1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
//! Certificates and related data structures.
//!
//! An OpenPGP certificate, often called a `PGP key` or just a `key,`
//! is a collection of keys, identity information, and certifications
//! about those keys and identities.
//!
//! The foundation of an OpenPGP certificate is the so-called primary
//! key. A primary key has three essential functions. First, the
//! primary key is used to derive a universally unique identifier
//! (UUID) for the certificate, the certificate's so-called
//! fingerprint. Second, the primary key is used to certify
//! assertions that the certificate holder makes about their
//! certificate. For instance, to associate a subkey or a User ID
//! with a certificate, the certificate holder uses the primary key to
//! create a self signature called a binding signature. This binding
//! signature is distributed with the certificate. It allows anyone
//! who has the certificate to verify that the certificate holder
//! (identified by the primary key) really intended for the subkey to
//! be associated with the certificate. Finally, the primary key can
//! be used to make assertions about other certificates. For
//! instance, Alice can make a so-called third-party certification
//! that attests that she is convinced that `Bob` (as described by
//! some User ID) controls a particular certificate. These
//! third-party certifications are typically distributed alongside the
//! signee's certificate, and are used by trust models like the Web of
//! Trust to authenticate certificates.
//!
//! # Common Operations
//!
//! - *Generating a certificate*: See the [`CertBuilder`] module.
//! - *Parsing a certificate*: See the [`Parser` implementation] for `Cert`.
//! - *Parsing a keyring*: See the [`CertParser`] module.
//! - *Serializing a certificate*: See the [`Serialize`
//! implementation] for `Cert`, and the [`Cert::as_tsk`] method to
//! also include any secret key material.
//! - *Using a certificate*: See the [`Cert`] and [`ValidCert`] data structures.
//! - *Revoking a certificate*: See the [`CertRevocationBuilder`] data structure.
//! - *Decrypt or encrypt secret keys*: See [`packet::Key::encrypt_secret`]'s example.
//! - *Merging packets*: See the [`Cert::insert_packets`] method.
//! - *Merging certificates*: See the [`Cert::merge_public`] method.
//! - *Creating third-party certifications*: See the [`UserID::certify`]
//! and [`UserAttribute::certify`] methods.
//! - *Using User IDs and User Attributes*: See the [`ComponentAmalgamation`] module.
//! - *Using keys*: See the [`KeyAmalgamation`] module.
//! - *Updating a binding signature*: See the [`UserID::bind`],
//! [`UserAttribute::bind`], and [`Key::bind`] methods.
//! - *Checking third-party signatures*: See the
//! [`Signature::verify_direct_key`],
//! [`Signature::verify_userid_binding`], and
//! [`Signature::verify_user_attribute_binding`] methods.
//! - *Checking third-party revocations*: See the
//! [`ValidCert::revocation_keys`],
//! [`ValidAmalgamation::revocation_keys`],
//! [`Signature::verify_primary_key_revocation`],
//! [`Signature::verify_userid_revocation`],
//! [`Signature::verify_user_attribute_revocation`] methods.
//!
//! # Data Structures
//!
//! ## `Cert`
//!
//! The [`Cert`] data structure closely mirrors the transferable
//! public key (`TPK`) data structure described in [Section 11.1] of
//! RFC 4880: it contains the certificate's `Component`s and their
//! associated signatures.
//!
//! ## `Component`s
//!
//! In Sequoia, we refer to `User ID`s, `User Attribute`s, and `Key`s
//! as `Component`s. To accommodate unsupported components (e.g.,
//! deprecated v3 keys) and unknown components (e.g., the
//! yet-to-be-defined `Xyzzy Property`), we also define an `Unknown`
//! component.
//!
//! ## `ComponentBundle`s
//!
//! We call a Component and any associated signatures a
//! [`ComponentBundle`]. There are four types of associated
//! signatures: self signatures, third-party signatures, self
//! revocations, and third-party revocations.
//!
//! Although some information about a given `Component` is stored in
//! the `Component` itself, most of the information is stored on the
//! associated signatures. For instance, a key's creation time is
//! stored in the key packet, but the key's capabilities (e.g.,
//! whether it can be used for encryption or signing), and its expiry
//! are stored in the associated self signatures. Thus, to use a
//! component, we usually need its corresponding self signature.
//!
//! When a certificate is parsed, Sequoia ensures that all components
//! (except the primary key) have at least one valid self signature.
//! However, when using a component, it is still necessary to find the
//! right self signature. And, unfortunately, finding the
//! self signature for the primary `Key` is non-trivial: that's the
//! primary User ID's self signature. Another complication is that if
//! the self signature doesn't contain the required information, then
//! the implementation should look for the information on a direct key
//! signature. Thus, a `ComponentBundle` doesn't contain all of the
//! information that is needed to use a component.
//!
//! ## `ComponentAmalgamation`s
//!
//! To workaround this lack of context, we introduce another data
//! structure called a [`ComponentAmalgamation`]. A
//! `ComponentAmalgamation` references a `ComponentBundle` and its
//! associated `Cert`. Unfortunately, we can't include a reference to
//! the `Cert` in the `ComponentBundle`, because the `Cert` owns the
//! `ComponentBundle`, and that would create a self-referential data
//! structure, which is currently not supported in Rust.
//!
//! [Section 11.1]: https://tools.ietf.org/html/rfc4880#section-11.1
//! [`ComponentBundle`]: bundle::ComponentBundle
//! [`ComponentAmalgamation`]: amalgamation::ComponentAmalgamation
//! [`Parser` implementation]: struct.Cert.html#impl-Parse%3C%27a%2C%20Cert%3E
//! [`Serialize` implementation]: struct.Cert.html#impl-Serialize
//! [`UserID::certify`]: crate::packet::UserID::certify()
//! [`UserAttribute::certify`]: crate::packet::user_attribute::UserAttribute::certify()
//! [`KeyAmalgamation`]: amalgamation::key
//! [`UserID::bind`]: crate::packet::UserID::bind()
//! [`UserAttribute::bind`]: crate::packet::user_attribute::UserAttribute::bind()
//! [`Key::bind`]: crate::packet::Key::bind()
//! [`Signature::verify_direct_key`]: crate::packet::Signature::verify_direct_key()
//! [`Signature::verify_userid_binding`]: crate::packet::Signature::verify_userid_binding()
//! [`Signature::verify_user_attribute_binding`]: crate::packet::Signature::verify_user_attribute_binding()
//! [`ValidAmalgamation::revocation_keys`]: amalgamation::ValidAmalgamation::revocation_keys
//! [`Signature::verify_primary_key_revocation`]: crate::packet::Signature::verify_primary_key_revocation()
//! [`Signature::verify_userid_revocation`]: crate::packet::Signature::verify_userid_revocation()
//! [`Signature::verify_user_attribute_revocation`]: crate::packet::Signature::verify_user_attribute_revocation()
use std::io;
use std::collections::btree_map::BTreeMap;
use std::collections::btree_map::Entry;
use std::collections::hash_map::DefaultHasher;
use std::cmp::Ordering;
use std::convert::TryFrom;
use std::hash::Hasher;
use std::path::Path;
use std::mem;
use std::fmt;
use std::time;
use buffered_reader::BufferedReader;
use crate::{
crypto::{
Signer,
hash::Digest,
},
Error,
Result,
SignatureType,
packet,
packet::Signature,
packet::Key,
packet::key,
packet::Tag,
packet::UserID,
packet::UserAttribute,
packet::Unknown,
Packet,
PacketPile,
seal,
KeyID,
Fingerprint,
KeyHandle,
policy::Policy,
};
use crate::parse::{Cookie, Parse, PacketParserResult, PacketParser};
use crate::types::{
AEADAlgorithm,
CompressionAlgorithm,
Features,
HashAlgorithm,
KeyServerPreferences,
ReasonForRevocation,
RevocationKey,
RevocationStatus,
SymmetricAlgorithm,
};
pub mod amalgamation;
mod builder;
mod bindings;
pub mod bundle;
use bundle::{
ComponentBundles,
UserIDBundles,
UserAttributeBundles,
SubkeyBundles,
UnknownBundles,
};
mod lazysigs;
mod parser;
pub mod raw;
mod revoke;
pub use self::builder::{CertBuilder, CipherSuite, KeyBuilder, SubkeyBuilder};
pub use parser::{
CertParser,
};
pub(crate) use parser::{
CertValidator,
CertValidity,
KeyringValidator,
KeyringValidity,
};
pub use revoke::{
SubkeyRevocationBuilder,
CertRevocationBuilder,
UserAttributeRevocationBuilder,
UserIDRevocationBuilder,
};
pub mod prelude;
use prelude::*;
const TRACE : bool = false;
// Helper functions.
/// Compare the creation time of two signatures. Order them so that
/// the more recent signature is first.
fn canonical_signature_order(a: Option<time::SystemTime>, b: Option<time::SystemTime>)
-> Ordering {
// Note: None < Some, so the normal ordering is:
//
// None, Some(old), Some(new)
//
// Reversing the ordering puts the signatures without a creation
// time at the end, which is where they belong.
a.cmp(&b).reverse()
}
/// Compares two signatures by creation time using the MPIs as tie
/// breaker.
///
/// Useful to sort signatures so that the most recent ones are at the
/// front.
fn sig_cmp(a: &Signature, b: &Signature) -> Ordering {
match canonical_signature_order(a.signature_creation_time(),
b.signature_creation_time()) {
Ordering::Equal => a.mpis().cmp(b.mpis()),
r => r
}
}
impl fmt::Display for Cert {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.fingerprint())
}
}
/// Returns the certificate holder's preferences.
///
/// OpenPGP provides a mechanism for a certificate holder to transmit
/// information about communication preferences, and key management to
/// communication partners in an asynchronous manner. This
/// information is attached to the certificate itself. Specifically,
/// the different types of information are stored as signature
/// subpackets in the User IDs' self signatures, and in the
/// certificate's direct key signature.
///
/// OpenPGP allows the certificate holder to specify different
/// information depending on the way the certificate is addressed.
/// When addressed by User ID, that User ID's self signature is first
/// checked for the subpacket in question. If the subpacket is not
/// present or the certificate is addressed is some other way, for
/// instance, by its fingerprint, then the primary User ID's
/// self signature is checked. If the subpacket is also not there,
/// then the direct key signature is checked. This policy and its
/// justification are described in [Section 5.2.3.3] of RFC 4880.
///
/// Note: User IDs may be stripped. For instance, the [WKD] standard
/// requires User IDs that are unrelated to the WKD's domain be
/// stripped from the certificate prior to publication. As such, any
/// User ID may be considered the primary User ID. Consequently, if
/// any User ID includes a particular subpacket, then all User IDs
/// should include it. Furthermore, RFC 4880bis allows certificates
/// [without any User ID packets]. To handle this case, certificates
/// should also create a direct key signature with this information.
///
/// [Section 5.2.3.3]: https://tools.ietf.org/html/rfc4880#section-5.2.3.3
/// [WKD]: https://tools.ietf.org/html/draft-koch-openpgp-webkey-service-09#section-5
/// [without any User ID packets]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09#section-11.1
///
/// # Algorithm Preferences
///
/// Algorithms are ordered with the most preferred algorithm first.
/// According to RFC 4880, if an algorithm is not listed, then the
/// implementation should assume that it is not supported by the
/// certificate holder's software.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use sequoia_openpgp::policy::StandardPolicy;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// match cert.with_policy(p, None)?.primary_userid()?.preferred_symmetric_algorithms() {
/// Some(algos) => {
/// println!("Certificate Holder's preferred symmetric algorithms:");
/// for (i, algo) in algos.iter().enumerate() {
/// println!("{}. {}", i, algo);
/// }
/// }
/// None => {
/// println!("Certificate Holder did not specify any preferred \
/// symmetric algorithms, or the subpacket is missing.");
/// }
/// }
/// # Ok(()) }
/// ```
///
/// # Sealed trait
///
/// This trait is [sealed] and cannot be implemented for types outside this crate.
/// Therefore it can be extended in a non-breaking way.
/// If you want to implement the trait inside the crate
/// you also need to implement the `seal::Sealed` marker trait.
///
/// [sealed]: https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed
pub trait Preferences<'a>: seal::Sealed {
/// Returns the supported symmetric algorithms ordered by
/// preference.
///
/// The algorithms are ordered according by the certificate
/// holder's preference.
fn preferred_symmetric_algorithms(&self)
-> Option<&'a [SymmetricAlgorithm]>;
/// Returns the supported hash algorithms ordered by preference.
///
/// The algorithms are ordered according by the certificate
/// holder's preference.
fn preferred_hash_algorithms(&self) -> Option<&'a [HashAlgorithm]>;
/// Returns the supported compression algorithms ordered by
/// preference.
///
/// The algorithms are ordered according by the certificate
/// holder's preference.
fn preferred_compression_algorithms(&self)
-> Option<&'a [CompressionAlgorithm]>;
/// Returns the supported AEAD algorithms ordered by preference.
///
/// The algorithms are ordered according by the certificate holder's
/// preference.
#[deprecated]
fn preferred_aead_algorithms(&self) -> Option<&'a [AEADAlgorithm]>;
/// Returns the certificate holder's keyserver preferences.
fn key_server_preferences(&self) -> Option<KeyServerPreferences>;
/// Returns the certificate holder's preferred keyserver for
/// updates.
fn preferred_key_server(&self) -> Option<&'a [u8]>;
/// Returns the certificate holder's feature set.
fn features(&self) -> Option<Features>;
/// Returns the URI of a document describing the policy
/// the certificate was issued under.
fn policy_uri(&self) -> Option<&'a [u8]>;
}
/// A collection of components and their associated signatures.
///
/// The `Cert` data structure mirrors the [TPK and TSK data
/// structures] defined in RFC 4880. Specifically, it contains
/// components ([`Key`]s, [`UserID`]s, and [`UserAttribute`]s), their
/// associated self signatures, self revocations, third-party
/// signatures, and third-party revocations, as well as useful methods.
///
/// [TPK and TSK data structures]: https://tools.ietf.org/html/rfc4880#section-11
/// [`Key`]: crate::packet::Key
/// [`UserID`]: crate::packet::UserID
/// [`UserAttribute`]: crate::packet::user_attribute::UserAttribute
///
/// `Cert`s are canonicalized in the sense that their `Component`s are
/// deduplicated, and their signatures and revocations are
/// deduplicated and checked for validity. The canonicalization
/// routine does *not* throw away components that have no self
/// signatures. These are returned as usual by, e.g.,
/// [`Cert::userids`].
///
/// [`Cert::userids`]: Cert::userids()
///
/// Keys are deduplicated by comparing their public bits using
/// [`Key::public_cmp`]. If two keys are considered equal, and only
/// one of them has secret key material, the key with the secret key
/// material is preferred. If both keys have secret material, then
/// one of them is chosen in a deterministic, but undefined manner,
/// which is subject to change. ***Note***: the secret key material
/// is not integrity checked. Hence when updating a certificate with
/// secret key material, it is essential to first strip the secret key
/// material from copies that came from an untrusted source.
///
/// [`Key::public_cmp`]: crate::packet::Key::public_cmp()
///
/// Signatures are deduplicated using [their `Eq` implementation],
/// which compares the data that is hashed and the MPIs. That is, it
/// does not compare [the unhashed data], the digest prefix and the
/// unhashed subpacket area. If two signatures are considered equal,
/// but have different unhashed data, the unhashed data are merged in
/// a deterministic, but undefined manner, which is subject to change.
