    }
}

impl Serialize for PublicKey {
    fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        let secp = Secp256k1::with_caps(::ContextFlag::None);
        (&self.serialize_vec(&secp, true)[..]).serialize(s)
    }
}

#[cfg(test)]
mod test {
    use super::super::{Secp256k1, ContextFlag};
    use super::super::Error::{InvalidPublicKey, InvalidSecretKey, IncapableContext};
    use super::{PublicKey, SecretKey};
    use super::super::constants;

    use rand::{Rng, thread_rng};

    #[test]
    fn skey_from_slice() {
        let s = Secp256k1::new();
        let sk = SecretKey::from_slice(&s, &[1; 31]);
        assert_eq!(sk, Err(InvalidSecretKey));

        let sk = SecretKey::from_slice(&s, &[1; 32]);
        assert!(sk.is_ok());
    }

    #[test]
    fn pubkey_from_slice() {
        let s = Secp256k1::new();
        assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey));

        let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
        assert!(uncompressed.is_ok());

        let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
        assert!(compressed.is_ok());
    }

    #[test]
    fn keypair_slice_round_trip() {
        let s = Secp256k1::new();

        let (sk1, pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
        assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1));
        assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_vec(&s, true)[..]), Ok(pk1));
        assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_vec(&s, false)[..]), Ok(pk1));
    }

    #[test]
    fn invalid_secret_key() {
        let s = Secp256k1::new();
        // Zero
        assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey));
        // -1
        assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey));
        // Top of range
        assert!(SecretKey::from_slice(&s,
                                      &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                                        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
                                        0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
                                        0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
        // One past top of range
        assert!(SecretKey::from_slice(&s,
                                      &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                                        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
                                        0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
                                        0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
    }

    #[test]
    fn test_pubkey_from_slice_bad_context() {
        let s = Secp256k1::without_caps();
        let sk = SecretKey::new(&s, &mut thread_rng());
        assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));

        let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
        assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));

        let s = Secp256k1::with_caps(ContextFlag::SignOnly);
        assert!(PublicKey::from_secret_key(&s, &sk).is_ok());

        let s = Secp256k1::with_caps(ContextFlag::Full);
        assert!(PublicKey::from_secret_key(&s, &sk).is_ok());
    }

    #[test]
    fn test_add_exp_bad_context() {
        let s = Secp256k1::with_caps(ContextFlag::Full);
        let (sk, mut pk) = s.generate_keypair(&mut thread_rng()).unwrap();

        assert!(pk.add_exp_assign(&s, &sk).is_ok());

        let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
        assert!(pk.add_exp_assign(&s, &sk).is_ok());

        let s = Secp256k1::with_caps(ContextFlag::SignOnly);
        assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));

        let s = Secp256k1::with_caps(ContextFlag::None);
        assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));
    }

    #[test]
    fn test_bad_deserialize() {
        use std::io::Cursor;
        use serialize::{json, Decodable};

        let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
        let json31 = json::Json::from_reader(&mut Cursor::new(zero31)).unwrap();
        let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
        let json32 = json::Json::from_reader(&mut Cursor::new(zero32)).unwrap();
        let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
        let json65 = json::Json::from_reader(&mut Cursor::new(zero65)).unwrap();
        let string = "\"my key\"".as_bytes();
        let json = json::Json::from_reader(&mut Cursor::new(string)).unwrap();

        // Invalid length
        let mut decoder = json::Decoder::new(json31.clone());
        assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
        let mut decoder = json::Decoder::new(json31.clone());
        assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
        let mut decoder = json::Decoder::new(json32.clone());
        assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
        let mut decoder = json::Decoder::new(json32.clone());
        assert!(<SecretKey as Decodable>::decode(&mut decoder).is_ok());
        let mut decoder = json::Decoder::new(json65.clone());
        assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
        let mut decoder = json::Decoder::new(json65.clone());
        assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());

        // Syntax error
        let mut decoder = json::Decoder::new(json.clone());
        assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
        let mut decoder = json::Decoder::new(json.clone());
        assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
    }

    #[test]
    fn test_serialize() {
        use std::io::Cursor;
        use serialize::{json, Decodable, Encodable};

        macro_rules! round_trip (
            ($var:ident) => ({
                let start = $var;
                let mut encoded = String::new();
                {
                    let mut encoder = json::Encoder::new(&mut encoded);
                    start.encode(&mut encoder).unwrap();
                }
                let json = json::Json::from_reader(&mut Cursor::new(encoded.as_bytes())).unwrap();
                let mut decoder = json::Decoder::new(json);
                let decoded = Decodable::decode(&mut decoder);
                assert_eq!(Ok(Some(start)), decoded);
            })
        );

        let s = Secp256k1::new();
        for _ in 0..500 {
            let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
            round_trip!(sk);
            round_trip!(pk);
        }
    }

    #[test]
    fn test_bad_serde_deserialize() {
        use serde::Deserialize;
        use json;

