seedelf_cli/
transaction.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
use crate::{
    address,
    assets::Assets,
    constants::{
        CPU_COST_DENOMINATOR, CPU_COST_NUMERATOR, MAINNET_COLLATERAL_UTXO,
        MAINNET_SEEDELF_REFERENCE_UTXO, MAINNET_WALLET_REFERENCE_UTXO, MEM_COST_DENOMINATOR,
        MEM_COST_NUMERATOR, OVERHEAD_COST, PREPROD_COLLATERAL_UTXO, PREPROD_SEEDELF_REFERENCE_UTXO,
        PREPROD_WALLET_REFERENCE_UTXO, SEEDELF_POLICY_ID, UTXO_COST_PER_BYTE,
    },
    register::Register,
    schnorr,
};
use pallas_addresses::Address;
use pallas_crypto::hash::Hash;
use pallas_primitives::Fragment;
use pallas_txbuilder::{Input, Output};
use serde_json::Value;

/// Calculates the minimum required UTXO for a given output.
///
/// This function calculates the minimum required UTXO value based on the size of the serialized output.
/// The calculation uses the post-Alonzo (Babbage) form of the output and incorporates
/// the overhead cost and cost per byte.
///
/// # Arguments
///
/// * `output` - An `Output` representing the transaction output.
///
/// # Returns
///
/// * `u64` - The minimum required UTXO value in lovelace.
pub fn calculate_min_required_utxo(output: Output) -> u64 {
    // we need the output in the post alonzo form so we can encode it
    let output_cbor_length: u64 = output
        .build_babbage_raw()
        .unwrap()
        .encode_fragment()
        .unwrap()
        .len()
        .try_into()
        .unwrap();
    // sum the overhead and length times the cost per byte
    (OVERHEAD_COST + output_cbor_length) * UTXO_COST_PER_BYTE
}

/// Creates a collateral input for a transaction based on the network.
///
/// This function selects a pre-defined collateral UTXO based on the network flag
/// and creates an `Input` using the UTXO hash and an index of `0`.
///
/// # Arguments
///
/// * `network_flag` - A boolean flag specifying the network:
///     - `true` for Preprod.
///     - `false` for Mainnet.
///
/// # Returns
///
/// * `Input` - A transaction input constructed from the specified collateral UTXO.
pub fn collateral_input(network_flag: bool) -> Input {
    let utxo: &str = if network_flag {
        PREPROD_COLLATERAL_UTXO
    } else {
        MAINNET_COLLATERAL_UTXO
    };
    Input::new(
        pallas_crypto::hash::Hash::new(
            hex::decode(utxo)
                .expect("Invalid hex string")
                .try_into()
                .expect("Failed to convert to 32-byte array"),
        ),
        0,
    )
}

/// Creates a reference UTXO input for the Seedelf contract.
///
/// This function selects a pre-defined reference UTXO based on the network flag
/// and creates an `Input` using the UTXO hash and a fixed index of `1`.
///
/// # Arguments
///
/// * `network_flag` - A boolean flag specifying the network:
///     - `true` for Preprod.
///     - `false` for Mainnet.
///
/// # Returns
///
/// * `Input` - A transaction input constructed from the specified reference UTXO.
pub fn seedelf_reference_utxo(network_flag: bool) -> Input {
    let utxo: &str = if network_flag {
        PREPROD_SEEDELF_REFERENCE_UTXO
    } else {
        MAINNET_SEEDELF_REFERENCE_UTXO
    };
    Input::new(
        Hash::new(
            hex::decode(utxo)
                .expect("Invalid hex string")
                .try_into()
                .expect("Failed to convert to 32-byte array"),
        ),
        1,
    )
}

/// Creates a reference UTXO input for the wallet contract.
///
/// This function selects a pre-defined wallet reference UTXO based on the network flag
/// and creates an `Input` using the UTXO hash and a fixed index of `1`.
///
/// # Arguments
///
/// * `network_flag` - A boolean flag specifying the network:
///     - `true` for Preprod.
///     - `false` for Mainnet.
///
/// # Returns
///
/// * `Input` - A transaction input constructed from the specified wallet reference UTXO.
pub fn wallet_reference_utxo(network_flag: bool) -> Input {
    let utxo: &str = if network_flag {
        PREPROD_WALLET_REFERENCE_UTXO
    } else {
        MAINNET_WALLET_REFERENCE_UTXO
    };
    Input::new(
        Hash::new(
            hex::decode(utxo)
                .expect("Invalid hex string")
                .try_into()
                .expect("Failed to convert to 32-byte array"),
        ),
        1,
    )
}