/// This policy prevents an attacker from flooding a certificate with
/// valid signatures that only differ in their unhashed data.
///
/// [their `Eq` implementation]: crate::packet::Signature#a-note-on-equality
/// [the unhashed data]: https://tools.ietf.org/html/rfc4880#section-5.2.3
///
/// Self signatures and self revocations are checked for validity by
/// making sure that the signature is *mathematically* correct. At
/// this point, the signature is *not* checked against a [`Policy`].
///
/// Third-party signatures and revocations are checked for validity by
/// making sure the computed digest matches the [digest prefix] stored
/// in the signature packet. This is *not* an integrity check and is
/// easily spoofed. Unfortunately, at the time of canonicalization,
/// the actual signatures cannot be checked, because the public keys
/// are not available. If you rely on these signatures, it is up to
/// you to check their validity by using an appropriate signature
/// verification method, e.g., [`Signature::verify_userid_binding`]
/// or [`Signature::verify_userid_revocation`].
///
/// [`Policy`]: crate::policy::Policy
/// [digest prefix]: crate::packet::signature::Signature4::digest_prefix()
/// [`Signature::verify_userid_binding`]: crate::packet::Signature::verify_userid_binding()
/// [`Signature::verify_userid_revocation`]: crate::packet::Signature::verify_userid_revocation()
///
/// If a signature or a revocation is not valid,
/// we check to see whether it is simply out of place (i.e., belongs
/// to a different component) and, if so, we reorder it. If not, it
/// is added to a list of bad signatures. These can be retrieved
/// using [`Cert::bad_signatures`].
///
/// [`Cert::bad_signatures`]: Cert::bad_signatures()
///
/// Signatures and revocations are sorted so that the newest signature
/// comes first. Components are sorted, but in an undefined manner
/// (i.e., when parsing the same certificate multiple times, the
/// components will be in the same order, but we reserve the right to
/// change the sort function between versions).
///
/// # Secret Keys
///
/// Any key in a certificate may include secret key material. To
/// protect secret key material from being leaked, secret keys are not
/// written out when a `Cert` is serialized. To also serialize secret
/// key material, you need to serialize the object returned by
/// [`Cert::as_tsk()`].
///
///
/// Secret key material may be protected with a password. In such
/// cases, it needs to be decrypted before it can be used to decrypt
/// data or generate a signature. Refer to [`Key::decrypt_secret`]
/// for details.
///
/// [`Key::decrypt_secret`]: crate::packet::Key::decrypt_secret()
///
/// # Filtering Certificates
///
/// Component-wise filtering of userids, user attributes, and subkeys
/// can be done with [`Cert::retain_userids`],
/// [`Cert::retain_user_attributes`], and [`Cert::retain_subkeys`].
///
/// [`Cert::retain_userids`]: Cert::retain_userids()
/// [`Cert::retain_user_attributes`]: Cert::retain_user_attributes()
/// [`Cert::retain_subkeys`]: Cert::retain_subkeys()
///
/// If you need even more control, iterate over all components, clone
/// what you want to keep, and then reassemble the certificate. The
/// following example simply copies all the packets, and can be
/// adapted to suit your policy:
///
/// ```rust
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// # use openpgp::parse::{Parse, PacketParserResult, PacketParser};
/// use std::convert::TryFrom;
/// use openpgp::cert::prelude::*;
///
/// # fn main() -> Result<()> {
/// fn identity_filter(cert: &Cert) -> Result<Cert> {
/// // Iterate over all of the Cert components, pushing packets we
/// // want to keep into the accumulator.
/// let mut acc = Vec::new();
///
/// // Primary key and related signatures.
/// let c = cert.primary_key();
/// acc.push(c.key().clone().into());
/// for s in c.self_signatures() { acc.push(s.clone().into()) }
/// for s in c.certifications() { acc.push(s.clone().into()) }
/// for s in c.self_revocations() { acc.push(s.clone().into()) }
/// for s in c.other_revocations() { acc.push(s.clone().into()) }
///
/// // UserIDs and related signatures.
/// for c in cert.userids() {
/// acc.push(c.userid().clone().into());
/// for s in c.self_signatures() { acc.push(s.clone().into()) }
/// for s in c.attestations() { acc.push(s.clone().into()) }
/// for s in c.certifications() { acc.push(s.clone().into()) }
/// for s in c.self_revocations() { acc.push(s.clone().into()) }
/// for s in c.other_revocations() { acc.push(s.clone().into()) }
/// }
///
/// // UserAttributes and related signatures.
/// for c in cert.user_attributes() {
/// acc.push(c.user_attribute().clone().into());
/// for s in c.self_signatures() { acc.push(s.clone().into()) }
/// for s in c.attestations() { acc.push(s.clone().into()) }
/// for s in c.certifications() { acc.push(s.clone().into()) }
/// for s in c.self_revocations() { acc.push(s.clone().into()) }
/// for s in c.other_revocations() { acc.push(s.clone().into()) }
/// }
///
/// // Subkeys and related signatures.
/// for c in cert.keys().subkeys() {
/// acc.push(c.key().clone().into());
/// for s in c.self_signatures() { acc.push(s.clone().into()) }
/// for s in c.certifications() { acc.push(s.clone().into()) }
/// for s in c.self_revocations() { acc.push(s.clone().into()) }
/// for s in c.other_revocations() { acc.push(s.clone().into()) }
/// }
///
/// // Unknown components and related signatures.
/// for c in cert.unknowns() {
/// acc.push(c.unknown().clone().into());
/// for s in c.self_signatures() { acc.push(s.clone().into()) }
/// for s in c.certifications() { acc.push(s.clone().into()) }
/// for s in c.self_revocations() { acc.push(s.clone().into()) }
/// for s in c.other_revocations() { acc.push(s.clone().into()) }
/// }
///
/// // Any signatures that we could not associate with a component.
/// for s in cert.bad_signatures() { acc.push(s.clone().into()) }
///
/// // Finally, parse into Cert.
/// Cert::try_from(acc)
/// }
///
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert_eq!(cert, identity_filter(&cert)?);
/// # Ok(())
/// # }
/// ```
///
/// # A note on equality
///
/// We define equality on `Cert` as the equality of the serialized
/// form as defined by RFC 4880. That is, two certs are considered
/// equal if and only if their serialized forms are equal, modulo the
/// OpenPGP packet framing (see [`Packet`#a-note-on-equality]).
///
/// Because secret key material is not emitted when a `Cert` is
/// serialized, two certs are considered equal even if only one of
/// them has secret key material. To take secret key material into
/// account, compare the [`TSK`s](crate::serialize::TSK) instead:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// # use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
///
/// // Generate a cert with secrets.
/// let (cert_with_secrets, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
///
/// // Derive a cert without secrets.
/// let cert_without_secrets =
/// cert_with_secrets.clone().strip_secret_key_material();
///
/// // Both are considered equal.
/// assert!(cert_with_secrets == cert_without_secrets);
///
/// // But not if we compare their TSKs:
/// assert!(cert_with_secrets.as_tsk() != cert_without_secrets.as_tsk());
/// # Ok(()) }
/// ```
///
/// # Examples
///
/// Parse a certificate:
///
/// ```rust
/// use std::convert::TryFrom;
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// # use openpgp::parse::{Parse, PacketParserResult, PacketParser};
/// use openpgp::Cert;
///
/// # fn main() -> Result<()> {
/// # let ppr = PacketParser::from_bytes(&b""[..])?;
/// match Cert::try_from(ppr) {
/// Ok(cert) => {
/// println!("Key: {}", cert.fingerprint());
/// for uid in cert.userids() {
/// println!("User ID: {}", uid.userid());
/// }
/// }
/// Err(err) => {
/// eprintln!("Error parsing Cert: {}", err);
/// }
/// }
///
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Cert {
primary: PrimaryKeyBundle<key::PublicParts>,
userids: UserIDBundles,
user_attributes: UserAttributeBundles,
subkeys: SubkeyBundles<key::PublicParts>,
// Unknown components, e.g., some UserAttribute++ packet from the
// future.
unknowns: UnknownBundles,
// Signatures that we couldn't find a place for.
bad: Vec<packet::Signature>,
}
assert_send_and_sync!(Cert);
impl std::str::FromStr for Cert {
type Err = anyhow::Error;
/// Parses and returns a certificate.
///
/// `s` must return an OpenPGP-encoded certificate.
///
/// If `s` contains multiple certificates, this returns an error.
/// Use [`CertParser`] if you want to parse a keyring.
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
Self::from_bytes(s.as_bytes())
}
}
impl<'a> Parse<'a, Cert> for Cert {
/// Parses and returns a certificate.
///
/// The reader must return an OpenPGP-encoded certificate.
///
/// If `reader` contains multiple certificates, this returns an
/// error. Use [`CertParser`] if you want to parse a keyring.
fn from_buffered_reader<R>(reader: R) -> Result<Cert>
where
R: BufferedReader<Cookie> + 'a,
{
Cert::try_from(PacketParser::from_buffered_reader(reader)?)
}
/// Parses and returns a certificate.
///
/// The reader must return an OpenPGP-encoded certificate.
///
/// If `reader` contains multiple certificates, this returns an
/// error. Use [`CertParser`] if you want to parse a keyring.
fn from_reader<R: io::Read + Send + Sync>(reader: R) -> Result<Self> {
Cert::try_from(PacketParser::from_reader(reader)?)
}
/// Parses and returns a certificate.
///
/// The file must contain an OpenPGP-encoded certificate.
///
/// If the file contains multiple certificates, this returns an
/// error. Use [`CertParser`] if you want to parse a keyring.
fn from_file<P: AsRef<Path>>(path: P) -> Result<Self> {
Cert::try_from(PacketParser::from_file(path)?)
}
/// Parses and returns a certificate.
///
/// `buf` must contain an OpenPGP-encoded certificate.
///
/// If `buf` contains multiple certificates, this returns an
/// error. Use [`CertParser`] if you want to parse a keyring.
fn from_bytes<D: AsRef<[u8]> + ?Sized + Send + Sync>(data: &'a D) -> Result<Self> {
Cert::try_from(PacketParser::from_bytes(data)?)
}
}
impl Cert {
/// Returns the primary key.
///
/// Unlike getting the certificate's primary key using the
/// [`Cert::keys`] method, this method does not erase the key's
/// role.
///
/// A key's secret key material may be protected with a password.
/// In such cases, it needs to be decrypted before it can be used
/// to decrypt data or generate a signature. Refer to
/// [`Key::decrypt_secret`] for details.
///
/// [`Cert::keys`]: Cert::keys()
/// [`Key::decrypt_secret`]: crate::packet::Key::decrypt_secret()
///
/// # Examples
///
/// The first key returned by [`Cert::keys`] is the primary key,
/// but its role has been erased:
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .add_signing_subkey()
/// # .add_transport_encryption_subkey()
/// # .generate()?;
/// assert_eq!(cert.primary_key().key().role_as_unspecified(),
/// cert.keys().nth(0).unwrap().key());
/// # Ok(())
/// # }
/// ```
pub fn primary_key(&self) -> PrimaryKeyAmalgamation<key::PublicParts>
{
PrimaryKeyAmalgamation::new(self)
}
/// Returns the certificate's revocation status.
///
/// Normally, methods that take a policy and a reference time are
/// only provided by [`ValidCert`]. This method is provided here
/// because there are two revocation criteria, and one of them is
/// independent of the reference time. That is, even if it is not
/// possible to turn a `Cert` into a `ValidCert` at time `t`, it
/// may still be considered revoked at time `t`.
///
///
/// A certificate is considered revoked at time `t` if:
///
/// - There is a valid and live revocation at time `t` that is
/// newer than all valid and live self signatures at time `t`,
/// or
///
/// - There is a valid [hard revocation] (even if it is not live
/// at time `t`, and even if there is a newer self signature).
///
/// [hard revocation]: crate::types::RevocationType::Hard
///
/// Note: certificates and subkeys have different revocation
/// criteria from [User IDs] and [User Attributes].
///
// Pending https://github.com/rust-lang/rust/issues/85960, should be
// [User IDs]: bundle::ComponentBundle<UserID>::revocation_status
// [User Attributes]: bundle::ComponentBundle<UserAttribute>::revocation_status
/// [User IDs]: bundle::ComponentBundle#method.revocation_status-1
/// [User Attributes]: bundle::ComponentBundle#method.revocation_status-2
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::types::RevocationStatus;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
///
/// assert_eq!(cert.revocation_status(p, None), RevocationStatus::NotAsFarAsWeKnow);
///
/// // Merge the revocation certificate. `cert` is now considered
/// // to be revoked.
/// let cert = cert.insert_packets(rev.clone())?;
/// assert_eq!(cert.revocation_status(p, None),
/// RevocationStatus::Revoked(vec![&rev.into()]));
/// # Ok(())
/// # }
/// ```
pub fn revocation_status<T>(&self, policy: &dyn Policy, t: T) -> RevocationStatus
where T: Into<Option<time::SystemTime>>
{
let t = t.into();
// Both a primary key signature and the primary userid's
// binding signature can override a soft revocation. Compute
// the most recent one.
let vkao = self.primary_key().with_policy(policy, t).ok();
let mut sig = vkao.as_ref().map(|vka| vka.binding_signature());
if let Some(direct) = vkao.as_ref()
.and_then(|vka| vka.direct_key_signature().ok())
{
match (direct.signature_creation_time(),
sig.and_then(|s| s.signature_creation_time())) {
(Some(ds), Some(bs)) if ds > bs =>
sig = Some(direct),
_ => ()
}
}
self.primary_key().bundle()._revocation_status(policy, t, true, sig)
}
/// Generates a revocation certificate.
///
/// This is a convenience function around
/// [`CertRevocationBuilder`] to generate a revocation
/// certificate. To use the revocation certificate, merge it into
/// the certificate using [`Cert::insert_packets`].
///
///
/// If you want to revoke an individual component, use
/// [`SubkeyRevocationBuilder`], [`UserIDRevocationBuilder`], or
/// [`UserAttributeRevocationBuilder`], as appropriate.
///
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::types::{ReasonForRevocation, RevocationStatus, SignatureType};
/// use openpgp::cert::prelude::*;
/// use openpgp::crypto::KeyPair;
/// use openpgp::parse::Parse;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (cert, rev) = CertBuilder::new()
/// .set_cipher_suite(CipherSuite::Cv25519)
/// .generate()?;
///
/// // A new certificate is not revoked.
/// assert_eq!(cert.revocation_status(p, None),
/// RevocationStatus::NotAsFarAsWeKnow);
///
/// // The default revocation certificate is a generic
/// // revocation.
/// assert_eq!(rev.reason_for_revocation().unwrap().0,
/// ReasonForRevocation::Unspecified);
///
/// // Create a revocation to explain what *really* happened.
/// let mut keypair = cert.primary_key()
/// .key().clone().parts_into_secret()?.into_keypair()?;
/// let rev = cert.revoke(&mut keypair,
/// ReasonForRevocation::KeyCompromised,
/// b"It was the maid :/")?;
/// let cert = cert.insert_packets(rev)?;
/// if let RevocationStatus::Revoked(revs) = cert.revocation_status(p, None) {
/// assert_eq!(revs.len(), 1);
/// let rev = revs[0];
///
/// assert_eq!(rev.typ(), SignatureType::KeyRevocation);
/// assert_eq!(rev.reason_for_revocation(),
/// Some((ReasonForRevocation::KeyCompromised,
/// "It was the maid :/".as_bytes())));
/// } else {
/// unreachable!()
/// }
/// # Ok(())
/// # }
/// ```
pub fn revoke(&self, primary_signer: &mut dyn Signer,
code: ReasonForRevocation, reason: &[u8])
-> Result<Signature>
{
CertRevocationBuilder::new()
.set_reason_for_revocation(code, reason)?