        // Invalid length
        let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]";
        let mut json = json::de::Deserializer::from_str(zero31);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
        let mut json = json::de::Deserializer::from_str(zero31);
        assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());

        let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]";
        let mut json = json::de::Deserializer::from_str(zero32);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
        let mut json = json::de::Deserializer::from_str(zero32);
        assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_ok());

        let zero33 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]";
        let mut json = json::de::Deserializer::from_str(zero33);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
        let mut json = json::de::Deserializer::from_str(zero33);
        assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());

        let trailing66 = "[4,149,16,196,140,38,92,239,179,65,59,224,230,183,91,238,240,46,186,252,
                        175,102,52,249,98,178,123,72,50,171,196,254,236,1,189,143,242,227,16,87,
                        247,183,162,68,237,140,92,205,151,129,166,58,111,96,123,64,180,147,51,12,
                        209,89,236,213,206,17]";
        let mut json = json::de::Deserializer::from_str(trailing66);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());

        // The first 65 bytes of trailing66 are valid
        let valid65 = "[4,149,16,196,140,38,92,239,179,65,59,224,230,183,91,238,240,46,186,252,
                        175,102,52,249,98,178,123,72,50,171,196,254,236,1,189,143,242,227,16,87,
                        247,183,162,68,237,140,92,205,151,129,166,58,111,96,123,64,180,147,51,12,
                        209,89,236,213,206]";
        let mut json = json::de::Deserializer::from_str(valid65);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_ok());

        // All zeroes pk is invalid
        let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]";
        let mut json = json::de::Deserializer::from_str(zero65);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
        let mut json = json::de::Deserializer::from_str(zero65);
        assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());

        // Syntax error
        let string = "\"my key\"";
        let mut json = json::de::Deserializer::from_str(string);
        assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
        let mut json = json::de::Deserializer::from_str(string);
        assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
    }


    #[test]
    fn test_serialize_serde() {
        let s = Secp256k1::new();
        for _ in 0..500 {
            let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
            round_trip_serde!(sk);
            round_trip_serde!(pk);
        }
    }

    #[test]
    fn test_out_of_range() {

        struct BadRng(u8);
        impl Rng for BadRng {
            fn next_u32(&mut self) -> u32 { unimplemented!() }
            // This will set a secret key to a little over the
            // group order, then decrement with repeated calls
            // until it returns a valid key
            fn fill_bytes(&mut self, data: &mut [u8]) {
                let group_order: [u8; 32] = [
                    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
                    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
                    0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
                    0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
                assert_eq!(data.len(), 32);
                data.copy_from_slice(&group_order[..]);
                data[31] = self.0;
                self.0 -= 1;
            }
        }

        let s = Secp256k1::new();
        s.generate_keypair(&mut BadRng(0xff)).unwrap();
    }

    #[test]
    fn test_pubkey_from_bad_slice() {
        let s = Secp256k1::new();
        // Bad sizes
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE - 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE + 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
                   Err(InvalidPublicKey));

        // Bad parse
        assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
                   Err(InvalidPublicKey));
    }

    #[test]
    fn test_debug_output() {
        struct DumbRng(u32);
        impl Rng for DumbRng {
            fn next_u32(&mut self) -> u32 {
                self.0 = self.0.wrapping_add(1);
                self.0
            }
        }

        let s = Secp256k1::new();
        let (sk, _) = s.generate_keypair(&mut DumbRng(0)).unwrap();

        assert_eq!(&format!("{:?}", sk),
                   "SecretKey(0200000001000000040000000300000006000000050000000800000007000000)");
    }

    #[test]
    fn test_pubkey_serialize() {
        struct DumbRng(u32);
        impl Rng for DumbRng {
            fn next_u32(&mut self) -> u32 {
                self.0 = self.0.wrapping_add(1);
                self.0
            }
        }

        let s = Secp256k1::new();
        let (_, pk1) = s.generate_keypair(&mut DumbRng(0)).unwrap();
        assert_eq!(&pk1.serialize_vec(&s, false)[..],
                   &[4, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236, 1, 189, 143, 242, 227, 16, 87, 247, 183, 162, 68, 237, 140, 92, 205, 151, 129, 166, 58, 111, 96, 123, 64, 180, 147, 51, 12, 209, 89, 236, 213, 206][..]);
        assert_eq!(&pk1.serialize_vec(&s, true)[..],
                   &[2, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236][..]);
    }

    #[test]
    fn test_addition() {
        let s = Secp256k1::new();

        let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
        let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap();

        assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
        assert!(sk1.add_assign(&s, &sk2).is_ok());
        assert!(pk1.add_exp_assign(&s, &sk2).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);

        assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
        assert!(sk2.add_assign(&s, &sk1).is_ok());
        assert!(pk2.add_exp_assign(&s, &sk1).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
    }

    #[test]
    fn test_multiplication() {
        let s = Secp256k1::new();

        let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
        let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap();

        assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
        assert!(sk1.mul_assign(&s, &sk2).is_ok());
        assert!(pk1.mul_assign(&s, &sk2).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);

        assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
        assert!(sk2.mul_assign(&s, &sk1).is_ok());
        assert!(pk2.mul_assign(&s, &sk1).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
    }

    #[test]
    fn pubkey_hash() {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash, Hasher};
        use std::collections::HashSet;

        fn hash<T: Hash>(t: &T) -> u64 {
            let mut s = DefaultHasher::new();
            t.hash(&mut s);
            s.finish()
        }

        let s = Secp256k1::new();
        let mut set = HashSet::new();
        const COUNT : usize = 1024;
        let count = (0..COUNT).map(|_| {
            let (_, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
            let hash = hash(&pk);
            assert!(!set.contains(&hash));
            set.insert(hash);
        }).count();
        assert_eq!(count, COUNT);
    }
}