/// Generates the SeedElf token name.
///
/// This function constructs a token name by concatenating a prefix, a provided label,
/// the smallest input's transaction index (formatted as hex), and its transaction hash.
/// The smallest input is determined lexicographically based on its transaction hash
/// and index. The result is a byte vector derived from the concatenated string.
///
/// # Arguments
///
/// * `label` - A string label to include in the token name.
/// * `inputs` - An optional reference to a vector of `Input` structs. The smallest input is selected
///              based on lexicographical order of the transaction hash and the index.
///
/// # Returns
///
/// * `Vec<u8>` - A vector of bytes representing the constructed token name.
pub fn seedelf_token_name(label: String, inputs: Option<&Vec<Input>>) -> Vec<u8> {
    let mut label_hex: String = hex::encode(label);
    label_hex.truncate(30);
    // find the smallest input, first in lexicogrpahical order
    let smallest_input: &Input = inputs
        .and_then(|inputs| {
            inputs.iter().min_by(|a, b| {
                a.tx_hash
                    .0
                    .cmp(&b.tx_hash.0)
                    .then(a.txo_index.cmp(&b.txo_index))
            })
        })
        .unwrap();
    // format the tx index
    let formatted_index: String = format!("{:02x}", smallest_input.txo_index);
    let tx_hash_hex: String = hex::encode(smallest_input.tx_hash.0);
    let prefix: String = "5eed0e1f".to_string();
    let concatenated: String = format!("{}{}{}{}", prefix, label_hex, formatted_index, tx_hash_hex);
    hex::decode(&concatenated[..64.min(concatenated.len())]).unwrap()
}

/// Computes the computation fee for a transaction.
///
/// This function calculates the total computation fee based on the memory and CPU units consumed.
/// It applies a cost model where memory and CPU costs are scaled using pre-defined numerators
/// and denominators.
///
/// # Arguments
///
/// * `mem_units` - The number of memory units consumed.
/// * `cpu_units` - The number of CPU units consumed.
///
/// # Returns
///
/// * `u64` - The total computation fee as a sum of the memory and CPU costs.
pub fn computation_fee(mem_units: u64, cpu_units: u64) -> u64 {
    (MEM_COST_NUMERATOR * mem_units / MEM_COST_DENOMINATOR)
        + (CPU_COST_NUMERATOR * cpu_units / CPU_COST_DENOMINATOR)
}

/// Extracts CPU and memory budgets from a JSON value.
///
/// This function parses a JSON structure to extract CPU and memory usage budgets
/// from an array located under the `"result"` key. Each item in the array is expected
/// to have a `"budget"` object containing `"cpu"` and `"memory"` fields.
///
/// # Arguments
///
/// * `value` - A reference to a `serde_json::Value` containing the JSON data.
///
/// # Returns
///
/// * `Vec<(u64, u64)>` - A vector of tuples, where each tuple contains:
///     - `u64` - CPU budget.
///     - `u64` - Memory budget.
pub fn extract_budgets(value: &Value) -> Vec<(u64, u64)> {
    let mut budgets: Vec<(u64, u64)> = Vec::new();

    // Ensure the value contains the expected "result" array
    if let Some(result_array) = value.get("result").and_then(|r| r.as_array()) {
        for item in result_array {
            if let Some(budget) = item.get("budget") {
                if let (Some(cpu), Some(memory)) = (
                    budget.get("cpu").and_then(|c| c.as_u64()),
                    budget.get("memory").and_then(|m| m.as_u64()),
                ) {
                    budgets.push((cpu, memory));
                }
            }
        }
    }

    budgets
}

/// Calculates the total computation fee for a list of CPU and memory budgets.
///
/// This function iterates through a vector of `(CPU, Memory)` tuples and computes
/// the fee for each pair using the `computation_fee` function. The resulting fees
/// are summed to produce the total computation fee.
///
/// # Arguments
///
/// * `budgets` - A vector of tuples where each tuple contains:
///     - `u64` - CPU units.
///     - `u64` - Memory units.
///
/// # Returns
///
/// * `u64` - The total computation fee for all provided budgets.
pub fn total_computation_fee(budgets: Vec<(u64, u64)>) -> u64 {
    let mut fee: u64 = 0;
    for (cpu, mem) in budgets.into_iter() {
        fee += computation_fee(mem, cpu);
    }
    fee
}