.build(primary_signer, self, None)
}
/// Sets the key to expire in delta seconds.
///
/// Note: the time is relative to the key's creation time, not the
/// current time!
///
/// This function exists to facilitate testing, which is why it is
/// not exported.
#[cfg(test)]
fn set_validity_period_as_of(self, policy: &dyn Policy,
primary_signer: &mut dyn Signer,
expiration: Option<time::Duration>,
now: time::SystemTime)
-> Result<Cert>
{
let primary = self.primary_key().with_policy(policy, now)?;
let sigs = primary.set_validity_period_as_of(primary_signer,
expiration,
now)?;
self.insert_packets(sigs)
}
/// Sets the certificate to expire at the specified time.
///
/// If no time (`None`) is specified, then the certificate is set
/// to not expire.
///
/// This function creates new binding signatures that cause the
/// certificate to expire at the specified time. Specifically, it
/// updates the current binding signature on each of the valid,
/// non-revoked User IDs, and the direct key signature, if any.
/// This is necessary, because the primary User ID is first
/// consulted when determining the certificate's expiration time,
/// and certificates can be distributed with a possibly empty
/// subset of User IDs.
///
/// A policy is needed, because the expiration is updated by
/// updating the current binding signatures.
///
/// # Examples
///
/// ```rust
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::crypto::KeyPair;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let t0 = time::SystemTime::now() - time::Duration::from_secs(1);
/// # let (cert, _) = CertBuilder::new()
/// # .set_cipher_suite(CipherSuite::Cv25519)
/// # .set_creation_time(t0)
/// # .generate()?;
/// // The certificate is alive (not expired).
/// assert!(cert.with_policy(p, None)?.alive().is_ok());
///
/// // Make cert expire now.
/// let mut keypair = cert.primary_key()
/// .key().clone().parts_into_secret()?.into_keypair()?;
/// let sigs = cert.set_expiration_time(p, None, &mut keypair,
/// Some(time::SystemTime::now()))?;
///
/// let cert = cert.insert_packets(sigs)?;
/// assert!(cert.with_policy(p, None)?.alive().is_err());
/// # Ok(())
/// # }
/// ```
pub fn set_expiration_time<T>(&self, policy: &dyn Policy, t: T,
primary_signer: &mut dyn Signer,
expiration: Option<time::SystemTime>)
-> Result<Vec<Signature>>
where T: Into<Option<time::SystemTime>>,
{
let primary = self.primary_key().with_policy(policy, t.into())?;
primary.set_expiration_time(primary_signer, expiration)
}
/// Returns the primary User ID at the reference time, if any.
fn primary_userid_relaxed<'a, T>(&'a self, policy: &'a dyn Policy, t: T,
valid_cert: bool)
-> Result<ValidUserIDAmalgamation<'a>>
where T: Into<Option<std::time::SystemTime>>
{
let t = t.into().unwrap_or_else(crate::now);
ValidComponentAmalgamation::primary(self, self.userids.iter(),
policy, t, valid_cert)
}
/// Returns an iterator over the certificate's User IDs.
///
/// **Note:** This returns all User IDs, even those without a
/// binding signature. This is not what you want, unless you are
/// doing a low-level inspection of the certificate. Use
/// [`ValidCert::userids`] instead. (You turn a `Cert` into a
/// [`ValidCert`] by using [`Cert::with_policy`].)
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::packet::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, rev) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// println!("{}'s User IDs:", cert.fingerprint());
/// for ua in cert.userids() {
/// println!(" {}", String::from_utf8_lossy(ua.value()));
/// }
/// # // Add a User ID without a binding signature and make sure
/// # // it is still returned.
/// # let userid = UserID::from("alice@example.net");
/// # let cert = cert.insert_packets(userid)?;
/// # assert_eq!(cert.userids().count(), 2);
/// # Ok(())
/// # }
/// ```
pub fn userids(&self) -> UserIDAmalgamationIter {
ComponentAmalgamationIter::new(self, self.userids.iter())
}
/// Returns an iterator over the certificate's User Attributes.
///
/// **Note:** This returns all User Attributes, even those without
/// a binding signature. This is not what you want, unless you
/// are doing a low-level inspection of the certificate. Use
/// [`ValidCert::user_attributes`] instead. (You turn a `Cert`
/// into a [`ValidCert`] by using [`Cert::with_policy`].)
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, rev) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// println!("{}'s has {} User Attributes.",
/// cert.fingerprint(),
/// cert.user_attributes().count());
/// # assert_eq!(cert.user_attributes().count(), 0);
/// # Ok(())
/// # }
/// ```
pub fn user_attributes(&self) -> UserAttributeAmalgamationIter {
ComponentAmalgamationIter::new(self, self.user_attributes.iter())
}
/// Returns an iterator over the certificate's keys.
///
/// That is, this returns an iterator over the primary key and any
/// subkeys.
///
/// **Note:** This returns all keys, even those without a binding
/// signature. This is not what you want, unless you are doing a
/// low-level inspection of the certificate. Use
/// [`ValidCert::keys`] instead. (You turn a `Cert` into a
/// [`ValidCert`] by using [`Cert::with_policy`].)
///
/// By necessity, this function erases the returned keys' roles.
/// If you are only interested in the primary key, use
/// [`Cert::primary_key`]. If you are only interested in the
/// subkeys, use [`KeyAmalgamationIter::subkeys`]. These
/// functions preserve the keys' role in the type system.
///
/// A key's secret key material may be protected with a
/// password. In such cases, it needs to be decrypted before it
/// can be used to decrypt data or generate a signature. Refer to
/// [`Key::decrypt_secret`] for details.
///
/// [`Cert::primary_key`]: Cert::primary_key()
/// [`KeyAmalgamationIter::subkeys`]: amalgamation::key::KeyAmalgamationIter::subkeys()
/// [`Key::decrypt_secret`]: crate::packet::Key::decrypt_secret()
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::packet::Tag;
/// # use std::convert::TryInto;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .add_signing_subkey()
/// # .add_transport_encryption_subkey()
/// # .generate()?;
/// println!("{}'s has {} keys.",
/// cert.fingerprint(),
/// cert.keys().count());
/// # assert_eq!(cert.keys().count(), 1 + 2);
/// #
/// # // Make sure that we keep all keys even if they don't have
/// # // any self signatures.
/// # let packets = cert.into_packets2()
/// # .filter(|p| p.tag() != Tag::Signature)
/// # .collect::<Vec<_>>();
/// # let cert : Cert = packets.try_into()?;
/// # assert_eq!(cert.keys().count(), 1 + 2);
/// #
/// # Ok(())
/// # }
/// ```
pub fn keys(&self) -> KeyAmalgamationIter<key::PublicParts, key::UnspecifiedRole>
{
KeyAmalgamationIter::new(self)
}
/// Returns an iterator over the certificate's subkeys.
pub(crate) fn subkeys(&self) -> ComponentAmalgamationIter<Key<key::PublicParts,
key::SubordinateRole>>
{
ComponentAmalgamationIter::new(self, self.subkeys.iter())
}
/// Returns an iterator over the certificate's unknown components.
///
/// This function returns all unknown components even those
/// without a binding signature.
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::packet::prelude::*;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// # let tag = Tag::Private(61);
/// # let unknown
/// # = Unknown::new(tag, openpgp::Error::UnsupportedPacketType(tag).into());
/// # let cert = cert.insert_packets(unknown)?;
/// println!("{}'s has {} unknown components.",
/// cert.fingerprint(),
/// cert.unknowns().count());
/// for ua in cert.unknowns() {
/// println!(" Unknown component with tag {} ({}), error: {}",
/// ua.tag(), u8::from(ua.tag()), ua.error());
/// }
/// # assert_eq!(cert.unknowns().count(), 1);
/// # assert_eq!(cert.unknowns().nth(0).unwrap().tag(), tag);
/// # Ok(())
/// # }
/// ```
pub fn unknowns(&self) -> UnknownComponentAmalgamationIter {
ComponentAmalgamationIter::new(self, self.unknowns.iter())
}
/// Returns the bad signatures.
///
/// Bad signatures are signatures and revocations that we could
/// not associate with one of the certificate's components.
///
/// For self signatures and self revocations, we check that the
/// signature is correct. For third-party signatures and
/// third-party revocations, we only check that the [digest
/// prefix] is correct, because third-party keys are not
/// available. Checking the digest prefix is *not* an integrity
/// check; third party-signatures and third-party revocations may
/// be invalid and must still be checked for validity before use.
///
/// [digest prefix]: packet::signature::Signature4::digest_prefix()
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, rev) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// println!("{}'s has {} bad signatures.",
/// cert.fingerprint(),
/// cert.bad_signatures().count());
/// # assert_eq!(cert.bad_signatures().count(), 0);
/// # Ok(())
/// # }
/// ```
pub fn bad_signatures(&self)
-> impl Iterator<Item = &Signature> + Send + Sync {
self.primary.bad_signatures()
.chain(self.userids.iter().flat_map(|u| u.bad_signatures()))
.chain(self.user_attributes.iter().flat_map(|u| u.bad_signatures()))
.chain(self.subkeys.iter().flat_map(|u| u.bad_signatures()))
.chain(self.unknowns.iter().flat_map(|u| u.bad_signatures()))
.chain(self.bad.iter())
}
/// Returns a list of any designated revokers for this certificate.
///
/// This function returns the designated revokers listed on the
/// primary key's binding signatures and the certificate's direct
/// key signatures.
///
/// Note: the returned list is deduplicated.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
/// use openpgp::types::RevocationKey;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (alice, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// // Make Alice a designated revoker for Bob.
/// let (bob, _) =
/// CertBuilder::general_purpose(None, Some("bob@example.org"))
/// .set_revocation_keys(vec![(&alice).into()])
/// .generate()?;
///
/// // Make sure Alice is listed as a designated revoker for Bob.
/// assert_eq!(bob.revocation_keys(p).collect::<Vec<&RevocationKey>>(),
/// vec![&(&alice).into()]);
/// # Ok(()) }
/// ```
pub fn revocation_keys<'a>(&'a self, policy: &dyn Policy)
-> Box<dyn Iterator<Item = &'a RevocationKey> + 'a>
{
let mut keys = std::collections::HashSet::new();
let pk_sec = self.primary_key().hash_algo_security();
// All user ids.
self.userids()
.flat_map(|ua| {
// All valid self-signatures.
let sec = ua.hash_algo_security;
ua.self_signatures()
.filter(move |sig| {
policy.signature(sig, sec).is_ok()
})
})
// All direct-key signatures.
.chain(self.primary_key()
.self_signatures()
.filter(|sig| {
policy.signature(sig, pk_sec).is_ok()
}))
.flat_map(|sig| sig.revocation_keys())
.for_each(|rk| { keys.insert(rk); });
Box::new(keys.into_iter())
}
/// Converts the certificate into an iterator over a sequence of
/// packets.
///
/// **WARNING**: When serializing a `Cert`, any secret key
/// material is dropped. In order to serialize the secret key
/// material, it is first necessary to convert the `Cert` into a
/// [`TSK`] and serialize that. This behavior makes it harder to
/// accidentally leak secret key material. *This function is
/// different.* If a key contains secret key material, it is
/// exported as a [`SecretKey`] or [`SecretSubkey`], as
/// appropriate. This means that **if you serialize the resulting
/// packets, the secret key material will be serialized too**.
///
/// [`TSK`]: crate::serialize::TSK
/// [`SecretKey`]: Packet::SecretKey
/// [`SecretSubkey`]: Packet::SecretSubkey
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// println!("Cert contains {} packets",
/// cert.into_packets().count());
/// # Ok(())
/// # }
/// ```
#[deprecated(
since = "1.18.0",
note = "Use Cert::into_packets2() to strip secret key material \
or cert.into_tsk().into_packets() to serialize any \
secret key material")]
pub fn into_packets(self) -> impl Iterator<Item=Packet> + Send + Sync {
fn rewrite(mut p: impl Iterator<Item=Packet> + Send + Sync)
-> impl Iterator<Item=Packet> + Send + Sync
{
let k: Packet = match p.next().unwrap() {
Packet::PublicKey(k) => {
if k.has_secret() {
Packet::SecretKey(k.parts_into_secret().unwrap())
} else {
Packet::PublicKey(k)
}
}
Packet::PublicSubkey(k) => {
if k.has_secret() {
Packet::SecretSubkey(k.parts_into_secret().unwrap())
} else {
Packet::PublicSubkey(k)
}
}
_ => unreachable!(),
};
std::iter::once(k).chain(p)
}
rewrite(self.primary.into_packets())
.chain(self.userids.into_iter().flat_map(|b| b.into_packets()))
.chain(self.user_attributes.into_iter().flat_map(|b| b.into_packets()))
.chain(self.subkeys.into_iter().flat_map(|b| rewrite(b.into_packets())))
.chain(self.unknowns.into_iter().flat_map(|b| b.into_packets()))
.chain(self.bad.into_iter().map(|s| s.into()))
}
/// Converts the certificate into an iterator over a sequence of
/// packets.
///
/// This function strips secrets from the keys, similar to how
/// serializing a [`Cert`] would not serialize secret keys. This
/// behavior makes it harder to accidentally leak secret key
/// material.
///
/// If you do want to preserve secret key material, use
/// [`Cert::into_tsk`] to opt-in to getting the secret key
/// material, then use [`TSK::into_packets`] to convert to a
/// packet stream.
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// assert!(cert.is_tsk());
/// // But:
/// assert!(! Cert::from_packets(cert.into_packets2())?.is_tsk());
/// # Ok(()) }
/// ```
pub fn into_packets2(self) -> impl Iterator<Item=Packet> + Send + Sync {
/// Strips the secret key material.
fn rewrite(mut p: impl Iterator<Item=Packet> + Send + Sync)
-> impl Iterator<Item=Packet> + Send + Sync
{
let k: Packet = match p.next().unwrap() {
Packet::PublicKey(k) =>
Packet::PublicKey(k.take_secret().0),
Packet::PublicSubkey(k) =>
Packet::PublicSubkey(k.take_secret().0),
_ => unreachable!(),
};
std::iter::once(k).chain(p)
}
rewrite(self.primary.into_packets())
.chain(self.userids.into_iter().flat_map(|b| b.into_packets()))
.chain(self.user_attributes.into_iter().flat_map(|b| b.into_packets()))
.chain(self.subkeys.into_iter().flat_map(|b| rewrite(b.into_packets())))
.chain(self.unknowns.into_iter().flat_map(|b| b.into_packets()))
.chain(self.bad.into_iter().map(|s| s.into()))
}
/// Returns the first certificate found in the sequence of packets.
///
/// If the sequence of packets does not start with a certificate
/// (specifically, if it does not start with a primary key
/// packet), then this fails.
///
/// If the sequence contains multiple certificates (i.e., it is a
/// keyring), or the certificate is followed by an invalid packet
/// this function will fail. To parse keyrings, use
/// [`CertParser`] instead of this function.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::PacketPile;
///
/// # fn main() -> openpgp::Result<()> {
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
///
/// // We should be able to turn a certificate into a PacketPile
/// // and back.
/// assert!(Cert::from_packets(cert.into_packets2()).is_ok());
///
/// // But a revocation certificate is not a certificate, so this
/// // will fail.
/// let p : Vec<Packet> = vec![rev.into()];
/// assert!(Cert::from_packets(p.into_iter()).is_err());
/// # Ok(())
/// # }
/// ```
pub fn from_packets(p: impl Iterator<Item=Packet> + Send + Sync) -> Result<Self> {
let mut i = parser::CertParser::from_iter(p);
if let Some(cert_result) = i.next() {
if i.next().is_some() {
Err(Error::MalformedCert(
"Additional packets found, is this a keyring?".into()
).into())
} else {
cert_result
}
} else {
Err(Error::MalformedCert("No data".into()).into())
}
}
/// Converts the certificate into a `PacketPile`.
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::PacketPile;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// let pp = cert.into_packet_pile();
/// # let _ : PacketPile = pp;
/// # Ok(())
/// # }
/// ```
pub fn into_packet_pile(self) -> PacketPile {
self.into()
}
/// Sorts and deduplicates all components and all signatures of
/// all components.
///
/// Signatures are compared using [`Signature::normalized_eq`]
/// (i.e., the unhashed subpacket area is ignored). If two
/// signatures are considered equal, the one that comes first is
/// kept.
///
/// Keys are compares using [`Key::public_cmp`]. If two keys are
/// considered equivalent, then the one with secret key material
/// is kept. If they both have secret key material, then the one
/// that comes first is kept.
fn sort_and_dedup(&mut self) {
self.primary.sort_and_dedup();
self.bad.sort_by(Signature::normalized_cmp);
self.bad.dedup_by(|a, b| a.normalized_eq(b));
// Order bad signatures so that the most recent one comes
// first.
self.bad.sort_by(sig_cmp);
self.userids.sort_and_dedup(UserID::cmp, |_, _| {});
self.user_attributes.sort_and_dedup(UserAttribute::cmp, |_, _| {});
// XXX: If we have two keys with the same public parts and
// different non-empty secret parts, then the one that comes
// first will be dropped, the one that comes later will be
// kept.
//
// This can happen if:
//
// - One is corrupted
// - There are two versions that are encrypted differently
//
// If the order of the keys is unpredictable, this effect is
// unpredictable! However, if we merge two canonicalized
// certs with Cert::merge_public_and_secret, then we know the
// order: the version in `self` comes first, the version in
// `other` comes last.
self.subkeys.sort_and_dedup(Key::public_cmp,
|a, b| {
// Recall: if a and b are equal, a will be dropped.
// Also, the elements are given in the opposite order
// from their order in the vector.
//
// Prefer the secret in `a`, i.e. the "later" one.
if a.has_secret() {
std::mem::swap(a, b);
}
});
self.unknowns.sort_and_dedup(Unknown::best_effort_cmp, |_, _| {});
}
fn canonicalize(mut self) -> Self {
tracer!(TRACE, "canonicalize", 0);
use SignatureType::*;
// Before we do anything, we'll order and deduplicate the
// components. If two components are the same, they will be
// merged, and their signatures will also be deduplicated.
// This improves the performance considerably when we update a
// certificate, because the certificates will be most likely
// almost identical, and we avoid about half of the signature
// verifications.
self.sort_and_dedup();
// Now we verify the self signatures. There are a few things
// that we need to be aware of:
//
// - Signatures may be invalid. These should be dropped.
//
// - Signatures may be out of order. These should be
// reordered so that we have the latest self signature and
// we don't drop a userid or subkey that is actually
// valid.
// We collect bad signatures here in self.bad. Below, we'll
// test whether they are just out of order by checking them
// against all userids and subkeys. Furthermore, this may be
// a partial Cert that is merged into an older copy.
// desc: a description of the component
// binding: the binding to check
// sigs: a vector of sigs in $binding to check
macro_rules! check {
($desc:expr, $binding:expr, $sigs:ident,
$hash_method:ident, // method to hash the signature
$sig_type_pat:pat, // pattern to test signature types against
$($hash_args:expr),* // additional arguments to pass to hash_method
) => ({
let sigs = $binding.$sigs.take();
t!("check!({}, {}, {} ({:?}), {}, ...)",
$desc, stringify!($binding), sigs.len(), sigs,
stringify!($hash_method));
for sig in sigs.into_iter() {
// Use hash prefix as heuristic.
let key = self.primary.key();
match sig.hash_algo().context().and_then(|mut ctx| {
if matches!(sig.typ(), $sig_type_pat) {
sig.$hash_method(&mut ctx, key, $($hash_args),*);
ctx.into_digest()
} else {
Err(Error::UnsupportedSignatureType(sig.typ()).into())
}
}) {
Ok(hash) => {
if &sig.digest_prefix()[..] == &hash[..2] {
sig.set_computed_digest(Some(hash));
$binding.$sigs.push(sig);
} else {
t!("Sig {:02X}{:02X}, type = {} \
doesn't belong to {} (computed hash's prefix: {:02X}{:02X})",
sig.digest_prefix()[0], sig.digest_prefix()[1],
sig.typ(), $desc,
hash[0], hash[1]);
self.bad.push(sig);
}
},
Err(e) => {
// Hashing failed, we likely don't support the
// hash algorithm, or the signature type was
// bad.
t!("Sig {:02X}{:02X}, type = {}: \
Hashing failed: {}",
sig.digest_prefix()[0], sig.digest_prefix()[1],
sig.typ(), e);
self.bad.push(sig);
},
}
}
});
($desc:expr, $binding:expr, $sigs:ident,
$hash_method:ident, $sig_type_pat:pat) => ({
check!($desc, $binding, $sigs, $hash_method, $sig_type_pat, )
});
}
// The same as check!, but for third party signatures. If we
// do have the key that made the signature, we can verify it
// like in check!. Otherwise, we use the hash prefix as
// heuristic approximating the verification.
macro_rules! check_3rd_party {
($desc:expr, // a description of the component
$binding:expr, // the binding to check
$sigs:ident, // a vector of sigs in $binding to check
$lookup_fn:expr, // a function to lookup keys
$verify_method:ident, // the method to call to verify it
$hash_method:ident, // the method to call to compute the hash
$sig_type_pat:pat, // pattern to test signature types against
$($verify_args:expr),* // additional arguments to pass to the above
) => ({
let sigs = mem::take(&mut $binding.$sigs);
t!("check_3rd_party!({}, {}, {} ({:?}_, {}, {}, ...)",
$desc, stringify!($binding), sigs.len(), sigs,
stringify!($verify_method), stringify!($hash_method));
for sig in sigs {
// Use hash prefix as heuristic.
let key = self.primary.key();
match sig.hash_algo().context().and_then(|mut ctx| {
if matches!(sig.typ(), $sig_type_pat) {
sig.$hash_method(&mut ctx, key, $($verify_args),*);
ctx.into_digest()
} else {
Err(Error::UnsupportedSignatureType(sig.typ()).into())
}
}) {
Ok(hash) => {
if &sig.digest_prefix()[..] == &hash[..2] {
// See if we can get the key for a
// positive verification.
if let Some(key) = $lookup_fn(&sig) {
if let Ok(()) = sig.$verify_method(
&key, self.primary.key(), $($verify_args),*)
{
$binding.$sigs.push(sig);
} else {
t!("Sig {:02X}{:02X}, type = {} \
doesn't belong to {}",
sig.digest_prefix()[0],
sig.digest_prefix()[1],
sig.typ(), $desc);
self.bad.push(sig);
}
} else {
// No key, we need to trust our heuristic.
sig.set_computed_digest(Some(hash));
$binding.$sigs.push(sig);
}
} else {
t!("Sig {:02X}{:02X}, type = {} \
doesn't belong to {} (computed hash's prefix: {:02X}{:02X})",
sig.digest_prefix()[0], sig.digest_prefix()[1],
sig.typ(), $desc,
hash[0], hash[1]);
self.bad.push(sig);
}
},
Err(e) => {
// Hashing failed, we likely don't support the
// hash algorithm, or the signature type was
// bad.
t!("Sig {:02X}{:02X}, type = {}: \
Hashing failed: {}",
sig.digest_prefix()[0], sig.digest_prefix()[1],
sig.typ(), e);
self.bad.push(sig);
},
}
}
});
($desc:expr, $binding:expr, $sigs:ident, $lookup_fn:expr,
$verify_method:ident, $hash_method:ident, $sig_type_pat:pat) => ({
check_3rd_party!($desc, $binding, $sigs, $lookup_fn,
$verify_method, $hash_method, $sig_type_pat, )
});
}
// Placeholder lookup function.
fn lookup_fn(_: &Signature)
-> Option<Key<key::PublicParts, key::UnspecifiedRole>> {
None
}
check!("primary key",
self.primary, self_signatures, hash_direct_key, DirectKey);
check!("primary key",
self.primary, self_revocations, hash_direct_key, KeyRevocation);
check_3rd_party!("primary key",
self.primary, certifications, lookup_fn,
verify_direct_key, hash_direct_key, DirectKey);
check_3rd_party!("primary key",
self.primary, other_revocations, lookup_fn,
verify_primary_key_revocation, hash_direct_key,
KeyRevocation);
// Attestations are never associated with a primary key. If
// there are any, they need to be reordered.
self.bad.append(&mut self.primary.attestations.take());
for ua in self.userids.iter_mut() {
check!(format!("userid \"{}\"",
String::from_utf8_lossy(ua.userid().value())),
ua, self_signatures, hash_userid_binding,
GenericCertification | PersonaCertification
| CasualCertification | PositiveCertification,
ua.userid());
check!(format!("userid \"{}\"",
String::from_utf8_lossy(ua.userid().value())),
ua, self_revocations, hash_userid_binding,
CertificationRevocation,
ua.userid());
check!(format!("userid \"{}\"",
String::from_utf8_lossy(ua.userid().value())),
ua, attestations, hash_userid_binding,
AttestationKey,
ua.userid());
check_3rd_party!(
format!("userid \"{}\"",
String::from_utf8_lossy(ua.userid().value())),
ua, certifications, lookup_fn,
verify_userid_binding, hash_userid_binding,
GenericCertification | PersonaCertification
| CasualCertification | PositiveCertification,
ua.userid());
check_3rd_party!(
format!("userid \"{}\"",
String::from_utf8_lossy(ua.userid().value())),
ua, other_revocations, lookup_fn,
verify_userid_revocation, hash_userid_binding,
CertificationRevocation,
ua.userid());
}
for binding in self.user_attributes.iter_mut() {
check!("user attribute",
binding, self_signatures, hash_user_attribute_binding,
GenericCertification | PersonaCertification
| CasualCertification | PositiveCertification,
binding.user_attribute());
check!("user attribute",
binding, self_revocations, hash_user_attribute_binding,
CertificationRevocation,
binding.user_attribute());
check!("user attribute",
binding, attestations, hash_user_attribute_binding,
AttestationKey,
binding.user_attribute());
check_3rd_party!(
"user attribute",
binding, certifications, lookup_fn,
verify_user_attribute_binding, hash_user_attribute_binding,
GenericCertification | PersonaCertification
| CasualCertification | PositiveCertification,
binding.user_attribute());
check_3rd_party!(
"user attribute",
binding, other_revocations, lookup_fn,
verify_user_attribute_revocation, hash_user_attribute_binding,
CertificationRevocation,
binding.user_attribute());
}
for binding in self.subkeys.iter_mut() {
check!(format!("subkey {}", binding.key().keyid()),
binding, self_signatures, hash_subkey_binding,
SubkeyBinding,
binding.key());
check!(format!("subkey {}", binding.key().keyid()),
binding, self_revocations, hash_subkey_binding,
SubkeyRevocation,
binding.key());
check_3rd_party!(
format!("subkey {}", binding.key().keyid()),
binding, certifications, lookup_fn,
verify_subkey_binding, hash_subkey_binding,
SubkeyBinding,
binding.key());
check_3rd_party!(
format!("subkey {}", binding.key().keyid()),
binding, other_revocations, lookup_fn,
verify_subkey_revocation, hash_subkey_binding,
SubkeyRevocation,
binding.key());
// Attestations are never associated with a subkey. If
// there are any, they need to be reordered.
self.bad.append(&mut binding.attestations.take());
}
// See if the signatures that didn't validate are just out of
// place.
let mut bad_sigs: Vec<(Option<usize>, Signature)> =
std::mem::take(&mut self.bad).into_iter()
.map(|sig| {
t!("We're going to reconsider bad signature {:?}", sig);
(None, sig)
})
.collect();
t!("Attempting to reorder {} signatures", bad_sigs.len());
// Do the same for signatures on unknown components, but
// remember where we took them from.
for (i, c) in self.unknowns.iter_mut().enumerate() {
for sig in
c.self_signatures.take().into_iter()
.chain(
std::mem::take(&mut c.certifications).into_iter())
.chain(
c.attestations.take().into_iter())
.chain(
c.self_revocations.take().into_iter())
.chain(
std::mem::take(&mut c.other_revocations).into_iter())
{
t!("We're going to reconsider {:?} on unknown component #{}",
sig, i);
bad_sigs.push((Some(i), sig));
}
}
let primary_fp: KeyHandle = self.key_handle();
'outer: for (unknown_idx, sig) in bad_sigs {
// Did we find a new place for sig?
let mut found_component = false;
// Is this signature a self-signature?
let issuers =
sig.get_issuers();
let is_selfsig =
issuers.is_empty()
|| issuers.iter().any(|kh| kh.aliases(&primary_fp));
macro_rules! check_one {
($desc:expr, // a description of the component
$sigs:expr, // where to put $sig if successful
$sig:ident, // the signature to check
$hash_method:ident, // the method to compute the hash
$($verify_args:expr),* // additional arguments for the above
) => ({
if is_selfsig {
t!("check_one!({}, {:?}, {:?}/{}, {}, ...)",
$desc, $sigs, $sig, $sig.typ(),
stringify!($hash_method));
// Use hash prefix as heuristic.
let key = self.primary.key();
if let Ok(hash) = $sig.hash_algo().context()
.and_then(|mut ctx| {
$sig.$hash_method(&mut ctx, key,
$($verify_args),*);
ctx.into_digest()
})
{
if &$sig.digest_prefix()[..] == &hash[..2] {
t!("Sig {:02X}{:02X}, {:?} \
was out of place. Likely belongs to {}.",
$sig.digest_prefix()[0],
$sig.digest_prefix()[1],
$sig.typ(), $desc);
$sigs.push({
let sig = $sig.clone();
sig.set_computed_digest(Some(hash));
sig
});
// The cost of missing a revocation
// certificate merely because we put
// it into the wrong place seem to
// outweigh the cost of duplicating
// it.
t!("Will keep trying to match this sig to \
other components (found before? {:?})...",
found_component);
found_component = true;
} else {
t!("Sig {:02X}{:02X}, {:?} \
does not belong to {}: \
hash prefix mismatch",
$sig.digest_prefix()[0],
$sig.digest_prefix()[1],
$sig.typ(), $desc);
}
} else {
t!("Sig {:02X}{:02X}, type = {} \
doesn't use a supported hash algorithm: \
{:?} unsupported",
$sig.digest_prefix()[0], $sig.digest_prefix()[1],
$sig.typ(), $sig.hash_algo());
}
}
});
($desc:expr, $sigs:expr, $sig:ident,
$hash_method:ident) => ({
check_one!($desc, $sigs, $sig, $hash_method,)
});
}
// The same as check_one!, but for third party signatures.