/// Calculates the minimum lovelace required for a SeedElf transaction.
///
/// This function constructs a staged transaction output that includes:
/// - A long token name.
/// - Inline datum.
/// - A specific asset tied to a SeedElf policy ID.
///
/// The function then calculates the minimum required lovelace using the
/// `calculate_min_required_utxo` function.
///
/// # Returns
///
/// * `u64` - The minimum lovelace required for the transaction output.
pub fn seedelf_minimum_lovelace() -> u64 {
    // a very long token name
    let token_name: Vec<u8> = [
        94, 237, 14, 31, 1, 66, 250, 134, 20, 230, 198, 12, 121, 19, 73, 107, 154, 156, 226, 154,
        138, 103, 76, 134, 93, 156, 23, 169, 169, 167, 201, 55,
    ]
    .to_vec();
    let staging_output: Output = Output::new(address::wallet_contract(true), 5_000_000)
        .set_inline_datum(
            Register::create(schnorr::random_scalar())
                .rerandomize()
                .to_vec(),
        )
        .add_asset(
            Hash::new(
                hex::decode(SEEDELF_POLICY_ID)
                    .unwrap()
                    .try_into()
                    .expect("Not Correct Length"),
            ),
            token_name,
            1,
        )
        .unwrap();

    // use the staging output to calculate the minimum required lovelace
    calculate_min_required_utxo(staging_output)
}

/// Calculates the minimum lovelace required for a wallet transaction output with assets.
///
/// This function constructs a staged transaction output that includes:
/// - Inline datum.
/// - A list of assets (policy IDs, token names, and amounts).
///
/// The function iterates over the provided `Assets` to add each asset to the output
/// and then calculates the minimum required lovelace using `calculate_min_required_utxo`.
///
/// # Arguments
///
/// * `tokens` - An `Assets` struct containing a list of assets (policy ID, token name, and amount).
///
/// # Returns
///
/// * `u64` - The minimum lovelace required for the transaction output.
pub fn wallet_minimum_lovelace_with_assets(tokens: Assets) -> u64 {
    let mut staging_output: Output = Output::new(address::wallet_contract(true), 5_000_000)
        .set_inline_datum(
            Register::create(schnorr::random_scalar())
                .rerandomize()
                .to_vec(),
        );

    for asset in tokens.items {
        staging_output = staging_output
            .add_asset(asset.policy_id, asset.token_name, asset.amount)
            .unwrap();
    }

    // use the staging output to calculate the minimum required lovelace
    calculate_min_required_utxo(staging_output)
}

/// Calculates the minimum lovelace required for a given address with assets.
///
/// This function constructs a transaction output for the specified address with a base
/// lovelace amount and iterates over the provided list of assets to add them to the output.
/// It then calculates the minimum required lovelace using `calculate_min_required_utxo`.
///
/// # Arguments
///
/// * `address` - A string slice containing the Bech32-encoded address.
/// * `tokens` - An `Assets` struct containing a list of assets (policy ID, token name, and amount).
///
/// # Returns
///
/// * `u64` - The minimum lovelace required for the transaction output.
pub fn address_minimum_lovelace_with_assets(address: &str, tokens: Assets) -> u64 {
    let addr: Address = Address::from_bech32(address).unwrap();
    let mut staging_output: Output = Output::new(addr, 5_000_000);

    for asset in tokens.items {
        staging_output = staging_output
            .add_asset(asset.policy_id, asset.token_name, asset.amount)
            .unwrap();
    }

    // use the staging output to calculate the minimum required lovelace
    calculate_min_required_utxo(staging_output)
}