// If we do have the key that made the signature, we can
// verify it like in check!. Otherwise, we use the hash
// prefix as heuristic approximating the verification.
macro_rules! check_one_3rd_party {
($desc:expr, // a description of the component
$sigs:expr, // where to put $sig if successful
$sig:ident, // the signature to check
$lookup_fn:expr, // a function to lookup keys
$verify_method:ident, // the method to verify it
$hash_method:ident, // the method to compute the hash
$($verify_args:expr),* // additional arguments for the above
) => ({
if ! is_selfsig {
t!("check_one_3rd_party!({}, {}, {:?}, {}, {}, ...)",
$desc, stringify!($sigs), $sig,
stringify!($verify_method), stringify!($hash_method));
if let Some(key) = $lookup_fn(&$sig) {
match $sig.$verify_method(&key,
self.primary.key(),
$($verify_args),*)
{
Ok(()) => {
t!("Sig {:02X}{:02X}, {:?} \
was out of place. Belongs to {}.",
$sig.digest_prefix()[0],
$sig.digest_prefix()[1],
$sig.typ(), $desc);
$sigs.push($sig);
continue 'outer;
},
Err(err) => {
t!("Sig {:02X}{:02X}, type = {} \
doesn't belong to {}: {:?}",
$sig.digest_prefix()[0], $sig.digest_prefix()[1],
$sig.typ(), $desc, err);
},
}
} else {
// Use hash prefix as heuristic.
let key = self.primary.key();
if let Ok(hash) = $sig.hash_algo().context()
.and_then(|mut ctx| {
$sig.$hash_method(&mut ctx, key,
$($verify_args),*);
ctx.into_digest()
})
{
if &$sig.digest_prefix()[..] == &hash[..2] {
t!("Sig {:02X}{:02X}, {:?} \
was out of place. Likely belongs to {}.",
$sig.digest_prefix()[0],
$sig.digest_prefix()[1],
$sig.typ(), $desc);
$sigs.push({
let sig = $sig.clone();
sig.set_computed_digest(Some(hash));
sig
});
// The cost of missing a revocation
// certificate merely because we put
// it into the wrong place seem to
// outweigh the cost of duplicating
// it.
t!("Will keep trying to match this sig to \
other components (found before? {:?})...",
found_component);
found_component = true;
} else {
t!("Sig {:02X}{:02X}, {:?} \
does not belong to {}: \
hash prefix mismatch",
$sig.digest_prefix()[0],
$sig.digest_prefix()[1],
$sig.typ(), $desc);
}
} else {
t!("Sig {:02X}{:02X}, type = {} \
doesn't use a supported hash algorithm: \
{:?} unsupported",
$sig.digest_prefix()[0], $sig.digest_prefix()[1],
$sig.typ(), $sig.hash_algo());
}
}
}
});
($desc:expr, $sigs:expr, $sig:ident, $lookup_fn:expr,
$verify_method:ident, $hash_method:ident) => ({
check_one_3rd_party!($desc, $sigs, $sig, $lookup_fn,
$verify_method, $hash_method, )
});
}
match sig.typ() {
DirectKey => {
check_one!("primary key", self.primary.self_signatures,
sig, hash_direct_key);
check_one_3rd_party!(
"primary key", self.primary.certifications, sig,
lookup_fn,
verify_direct_key, hash_direct_key);
},
KeyRevocation => {
check_one!("primary key", self.primary.self_revocations,
sig, hash_direct_key);
check_one_3rd_party!(
"primary key", self.primary.other_revocations, sig,
lookup_fn, verify_primary_key_revocation,
hash_direct_key);
},
GenericCertification | PersonaCertification
| CasualCertification | PositiveCertification =>
{
for binding in self.userids.iter_mut() {
check_one!(format!("userid \"{}\"",
String::from_utf8_lossy(
binding.userid().value())),
binding.self_signatures, sig,
hash_userid_binding, binding.userid());
check_one_3rd_party!(
format!("userid \"{}\"",
String::from_utf8_lossy(
binding.userid().value())),
binding.certifications, sig, lookup_fn,
verify_userid_binding, hash_userid_binding,
binding.userid());
}
for binding in self.user_attributes.iter_mut() {
check_one!("user attribute",
binding.self_signatures, sig,
hash_user_attribute_binding,
binding.user_attribute());
check_one_3rd_party!(
"user attribute",
binding.certifications, sig, lookup_fn,
verify_user_attribute_binding,
hash_user_attribute_binding,
binding.user_attribute());
}
},
crate::types::SignatureType::AttestationKey => {
for binding in self.userids.iter_mut() {
check_one!(format!("userid \"{}\"",
String::from_utf8_lossy(
binding.userid().value())),
binding.attestations, sig,
hash_userid_binding, binding.userid());
}
for binding in self.user_attributes.iter_mut() {
check_one!("user attribute",
binding.attestations, sig,
hash_user_attribute_binding,
binding.user_attribute());
}
},
CertificationRevocation => {
for binding in self.userids.iter_mut() {
check_one!(format!("userid \"{}\"",
String::from_utf8_lossy(
binding.userid().value())),
binding.self_revocations, sig,
hash_userid_binding,
binding.userid());
check_one_3rd_party!(
format!("userid \"{}\"",
String::from_utf8_lossy(
binding.userid().value())),
binding.other_revocations, sig, lookup_fn,
verify_userid_revocation, hash_userid_binding,
binding.userid());
}
for binding in self.user_attributes.iter_mut() {
check_one!("user attribute",
binding.self_revocations, sig,
hash_user_attribute_binding,
binding.user_attribute());
check_one_3rd_party!(
"user attribute",
binding.other_revocations, sig, lookup_fn,
verify_user_attribute_revocation,
hash_user_attribute_binding,
binding.user_attribute());
}
},
SubkeyBinding => {
for binding in self.subkeys.iter_mut() {
check_one!(format!("subkey {}", binding.key().keyid()),
binding.self_signatures, sig,
hash_subkey_binding, binding.key());
check_one_3rd_party!(
format!("subkey {}", binding.key().keyid()),
binding.certifications, sig, lookup_fn,
verify_subkey_binding, hash_subkey_binding,
binding.key());
}
},
SubkeyRevocation => {
for binding in self.subkeys.iter_mut() {
check_one!(format!("subkey {}", binding.key().keyid()),
binding.self_revocations, sig,
hash_subkey_binding, binding.key());
check_one_3rd_party!(
format!("subkey {}", binding.key().keyid()),
binding.other_revocations, sig, lookup_fn,
verify_subkey_revocation, hash_subkey_binding,
binding.key());
}
},
typ => {
t!("Odd signature type: {:?}", typ);
},
}
if found_component {
continue;
}
// Keep them for later.
t!("{} {:02X}{:02X}, {:?}, originally found on {:?} \
doesn't belong to any known component or is bad.",
if is_selfsig { "Self-sig" } else { "3rd-party-sig" },
sig.digest_prefix()[0], sig.digest_prefix()[1],
sig.typ(), unknown_idx);
if let Some(i) = unknown_idx {
let is_revocation = match sig.typ() {
CertificationRevocation | KeyRevocation | SubkeyRevocation
=> true,
_ => false,
};
match (is_selfsig, is_revocation) {
(false, false) =>
self.unknowns[i].certifications.push(sig),
(false, true) =>
self.unknowns[i].other_revocations.push(sig),
(true, false) =>
self.unknowns[i].self_signatures.push(sig),
(true, true) =>
self.unknowns[i].self_revocations.push(sig),
}
} else {
self.bad.push(sig);
}
}
if !self.bad.is_empty() {
t!("{}: ignoring {} bad self signatures",
self.keyid(), self.bad.len());
}
// Sort again. We may have moved signatures to the right
// component, and we need to ensure they are in the right spot
// (i.e. newest first).
self.sort_and_dedup();
// XXX: Check if the sigs in other_sigs issuer are actually
// designated revokers for this key (listed in a "Revocation
// Key" subpacket in *any* non-revoked self signature). Only
// if that is the case should a sig be considered a potential
// revocation. (This applies to
// self.primary_other_revocations as well as
// self.userids().other_revocations, etc.) If not, put the
// sig on the bad list.
//
// Note: just because the Cert doesn't indicate that a key is a
// designed revoker doesn't mean that it isn't---we might just
// be missing the signature. In other words, this is a policy
// decision, but given how easy it could be to create rogue
// revocations, is probably the better to reject such
// signatures than to keep them around and have many keys
// being shown as "potentially revoked".
// XXX Do some more canonicalization.
self
}
/// Returns the certificate's fingerprint as a `KeyHandle`.
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::KeyHandle;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// #
/// println!("{}", cert.key_handle());
///
/// // This always returns a fingerprint.
/// match cert.key_handle() {
/// KeyHandle::Fingerprint(_) => (),
/// KeyHandle::KeyID(_) => unreachable!(),
/// }
/// #
/// # Ok(())
/// # }
/// ```
pub fn key_handle(&self) -> KeyHandle {
self.primary.key().key_handle()
}
/// Returns the certificate's fingerprint.
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// #
/// println!("{}", cert.fingerprint());
/// #
/// # Ok(())
/// # }
/// ```
pub fn fingerprint(&self) -> Fingerprint {
self.primary.key().fingerprint()
}
/// Returns the certificate's Key ID.
///
/// As a general rule of thumb, you should prefer the fingerprint
/// as it is possible to create keys with a colliding Key ID using
/// a [birthday attack].
///
/// [birthday attack]: https://nullprogram.com/blog/2019/07/22/
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// #
/// println!("{}", cert.keyid());
/// #
/// # Ok(())
/// # }
/// ```
pub fn keyid(&self) -> KeyID {
self.primary.key().keyid()
}
/// Merges `other` into `self`, ignoring secret key material in
/// `other`.
///
/// If `other` is a different certificate, then an error is
/// returned.
///
/// Merging two versions of a certificate is complicated, because
/// there may be multiple variants of the same key or signature
/// packet. It is possible to have multiple variants of a key
/// packet if one contains secret key material, and the other
/// does not, or if both contain secret key material that is
/// protected in different ways, e.g., a different algorithm, or a
/// different password. Multiple variants of a signature packet
/// are possible when the unhashed subpacket areas differ.
///
/// This routine is different from [`Cert::insert_packets`] in the
/// following ways:
///
/// - `Cert::merge_public` strictly prefers keys in `self` to
/// those in `other`. That is, if a primary key or subkey
/// appears in both `self` and `other`, the version in `self`
/// is kept. In contrast, [`Cert::insert_packets`] prefers
/// the new variant.
///
/// - If `other` contains a new subkey, `Cert::merge_public`
/// merges it into the certificate, but strips any secret key
/// material. In contrast, [`Cert::insert_packets`] preserves
/// the secret key material.
///
/// - If both `self` and `other` contain two variants of a
/// signature (that is, a signature packet that is identical
/// expect for the contents of the unhashed subpacket area),
/// `Cert::merge_public` merges the two variants using
/// [`Signature::merge`], which combines the unhashed
/// subpacket areas. [`Cert::insert_packets`] just takes the
/// new signature packet.
///
/// This function is appropriate to merge certificate material
/// from untrusted sources like keyservers, because it only adds
/// data to the existing certificate, it never overwrites existing
/// data, and it doesn't import secret key material, which may
/// have been manipulated by an attacker.
///
/// [`Cert::merge_public_and_secret`] is similar to this function,
/// but merges in secret key material from `other`.
///
/// # Examples
///
/// Merge a certificate from an untrusted source:
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (local, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// # let keyserver = local.clone();
/// // Merge the local version with the version from the keyserver.
/// let cert = local.merge_public(keyserver)?;
/// # let _ = cert;
/// # Ok(()) }
/// ```
///
/// Secret key material in `other` is stripped, even if the
/// variant of the packet in `self` doesn't have secret key
/// material:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::CertBuilder;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// let stripped = cert.clone().strip_secret_key_material();
/// assert!(! stripped.is_tsk());
///
/// // Merge `cert` into `stripped`.
/// let merged = stripped.merge_public(cert).expect("same certificate");
/// assert!(! merged.is_tsk());
///
/// # Ok(()) }
/// ```
///
/// Secret key material from `self` is preferred to secret key
/// material from `other`:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::crypto::Password;
/// use openpgp::cert::prelude::*;
/// use openpgp::Packet;
///
/// # fn main() -> openpgp::Result<()> {
/// let p0 = Password::from("old password");
/// let p1 = Password::from("new password");
///
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .set_password(Some(p0.clone()))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Change the password for the primary key.
/// let pk = cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0)?
/// .encrypt_secret(&p1)?;
/// let other = Cert::try_from(vec![ Packet::from(pk) ])
/// .expect("a primary key is a certificate");
///
/// // Merge `other` into `cert`.
/// let merged = cert.merge_public(other).expect("same certificate");
///
/// // `merged` has the secret key material from `cert`, which is
/// // password protected with `p0`, not `other`, which is password
/// // protected with `p1`.
/// assert!(merged.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0).is_ok());
/// # Ok(()) }
/// ```
///
/// The unhashed subpacket areas of two variants of a signature
/// are merged:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::signature::subpacket::Subpacket;
/// use openpgp::packet::signature::subpacket::SubpacketTag;
/// use openpgp::packet::signature::subpacket::SubpacketValue;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Add a subpacket to the unhashed subpacket area.
/// let subpacket_a = Subpacket::new(
/// SubpacketValue::Unknown {
/// tag: SubpacketTag::Private(100),
/// body: Vec::new(),
/// },
/// false).expect("valid");
/// let subpacket_b = Subpacket::new(
/// SubpacketValue::Unknown {
/// tag: SubpacketTag::Private(101),
/// body: Vec::new(),
/// },
/// false).expect("valid");
///
/// let mut cert_a = cert.clone().into_packets2().collect::<Vec<Packet>>();
/// match cert_a[1] {
/// Packet::Signature(ref mut sig) => {
/// let unhashed_area = sig.unhashed_area_mut();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_none());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_none());
/// unhashed_area.add(subpacket_a.clone());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// let cert_a = Cert::try_from(cert_a).expect("valid");
///
/// let mut cert_b = cert.clone().into_packets2().collect::<Vec<Packet>>();
/// match cert_b[1] {
/// Packet::Signature(ref mut sig) => {
/// let unhashed_area = sig.unhashed_area_mut();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_none());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_none());
/// unhashed_area.add(subpacket_b.clone());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// let cert_b = Cert::try_from(cert_b).expect("valid");
///
/// // When we merge `cert_b` into `cert_a`, the signature packets
/// // are merged:
/// let merged = cert_a.clone().merge_public(cert_b.clone())
/// .expect("same certificate")
/// .into_packets2()
/// .collect::<Vec<Packet>>();
/// match merged[1] {
/// Packet::Signature(ref sig) => {
/// let unhashed_area = sig.unhashed_area();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_some());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_some());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
///
/// // Likewise, when we merge `cert_a` into `cert_b`, the signature
/// // packets are merged:
/// let merged = cert_b.clone().merge_public(cert_a.clone())
/// .expect("same certificate")
/// .into_packets2()
/// .collect::<Vec<Packet>>();
/// match merged[1] {
/// Packet::Signature(ref sig) => {
/// let unhashed_area = sig.unhashed_area();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_some());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_some());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// # Ok(()) }
/// ```
pub fn merge_public(self, other: Cert) -> Result<Self> {
// Strip all secrets from `other`.
let other_public = other.strip_secret_key_material();
// Then merge it.
self.merge_public_and_secret(other_public)
}
/// Merges `other` into `self`, including secret key material.
///
/// If `other` is a different certificate, then an error is
/// returned.
///
/// This function is like [`Cert::merge_public`] except:
///
/// - if two variants of the same key have secret key material,
/// then the version in `other` is preferred,
///
/// - if there are two variants of the same key, and one has
/// secret key material, that variant is preferred.
///
/// This is different from [`Cert::insert_packets`], which
/// unconditionally prefers keys in the packets that are being
/// merged into the certificate.
///
/// It is important to only merge key material from trusted
/// sources using this function, because it may be used to import
/// secret key material. Secret key material is not authenticated
/// by OpenPGP, and there are plausible attack scenarios where a
/// malicious actor injects secret key material.
///
/// To merge only public key material, which is always safe, use
/// [`Cert::merge_public`].
///
/// # Examples
///
/// Merge a certificate from a trusted source:
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (local, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// # let other_device = local.clone();
/// // Merge the local version with the version from your other device.
/// let cert = local.merge_public_and_secret(other_device)?;
/// # let _ = cert;
/// # Ok(()) }
/// ```
///
/// Secret key material is preferred to no secret key material:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::CertBuilder;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// let stripped = cert.clone().strip_secret_key_material();
/// assert!(! stripped.is_tsk());
///
/// // If we merge `cert` into `stripped`, the secret key material is
/// // preserved:
/// let merged = stripped.clone().merge_public_and_secret(cert.clone())
/// .expect("same certificate");
/// assert!(merged.is_tsk());
///
/// // Likewise if we merge `stripped` into `cert`:
/// let merged = cert.merge_public_and_secret(stripped)
/// .expect("same certificate");
/// assert!(merged.is_tsk());
///
/// # Ok(()) }
/// ```
///
/// Secret key material in `other` is preferred:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::crypto::Password;
/// use openpgp::cert::prelude::*;
/// use openpgp::Packet;
///
/// # fn main() -> openpgp::Result<()> {
/// let p0 = Password::from("old password");
/// let p1 = Password::from("new password");
///
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .set_password(Some(p0.clone()))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Change the password for the primary key.
/// let pk = cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0)?
/// .encrypt_secret(&p1)?;
/// let other = Cert::try_from(vec![ Packet::from(pk) ])
/// .expect("a primary key is a certificate");
///
/// // Merge `other` into `cert`.
/// let merged = cert.merge_public_and_secret(other).expect("same certificate");
///
/// // `merged` has the secret key material from `other`, which is
/// // password protected with `p1`, not `self`, which is password
/// // protected with `p0`.
/// assert!(merged.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p1).is_ok());
/// # Ok(()) }
/// ```
///
/// The unhashed subpacket areas of two variants of a signature
/// are merged:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::signature::subpacket::Subpacket;
/// use openpgp::packet::signature::subpacket::SubpacketTag;
/// use openpgp::packet::signature::subpacket::SubpacketValue;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Add a subpacket to the unhashed subpacket area.
/// let subpacket_a = Subpacket::new(
/// SubpacketValue::Unknown {
/// tag: SubpacketTag::Private(100),
/// body: Vec::new(),
/// },
/// false).expect("valid");
/// let subpacket_b = Subpacket::new(
/// SubpacketValue::Unknown {
/// tag: SubpacketTag::Private(101),
/// body: Vec::new(),
/// },
/// false).expect("valid");
///
/// let mut cert_a = cert.clone().into_packets2().collect::<Vec<Packet>>();
/// match cert_a[1] {
/// Packet::Signature(ref mut sig) => {
/// let unhashed_area = sig.unhashed_area_mut();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_none());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_none());
/// unhashed_area.add(subpacket_a.clone());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// let cert_a = Cert::try_from(cert_a).expect("valid");
///
/// let mut cert_b = cert.clone().into_packets2().collect::<Vec<Packet>>();
/// match cert_b[1] {
/// Packet::Signature(ref mut sig) => {
/// let unhashed_area = sig.unhashed_area_mut();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_none());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_none());
/// unhashed_area.add(subpacket_b.clone());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// let cert_b = Cert::try_from(cert_b).expect("valid");
///
/// // When we merge `cert_b` into `cert_a`, the signature packets
/// // are merged:
/// let merged = cert_a.clone().merge_public_and_secret(cert_b.clone())
/// .expect("same certificate")
/// .into_packets2()
/// .collect::<Vec<Packet>>();
/// match merged[1] {
/// Packet::Signature(ref sig) => {
/// let unhashed_area = sig.unhashed_area();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_some());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_some());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
///
/// // Likewise, when we merge `cert_a` into `cert_b`, the signature
/// // packets are merged:
/// let merged = cert_b.clone().merge_public_and_secret(cert_a.clone())
/// .expect("same certificate")
/// .into_packets2()
/// .collect::<Vec<Packet>>();
/// match merged[1] {
/// Packet::Signature(ref sig) => {
/// let unhashed_area = sig.unhashed_area();
/// assert!(unhashed_area.subpacket(subpacket_a.tag()).is_some());
/// assert!(unhashed_area.subpacket(subpacket_b.tag()).is_some());
/// }
/// _ => panic!("Second packet is the direct signature packet."),
/// };
/// # Ok(()) }
/// ```
pub fn merge_public_and_secret(mut self, mut other: Cert) -> Result<Self> {
if self.fingerprint() != other.fingerprint() {
// The primary key is not the same. There is nothing to
// do.
return Err(Error::InvalidArgument(
"Primary key mismatch".into()).into());
}
// Prefer the secret in `other`.
if other.primary.key().has_secret() {
std::mem::swap(self.primary.key_mut(), other.primary.key_mut());
}
self.primary.self_signatures.append(
&mut other.primary.self_signatures);
self.primary.attestations.append(
&mut other.primary.attestations);
self.primary.certifications.append(
&mut other.primary.certifications);
self.primary.self_revocations.append(
&mut other.primary.self_revocations);
self.primary.other_revocations.append(
&mut other.primary.other_revocations);
self.userids.append(&mut other.userids);
self.user_attributes.append(&mut other.user_attributes);
self.subkeys.append(&mut other.subkeys);
self.bad.append(&mut other.bad);
Ok(self.canonicalize())
}
// Returns whether the specified packet is a valid start of a
// certificate.
fn valid_start<T>(tag: T) -> Result<()>
where T: Into<Tag>
{
let tag = tag.into();
match tag {
Tag::SecretKey | Tag::PublicKey => Ok(()),
_ => Err(Error::MalformedCert(
format!("A certificate does not start with a {}",
tag)).into()),
}
}
// Returns whether the specified packet can occur in a
// certificate.
//
// This function rejects all packets that are known to not belong
// in a certificate. It conservatively accepts unknown packets
// based on the assumption that they are some new component type
// from the future.
fn valid_packet<T>(tag: T) -> Result<()>
where T: Into<Tag>
{
let tag = tag.into();
match tag {
// Packets that definitely don't belong in a certificate.
Tag::Reserved
| Tag::PKESK
| Tag::SKESK
| Tag::OnePassSig
| Tag::CompressedData
| Tag::SED
| Tag::Literal
| Tag::SEIP
| Tag::MDC
| Tag::AED =>
{
Err(Error::MalformedCert(
format!("A certificate cannot not include a {}",
tag)).into())
}
// The rest either definitely belong in a certificate or
// are unknown (and conservatively accepted for future
// compatibility).
_ => Ok(()),
}
}
/// Adds packets to the certificate.
///
/// This function turns the certificate into a sequence of
/// packets, appends the packets to the end of it, and
/// canonicalizes the result. [Known packets that don't belong in
/// a TPK or TSK] cause this function to return an error. Unknown
/// packets are retained and added to the list of [unknown
/// components]. The goal is to provide some future
/// compatibility.
///
/// If a key is merged that already exists in the certificate, it
/// replaces the existing key. This way, secret key material can
/// be added, removed, encrypted, or decrypted.
///
/// Similarly, if a signature is merged that already exists in the
/// certificate, it replaces the existing signature. This way,
/// the unhashed subpacket area can be updated.
///
/// On success, this function returns the certificate with the
/// packets merged in, and a boolean indicating whether the
/// certificate actually changed. Changed here means that at
/// least one new packet was added, or an existing packet was
/// updated. Alternatively, changed means that the serialized
/// form has changed.
///
/// [Known packets that don't belong in a TPK or TSK]: https://tools.ietf.org/html/rfc4880#section-11
/// [unknown components]: Cert::unknowns()
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::serialize::Serialize;
/// use openpgp::parse::Parse;
/// use openpgp::types::DataFormat;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
///
/// // Merging in the certificate doesn't change it.
/// let identical_cert = cert.clone();
/// let (cert, changed) =
/// cert.insert_packets2(identical_cert.into_tsk().into_packets())?;
/// assert!(! changed);
///
///
/// // Merge in the revocation certificate.
/// assert_eq!(cert.primary_key().self_revocations().count(), 0);
/// let (cert, changed) = cert.insert_packets2(rev)?;
/// assert!(changed);
/// assert_eq!(cert.primary_key().self_revocations().count(), 1);
///
///
/// // Add an unknown packet.
/// let tag = Tag::Private(61.into());
/// let unknown = Unknown::new(tag,
/// openpgp::Error::UnsupportedPacketType(tag).into());
///
/// // It shows up as an unknown component.
/// let (cert, changed) = cert.insert_packets2(unknown)?;
/// assert!(changed);
/// assert_eq!(cert.unknowns().count(), 1);
/// for p in cert.unknowns() {
/// assert_eq!(p.tag(), tag);
/// }
///
///
/// // Try and merge a literal data packet.
/// let mut lit = Literal::new(DataFormat::Text);
/// lit.set_body(b"test".to_vec());
///
/// // Merging packets that are known to not belong to a
/// // certificate result in an error.
/// assert!(cert.insert_packets(lit).is_err());
/// # Ok(())
/// # }
/// ```
///
/// Remove secret key material:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
///
/// # fn main() -> openpgp::Result<()> {
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // We just created the key, so all of the keys have secret key
/// // material.
/// let mut pk = cert.primary_key().key().clone();
///
/// // Split off the secret key material.
/// let (pk, sk) = pk.take_secret();
/// assert!(sk.is_some());
/// assert!(! pk.has_secret());
///
/// // Merge in the public key. Recall: the packets that are
/// // being merged into the certificate take precedence.
/// let (cert, changed) = cert.insert_packets2(pk)?;
/// assert!(changed);
///
/// // The secret key material is stripped.
/// assert!(! cert.primary_key().has_secret());
/// # Ok(())
/// # }
/// ```
///
/// Update a binding signature's unhashed subpacket area:
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::packet::signature::subpacket::*;
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert_eq!(cert.userids().nth(0).unwrap().self_signatures().count(), 1);
///
/// // Grab the binding signature so that we can modify it.
/// let mut sig =
/// cert.userids().nth(0).unwrap().self_signatures().nth(0)
/// .unwrap().clone();
///
/// // Add a notation subpacket. Note that the information is not
/// // authenticated, therefore it may only be trusted if the
/// // certificate with the signature is placed in a trusted store.
/// let notation = NotationData::new("retrieved-from@example.org",
/// "generated-locally",
/// NotationDataFlags::empty()
/// .set_human_readable());
/// sig.unhashed_area_mut().add(
/// Subpacket::new(SubpacketValue::NotationData(notation), false)?)?;
///
/// // Merge in the signature. Recall: the packets that are
/// // being merged into the certificate take precedence.
/// let (cert, changed) = cert.insert_packets2(sig)?;
/// assert!(changed);
///
/// // The old binding signature is replaced.
/// assert_eq!(cert.userids().nth(0).unwrap().self_signatures().count(), 1);
/// assert_eq!(cert.userids().nth(0).unwrap().self_signatures().nth(0)
/// .unwrap()
/// .unhashed_area()
/// .subpackets(SubpacketTag::NotationData).count(), 1);
/// # Ok(()) }
/// ```
pub fn insert_packets2<I>(self, packets: I)
-> Result<(Self, bool)>
where I: IntoIterator,
I::Item: Into<Packet>,
{
self.insert_packets_merge(packets, |_old, new| Ok(new))
}
/// Adds packets to the certificate with an explicit merge policy.
///
/// Like [`Cert::insert_packets2`], but also takes a function that
/// will be called on inserts and replacements that can be used to
/// log changes to the certificate, and to influence how packets
/// are merged. The merge function takes two parameters, an
/// optional existing packet, and the packet to be merged in.
///
/// If a new packet is inserted, there is no packet currently in
/// the certificate. Hence, the first parameter to the merge
/// function is `None`.
///
/// If an existing packet is updated, there is a packet currently
/// in the certificate that matches the given packet. Hence, the
/// first parameter to the merge function is
/// `Some(existing_packet)`.
///
/// Both packets given to the merge function are considered equal
/// when considering the normalized form (only comparing public
/// key parameters and ignoring unhashed signature subpackets, see
/// [`Packet::normalized_hash`]). It must return a packet that
/// equals the input packet. In practice that means that the
/// merge function returns either the old packet, the new packet,
/// or a combination of both packets. If the merge function
/// returns a different packet, this function returns
/// [`Error::InvalidOperation`].
///
/// If the merge function returns the existing packet, this
/// function will still consider this as a change to the
/// certificate. In other words, it may return that the
/// certificate has changed even if the serialized representation
/// has not changed.
///
/// # Examples
///
/// In the first example, we give an explicit merge function that
/// just returns the new packet. This policy prefers the new
/// packet. This is the policy used by [`Cert::insert_packets2`].
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::crypto::Password;
/// use openpgp::cert::prelude::CertBuilder;
///
/// # fn main() -> openpgp::Result<()> {
/// let p0 = Password::from("old password");
/// let p1 = Password::from("new password");
///
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .set_password(Some(p0.clone()))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Change the password for the primary key.
/// let pk = cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0)?
/// .encrypt_secret(&p1)?;
///
/// // Merge it back in, with a policy projecting to the new packet.
/// let (cert, changed) =
/// cert.insert_packets_merge(pk, |_old, new| Ok(new))?;
/// assert!(changed);
///
/// // Make sure we can still decrypt the primary key using the
/// // new password.
/// assert!(cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p1).is_ok());
/// # Ok(()) }
/// ```
///
/// In the second example, we give an explicit merge function that
/// returns the old packet if given, falling back to the new
/// packet, if not. This policy prefers the existing packets.
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::crypto::Password;
/// use openpgp::cert::prelude::CertBuilder;
///
/// # fn main() -> openpgp::Result<()> {
/// let p0 = Password::from("old password");
/// let p1 = Password::from("new password");
///
/// // Create a new key.
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .set_password(Some(p0.clone()))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // Change the password for the primary key.
/// let pk = cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0)?
/// .encrypt_secret(&p1)?;
///
/// // Merge it back in, with a policy preferring the old packet.
/// let (cert, changed) =
/// cert.insert_packets_merge(pk, |old, new| Ok(old.unwrap_or(new)))?;
/// assert!(changed); // Overestimates changes.
///
/// // Make sure we can still decrypt the primary key using the
/// // old password.
/// assert!(cert.primary_key().key().clone().parts_into_secret()?
/// .decrypt_secret(&p0).is_ok());
/// # Ok(()) }
/// ```
pub fn insert_packets_merge<P, I>(self, packets: P, merge: I)
-> Result<(Self, bool)>
where P: IntoIterator,
P::Item: Into<Packet>,
I: FnMut(Option<Packet>, Packet) -> Result<Packet>,
{
self.insert_packets_(&mut packets.into_iter().map(Into::into),
Box::new(merge))
}
/// Adds packets to the certificate with an explicit merge policy.
///
/// This implements all the Cert::insert_packets* functions. Its
/// arguments `packets` and `merge` use dynamic dispatch so that
/// we avoid the cost of monomorphization.
fn insert_packets_<'a>(self,
packets: &mut dyn Iterator<Item = Packet>,
mut merge: Box<dyn FnMut(Option<Packet>, Packet)
-> Result<Packet> + 'a>)
-> Result<(Self, bool)>
{
let mut changed = false;
let mut combined =
self.as_tsk().into_packets().collect::<Vec<_>>();
// Hashes a packet ignoring the unhashed subpacket area and
// any secret key material.
let hash_packet = |p: &Packet| -> u64 {
let mut hasher = DefaultHasher::new();
p.normalized_hash(&mut hasher);
hasher.finish()
};
// BTreeMap of (hash) -> Vec<index in combined>.
//
// We don't use a HashMap, because the key would be a
// reference to the packets in combined, which would prevent
// us from modifying combined.
//
// Note: we really don't want to dedup components now, because
// we want to keep signatures immediately after their
// components.
let mut packet_map: BTreeMap<u64, Vec<usize>> = BTreeMap::new();
for (i, p) in combined.iter().enumerate() {
match packet_map.entry(hash_packet(p)) {
Entry::Occupied(mut oe) => {
oe.get_mut().push(i)
}
Entry::Vacant(ve) => {
ve.insert(vec![ i ]);
}
}
}
enum Action {
Drop,
Overwrite(usize),
Insert,
}
use Action::*;
// Now we merge in the new packets.
for p in packets {
Cert::valid_packet(&p)?;
let hash = hash_packet(&p);
let mut action = Insert;
if let Some(combined_i) = packet_map.get(&hash) {
for i in combined_i {
let i: usize = *i;
let (same, identical) = match (&p, &combined[i]) {
// For keys, only compare the public bits. If
// they match, then we keep whatever is in the
// new key.
(Packet::PublicKey(a), Packet::PublicKey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
a == b),
(Packet::SecretKey(a), Packet::SecretKey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
a == b),
(Packet::PublicKey(a), Packet::SecretKey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
false),
(Packet::SecretKey(a), Packet::PublicKey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
false),
(Packet::PublicSubkey(a), Packet::PublicSubkey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
a == b),
(Packet::SecretSubkey(a), Packet::SecretSubkey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
a == b),
(Packet::PublicSubkey(a), Packet::SecretSubkey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
false),
(Packet::SecretSubkey(a), Packet::PublicSubkey(b)) =>
(a.public_cmp(b) == Ordering::Equal,
false),
// For signatures, don't compare the unhashed
// subpacket areas. If it's the same
// signature, then we keep what is the new
// signature's unhashed subpacket area.
(Packet::Signature(a), Packet::Signature(b)) =>
(a.normalized_eq(b),
a == b),
(a, b) => {
let identical = a == b;
(identical, identical)
}
};
if same {
if identical {
action = Drop;
} else {
action = Overwrite(i);
}
break;
}
}
}
match action {
Drop => (),
Overwrite(i) => {
// Existing packet.
let existing =
std::mem::replace(&mut combined[i],
Packet::Marker(Default::default()));
let merged = merge(Some(existing), p)?;
let merged_hash = hash_packet(&merged);
if hash != merged_hash {
return Err(Error::InvalidOperation(
format!("merge function changed packet hash \
(expected: {}, got: {})",
hash, merged_hash)).into());
}
combined[i] = merged;
changed = true;
},
Insert => {
// New packet.
let merged = merge(None, p)?;
let merged_hash = hash_packet(&merged);
if hash != merged_hash {
return Err(Error::InvalidOperation(
format!("merge function changed packet hash \
(expected: {}, got: {})",
hash, merged_hash)).into());
}
// Add it to combined.
combined.push(merged);
changed = true;
// Because the caller might insert the same packet
// multiple times, we need to also add it to
// packet_map.
let i = combined.len() - 1;
match packet_map.entry(hash) {
Entry::Occupied(mut oe) => {
oe.get_mut().push(i)
}
Entry::Vacant(ve) => {
ve.insert(vec![ i ]);
}
}
}
}
}
Cert::try_from(combined).map(|cert| (cert, changed))
}
/// Adds packets to the certificate.
///
/// Like [`Cert::insert_packets2`], but does not return whether
/// the certificate changed.
pub fn insert_packets<I>(self, packets: I)
-> Result<Self>
where I: IntoIterator,
I::Item: Into<Packet>,
{
self.insert_packets2(packets).map(|(cert, _)| cert)
}
/// Returns whether at least one of the keys includes secret
/// key material.
///
/// This returns true if either the primary key or at least one of
/// the subkeys includes secret key material.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
/// use openpgp::serialize::Serialize;
/// use openpgp::parse::Parse;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// // If we serialize the certificate, the secret key material is
/// // stripped, unless we first convert it to a TSK.
///
/// let mut buffer = Vec::new();
/// cert.as_tsk().serialize(&mut buffer);
/// let cert = Cert::from_bytes(&buffer)?;
/// assert!(cert.is_tsk());
///
/// // Now round trip it without first converting it to a TSK. This
/// // drops the secret key material.
/// let mut buffer = Vec::new();
/// cert.serialize(&mut buffer);
/// let cert = Cert::from_bytes(&buffer)?;
/// assert!(!cert.is_tsk());
/// # Ok(())
/// # }
/// ```
pub fn is_tsk(&self) -> bool {
if self.primary_key().has_secret() {
return true;
}
self.subkeys().any(|sk| {
sk.key().has_secret()
})
}
/// Strips any secret key material.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
///
/// # fn main() -> openpgp::Result<()> {
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// assert!(cert.is_tsk());
///
/// let cert = cert.strip_secret_key_material();
/// assert!(! cert.is_tsk());
/// # Ok(())
/// # }
/// ```
pub fn strip_secret_key_material(mut self) -> Cert {
self.primary.key_mut().steal_secret();
self.subkeys.iter_mut().for_each(|sk| {
sk.key_mut().steal_secret();
});
self
}
/// Retains only the userids specified by the predicate.
///
/// Removes all the userids for which the given predicate returns
/// false.
///
/// # Warning
///
/// Because userid binding signatures are traditionally used to
/// provide additional information like the certificate holder's
/// algorithm preferences (see [`Preferences`]) and primary key
/// flags (see [`ValidKeyAmalgamation::key_flags`]). Removing a
/// userid may inadvertently change this information.
///
/// [`ValidKeyAmalgamation::key_flags`]: amalgamation::key::ValidKeyAmalgamation::key_flags()
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .add_userid("Alice Lovelace <alice@lovelace.name>")
/// .generate()?;
/// assert_eq!(cert.userids().count(), 2);
///
/// let cert = cert.retain_userids(|ua| {
/// if let Ok(Some(address)) = ua.email() {
/// address == "alice@example.org" // Only keep this one.
/// } else {
/// false // Drop malformed userids.
/// }
/// });
/// assert_eq!(cert.userids().count(), 1);
/// assert_eq!(cert.userids().nth(0).unwrap().email()?.unwrap(),
/// "alice@example.org");
/// # Ok(()) }
/// ```
pub fn retain_userids<P>(mut self, mut predicate: P) -> Cert
where P: FnMut(UserIDAmalgamation) -> bool,
{
let mut keep = vec![false; self.userids.len()];
for (i, a) in self.userids().enumerate() {
keep[i] = predicate(a);
}
// Note: Vec::retain visits the elements in the original
// order.
let mut keep = keep.iter();
self.userids.retain(|_| *keep.next().unwrap());
self
}
/// Retains only the user attributes specified by the predicate.
///
/// Removes all the user attributes for which the given predicate
/// returns false.
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// // Add nonsensical user attribute.
/// .add_user_attribute(vec![0, 1, 2])
/// .generate()?;
/// assert_eq!(cert.user_attributes().count(), 1);
///
/// // Strip all user attributes
/// let cert = cert.retain_user_attributes(|_| false);
/// assert_eq!(cert.user_attributes().count(), 0);
/// # Ok(()) }
/// ```
pub fn retain_user_attributes<P>(mut self, mut predicate: P) -> Cert
where P: FnMut(UserAttributeAmalgamation) -> bool,
{
let mut keep = vec![false; self.user_attributes.len()];
for (i, a) in self.user_attributes().enumerate() {
keep[i] = predicate(a);
}
// Note: Vec::retain visits the elements in the original
// order.
let mut keep = keep.iter();
self.user_attributes.retain(|_| *keep.next().unwrap());
self
}
/// Retains only the subkeys specified by the predicate.
///
/// Removes all the subkeys for which the given predicate returns
/// false.
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::policy::StandardPolicy;
/// use openpgp::cert::prelude::*;
///
/// // Create a new key.
/// let (cert, _) =
/// CertBuilder::new()
/// .add_userid("Alice Lovelace <alice@lovelace.name>")
/// .add_transport_encryption_subkey()
/// .add_storage_encryption_subkey()
/// .generate()?;
/// assert_eq!(cert.keys().subkeys().count(), 2);
///
/// // Retain only the transport encryption subkey. For that, we
/// // need to examine the key flags, therefore we need to turn
/// // the `KeyAmalgamation` into a `ValidKeyAmalgamation` under a
/// // policy.
/// let p = &StandardPolicy::new();
/// let cert = cert.retain_subkeys(|ka| {
/// if let Ok(vka) = ka.with_policy(p, None) {
/// vka.key_flags().map(|flags| flags.for_transport_encryption())
/// .unwrap_or(false) // Keep transport encryption keys.
/// } else {
/// false // Drop unbound keys.
/// }
/// });
/// assert_eq!(cert.keys().subkeys().count(), 1);
/// assert!(cert.with_policy(p, None)?.keys().subkeys().nth(0).unwrap()
/// .key_flags().unwrap().for_transport_encryption());
/// # Ok(()) }
/// ```
pub fn retain_subkeys<P>(mut self, mut predicate: P) -> Cert
where P: FnMut(SubordinateKeyAmalgamation<crate::packet::key::PublicParts>) -> bool,
{
let mut keep = vec![false; self.subkeys.len()];
for (i, a) in self.keys().subkeys().enumerate() {
keep[i] = predicate(a);
}
// Note: Vec::retain visits the elements in the original
// order.
let mut keep = keep.iter();
self.subkeys.retain(|_| *keep.next().unwrap());
self
}
/// Associates a policy and a reference time with the certificate.
///
/// This is used to turn a `Cert` into a
/// [`ValidCert`]. (See also [`ValidateAmalgamation`],
/// which does the same for component amalgamations.)
///
/// A certificate is considered valid if:
///
/// - It has a self signature that is live at time `t`.
///
/// - The policy considers it acceptable.
///
/// This doesn't say anything about whether the certificate itself
/// is alive (see [`ValidCert::alive`]) or revoked (see
/// [`ValidCert::revocation_status`]).
///
/// [`ValidateAmalgamation`]: amalgamation::ValidateAmalgamation
/// [`ValidCert::alive`]: ValidCert::alive()
/// [`ValidCert::revocation_status`]: ValidCert::revocation_status()
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// # assert!(std::ptr::eq(vc.policy(), p));
/// # Ok(())
/// # }
/// ```
pub fn with_policy<'a, T>(&'a self, policy: &'a dyn Policy, time: T)
-> Result<ValidCert<'a>>
where T: Into<Option<time::SystemTime>>,
{
let time = time.into().unwrap_or_else(crate::now);
self.primary_key().with_policy(policy, time)?;
Ok(ValidCert {
cert: self,
policy,
time,
})
}
}
use crate::serialize::TSK;
impl<'a> TSK<'a> {
/// Converts the certificate into an iterator over a sequence of
/// packets.
///
/// This function emits secret key packets, modulo the keys that
/// are filtered (see [`TSK::set_filter`]). If requested, missing
/// secret key material is replaced by stubs (see
/// [`TSK::emit_secret_key_stubs`].
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::serialize::{Serialize, SerializeInto};
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// assert!(cert.is_tsk());
/// let a = cert.as_tsk().to_vec()?;
/// let mut b = Vec::new();
/// cert.into_tsk().into_packets()
/// .for_each(|p| p.serialize(&mut b).unwrap());
/// assert_eq!(a, b);
/// # Ok(()) }
/// ```
pub fn into_packets(self) -> impl Iterator<Item=Packet> + 'a {
/// Strips the secret key material if the filter rejects it,
/// and optionally inserts secret key stubs.
use std::sync::Arc;
fn rewrite<'a>(
filter: Arc<Box<dyn Fn(&key::UnspecifiedSecret) -> bool + 'a>>,
emit_secret_key_stubs: bool,
mut p: impl Iterator<Item=Packet> + Send + Sync)
-> impl Iterator<Item=Packet> + Send + Sync
{
let k: Packet = match p.next().unwrap() {
Packet::PublicKey(mut k) => {
if ! k.role_as_unspecified().parts_as_secret()
.map(|k| (filter)(k))
.unwrap_or(false)
{
k = k.take_secret().0;
}
if ! k.has_secret() && emit_secret_key_stubs {
k = TSK::add_stub(k).into();
}
if k.has_secret() {
Packet::SecretKey(k.parts_into_secret().unwrap())
} else {
Packet::PublicKey(k)
}
}
Packet::PublicSubkey(mut k) => {
if ! k.role_as_unspecified().parts_as_secret()
.map(|k| (filter)(k))
.unwrap_or(false)
{
k = k.take_secret().0;
}
if ! k.has_secret() && emit_secret_key_stubs {
k = TSK::add_stub(k).into();
}
if k.has_secret() {
Packet::SecretSubkey(k.parts_into_secret().unwrap())
} else {
Packet::PublicSubkey(k)
}
}
_ => unreachable!(),
};
std::iter::once(k).chain(p)
}
let (cert, filter, emit_secret_key_stubs) = self.decompose();
let filter = Arc::new(filter);
let cert = cert.into_owned();
rewrite(filter.clone(), emit_secret_key_stubs, cert.primary.into_packets())
.chain(cert.userids.into_iter().flat_map(|b| b.into_packets()))
.chain(cert.user_attributes.into_iter().flat_map(|b| b.into_packets()))
.chain(cert.subkeys.into_iter().flat_map(
move |b| rewrite(filter.clone(), emit_secret_key_stubs, b.into_packets())))
.chain(cert.unknowns.into_iter().flat_map(|b| b.into_packets()))
.chain(cert.bad.into_iter().map(|s| s.into()))
}
}
impl TryFrom<PacketParserResult<'_>> for Cert {
type Error = anyhow::Error;
/// Returns the Cert found in the packet stream.
///
/// If the sequence contains multiple certificates (i.e., it is a
/// keyring), or the certificate is followed by an invalid packet
/// this function will fail. To parse keyrings, use
/// [`CertParser`] instead of this function.
fn try_from(ppr: PacketParserResult) -> Result<Self> {
let mut parser = parser::CertParser::from(ppr);
if let Some(cert_result) = parser.next() {
if parser.next().is_some() {
Err(Error::MalformedCert(
"Additional packets found, is this a keyring?".into()
).into())
} else {
cert_result
}
} else {
Err(Error::MalformedCert("No data".into()).into())
}
}
}
impl TryFrom<Vec<Packet>> for Cert {
type Error = anyhow::Error;
fn try_from(p: Vec<Packet>) -> Result<Self> {
Cert::from_packets(p.into_iter())
}
}
impl TryFrom<Packet> for Cert {
type Error = anyhow::Error;
fn try_from(p: Packet) -> Result<Self> {
Cert::from_packets(std::iter::once(p))
}
}
impl TryFrom<PacketPile> for Cert {
type Error = anyhow::Error;
/// Returns the certificate found in the `PacketPile`.
///
/// If the [`PacketPile`] does not start with a certificate
/// (specifically, if it does not start with a primary key
/// packet), then this fails.
///
/// If the sequence contains multiple certificates (i.e., it is a
/// keyring), or the certificate is followed by an invalid packet
/// this function will fail. To parse keyrings, use
/// [`CertParser`] instead of this function.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::PacketPile;
/// use std::convert::TryFrom;
///
/// # fn main() -> openpgp::Result<()> {
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
///
/// // We should be able to turn a certificate into a PacketPile
/// // and back.
/// let pp : PacketPile = cert.into();
/// assert!(Cert::try_from(pp).is_ok());
///
/// // But a revocation certificate is not a certificate, so this
/// // will fail.
/// let pp : PacketPile = Packet::from(rev).into();
/// assert!(Cert::try_from(pp).is_err());
/// # Ok(())
/// # }
/// ```
fn try_from(p: PacketPile) -> Result<Self> {
Self::from_packets(p.into_children())
}
}
impl From<Cert> for Vec<Packet> {
/// Converts the `Cert` into a `Vec<Packet>`.
///
/// If any packets include secret key material, that secret key
/// material is included in the resulting `Vec<Packet>`. In
/// contrast, when serializing a `Cert`, or converting a cert to
/// packets with [`Cert::into_packets2`], the secret key material
/// not included.
///
/// Note: This will change in sequoia-openpgp version 2, which
/// will harmonize the behavior and not include secret key
/// material.
// XXXv2: Drop the note in the doc comment and mentioned it in the
// release notes.
fn from(cert: Cert) -> Self {
#[allow(deprecated)]
cert.into_packets().collect::<Vec<_>>()
}
}
/// An iterator that moves out of a `Cert`.
///
/// This structure is created by the `into_iter` method on [`Cert`]
/// (provided by the [`IntoIterator`] trait).
///
/// [`IntoIterator`]: std::iter::IntoIterator
// We can't use a generic type, and due to the use of closures, we
// can't write down the concrete type. So, just use a Box.
pub struct IntoIter(Box<dyn Iterator<Item=Packet> + Send + Sync>);
assert_send_and_sync!(IntoIter);
impl Iterator for IntoIter {
type Item = Packet;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
impl IntoIterator for Cert
{
type Item = Packet;
type IntoIter = IntoIter;
/// Converts the `Cert` into an iterator over `Packet`s.
///
/// If any packets include secret key material, that secret key
/// material is included in the resulting iterator. In contrast,
/// when serializing a `Cert`, or converting a cert to packets
/// with [`Cert::into_packets2`], the secret key material not
/// included.
///
/// Note: This will change in sequoia-openpgp version 2, which
/// will harmonize the behavior and not include secret key
/// material.
// XXXv2: Drop the note in the doc comment and mentioned it in the
// release notes.
fn into_iter(self) -> Self::IntoIter {
#[allow(deprecated)]
IntoIter(Box::new(self.into_packets()))
}
}
/// A `Cert` plus a `Policy` and a reference time.
///
/// A `ValidCert` combines a [`Cert`] with a [`Policy`] and a
/// reference time. This allows it to implement methods that require
/// a `Policy` and a reference time without requiring the caller to
/// explicitly pass them in. Embedding them in the `ValidCert` data
/// structure rather than having the caller pass them in explicitly
/// helps ensure that multipart operations, even those that span
/// multiple functions, use the same `Policy` and reference time.
/// This avoids a subtle class of bugs in which different views of a
/// certificate are unintentionally used.
///
/// A `ValidCert` is typically obtained by transforming a `Cert` using
/// [`Cert::with_policy`].
///
/// A `ValidCert` is guaranteed to have a valid and live binding
/// signature at the specified reference time. Note: this only means
/// that the binding signature is live; it says nothing about whether
/// the certificate or any component is live. If you care about those
/// things, then you need to check them separately.
///
/// [`Policy`]: crate::policy::Policy
/// [`Cert::with_policy`]: Cert::with_policy()
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .add_signing_subkey()
/// # .add_transport_encryption_subkey()
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// # assert!(std::ptr::eq(vc.policy(), p));
/// # Ok(()) }
/// ```
#[derive(Debug, Clone)]
pub struct ValidCert<'a> {
cert: &'a Cert,
policy: &'a dyn Policy,
// The reference time.
time: time::SystemTime,
}
assert_send_and_sync!(ValidCert<'_>);
impl<'a> std::ops::Deref for ValidCert<'a> {
type Target = Cert;
fn deref(&self) -> &Self::Target {
self.cert
}
}
impl<'a> fmt::Display for ValidCert<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.fingerprint())
}
}
impl<'a> ValidCert<'a> {
/// Returns the underlying certificate.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .add_signing_subkey()
/// # .add_transport_encryption_subkey()
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// assert!(std::ptr::eq(vc.cert(), &cert));
/// # assert!(std::ptr::eq(vc.policy(), p));
/// # Ok(()) }
/// ```
pub fn cert(&self) -> &'a Cert {
self.cert
}
/// Returns the associated reference time.
///
/// # Examples
///
/// ```
/// # use std::time::{SystemTime, Duration, UNIX_EPOCH};
/// #
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let t = UNIX_EPOCH + Duration::from_secs(1307732220);
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .set_creation_time(t)
/// # .generate()?;
/// let vc = cert.with_policy(p, t)?;
/// assert_eq!(vc.time(), t);
/// # Ok(())
/// # }
/// ```
pub fn time(&self) -> time::SystemTime {
self.time
}
/// Returns the associated policy.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// assert!(std::ptr::eq(vc.policy(), p));
/// # Ok(())
/// # }
/// ```
pub fn policy(&self) -> &'a dyn Policy {
self.policy
}
/// Changes the associated policy and reference time.
///
/// If `time` is `None`, the current time is used.
///
/// Returns an error if the certificate is not valid for the given
/// policy at the specified time.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::{StandardPolicy, NullPolicy};
///
/// # fn main() -> openpgp::Result<()> {
/// let sp = &StandardPolicy::new();
/// let np = &NullPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// let vc = cert.with_policy(sp, None)?;
///
/// // ...
///
/// // Now with a different policy.
/// let vc = vc.with_policy(np, None)?;
/// # Ok(())
/// # }
/// ```
pub fn with_policy<T>(self, policy: &'a dyn Policy, time: T)
-> Result<ValidCert<'a>>
where T: Into<Option<time::SystemTime>>,
{
self.cert.with_policy(policy, time)
}
/// Returns the certificate's direct key signature as of the
/// reference time.
///
/// Subpackets on direct key signatures apply to all components of
/// the certificate, cf. [Section 5.2.3.3 of RFC 4880].
///
/// [Section 5.2.3.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.2.3.3
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use sequoia_openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .add_signing_subkey()
/// # .add_transport_encryption_subkey()
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// println!("{:?}", vc.direct_key_signature());
/// # assert!(vc.direct_key_signature().is_ok());
/// # Ok(()) }
/// ```
pub fn direct_key_signature(&self) -> Result<&'a Signature>
{
self.cert.primary.binding_signature(self.policy(), self.time())
}
/// Returns the certificate's revocation status.
///
/// A certificate is considered revoked at time `t` if:
///
/// - There is a valid and live revocation at time `t` that is
/// newer than all valid and live self signatures at time `t`,
/// or
///
/// - There is a valid [hard revocation] (even if it is not live
/// at time `t`, and even if there is a newer self signature).
///
/// [hard revocation]: crate::types::RevocationType::Hard
///
/// Note: certificates and subkeys have different revocation
/// criteria from [User IDs] and [User Attributes].
///
// Pending https://github.com/rust-lang/rust/issues/85960, should be
// [User IDs]: bundle::ComponentBundle<UserID>::revocation_status
// [User Attributes]: bundle::ComponentBundle<UserAttribute>::revocation_status
/// [User IDs]: bundle::ComponentBundle#method.revocation_status-1
/// [User Attributes]: bundle::ComponentBundle#method.revocation_status-2
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::types::RevocationStatus;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (cert, rev) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
///
/// // Not revoked.
/// assert_eq!(cert.with_policy(p, None)?.revocation_status(),
/// RevocationStatus::NotAsFarAsWeKnow);
///
/// // Merge the revocation certificate. `cert` is now considered
/// // to be revoked.
/// let cert = cert.insert_packets(rev.clone())?;
/// assert_eq!(cert.with_policy(p, None)?.revocation_status(),
/// RevocationStatus::Revoked(vec![&rev.into()]));
/// # Ok(())
/// # }
/// ```
pub fn revocation_status(&self) -> RevocationStatus<'a> {
self.cert.revocation_status(self.policy, self.time)
}
/// Returns whether or not the certificate is alive at the
/// reference time.
///
/// A certificate is considered to be alive at time `t` if the
/// primary key is alive at time `t`.
///
/// A valid certificate's primary key is guaranteed to have [a live
/// binding signature], however, that does not mean that the
/// [primary key is necessarily alive].
///
/// [a live binding signature]: amalgamation::ValidateAmalgamation
/// [primary key is necessarily alive]: amalgamation::key::ValidKeyAmalgamation::alive()
///
/// # Examples
///
/// ```
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let a_second = time::Duration::from_secs(1);
///
/// let creation_time = time::SystemTime::now();
/// let before_creation = creation_time - a_second;
/// let validity_period = 60 * a_second;
/// let expiration_time = creation_time + validity_period;
/// let before_expiration_time = expiration_time - a_second;
/// let after_expiration_time = expiration_time + a_second;
///
/// let (cert, _) = CertBuilder::new()
/// .add_userid("Alice")
/// .set_creation_time(creation_time)
/// .set_validity_period(validity_period)
/// .generate()?;
///
/// // There is no binding signature before the certificate was created.
/// assert!(cert.with_policy(p, before_creation).is_err());
/// assert!(cert.with_policy(p, creation_time)?.alive().is_ok());
/// assert!(cert.with_policy(p, before_expiration_time)?.alive().is_ok());
/// // The binding signature is still alive, but the key has expired.
/// assert!(cert.with_policy(p, expiration_time)?.alive().is_err());
/// assert!(cert.with_policy(p, after_expiration_time)?.alive().is_err());
/// # Ok(()) }
pub fn alive(&self) -> Result<()> {
self.primary_key().alive()
}
/// Returns the certificate's primary key.
///
/// A key's secret key material may be protected with a
/// password. In such cases, it needs to be decrypted before it
/// can be used to decrypt data or generate a signature. Refer to
/// [`Key::decrypt_secret`] for details.
///
/// [`Key::decrypt_secret`]: crate::packet::Key::decrypt_secret()
///
/// # Examples
///
/// ```
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::policy::StandardPolicy;
/// #
/// # fn main() -> openpgp::Result<()> {
/// # let p = &StandardPolicy::new();
/// # let (cert, _) = CertBuilder::new()
/// # .add_userid("Alice")
/// # .generate()?;
/// # let vc = cert.with_policy(p, None)?;
/// #
/// let primary = vc.primary_key();
/// // The certificate's fingerprint *is* the primary key's fingerprint.
/// assert_eq!(vc.fingerprint(), primary.fingerprint());
/// # Ok(()) }
pub fn primary_key(&self)
-> ValidPrimaryKeyAmalgamation<'a, key::PublicParts>
{
self.cert.primary_key().with_policy(self.policy, self.time)
.expect("A ValidKeyAmalgamation must have a ValidPrimaryKeyAmalgamation")
}
/// Returns an iterator over the certificate's valid keys.
///
/// That is, this returns an iterator over the primary key and any
/// subkeys.
///
/// The iterator always returns the primary key first. The order
/// of the subkeys is undefined.
///
/// To only iterate over the certificate's subkeys, call
/// [`ValidKeyAmalgamationIter::subkeys`] on the returned iterator
/// instead of skipping the first key: this causes the iterator to
/// return values with a more accurate type.
///
/// A key's secret key material may be protected with a
/// password. In such cases, it needs to be decrypted before it
/// can be used to decrypt data or generate a signature. Refer to
/// [`Key::decrypt_secret`] for details.
///
/// [`ValidKeyAmalgamationIter::subkeys`]: amalgamation::key::ValidKeyAmalgamationIter::subkeys()
/// [`Key::decrypt_secret`]: crate::packet::Key::decrypt_secret()
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// // Create a key with two subkeys: one for signing and one for
/// // encrypting data in transit.
/// let (cert, _) = CertBuilder::new()
/// .add_userid("Alice")
/// .add_signing_subkey()
/// .add_transport_encryption_subkey()
/// .generate()?;
/// // They should all be valid.
/// assert_eq!(cert.with_policy(p, None)?.keys().count(), 1 + 2);
/// # Ok(())
/// # }
/// ```
pub fn keys(&self) -> ValidKeyAmalgamationIter<'a, key::PublicParts, key::UnspecifiedRole> {
self.cert.keys().with_policy(self.policy, self.time)
}
/// Returns the primary User ID at the reference time, if any.
///
/// A certificate may not have a primary User ID if it doesn't
/// have any valid User IDs. If a certificate has at least one
/// valid User ID at time `t`, then it has a primary User ID at
/// time `t`.
///
/// The primary User ID is determined as follows:
///
/// - Discard User IDs that are not valid or not alive at time `t`.
///
/// - Order the remaining User IDs by whether a User ID does not
/// have a valid self-revocation (i.e., non-revoked first,
/// ignoring third-party revocations).
///
/// - Break ties by ordering by whether the User ID is [marked
/// as being the primary User ID].
///
/// - Break ties by ordering by the binding signature's creation
/// time, most recent first.
///
/// If there are multiple User IDs that are ordered first, then
/// one is chosen in a deterministic, but undefined manner
/// (currently, we order the value of the User IDs
/// lexographically, but you shouldn't rely on this).
///
/// [marked as being the primary User ID]: https://tools.ietf.org/html/rfc4880#section-5.2.3.19
///
/// # Examples
///
/// ```
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let t1 = time::SystemTime::now();
/// let t2 = t1 + time::Duration::from_secs(1);
///
/// let (cert, _) = CertBuilder::new()
/// .set_creation_time(t1)
/// .add_userid("Alice")
/// .generate()?;
/// let mut signer = cert
/// .primary_key().key().clone().parts_into_secret()?.into_keypair()?;
///
/// // There is only one User ID. It must be the primary User ID.
/// let vc = cert.with_policy(p, t1)?;
/// let alice = vc.primary_userid().unwrap();
/// assert_eq!(alice.value(), b"Alice");
/// // By default, the primary User ID flag is set.
/// assert!(alice.binding_signature().primary_userid().is_some());
///
/// let template: signature::SignatureBuilder
/// = alice.binding_signature().clone().into();
///
/// // Add another user id whose creation time is after the
/// // existing User ID, and doesn't have the User ID set.
/// let sig = template.clone()
/// .set_signature_creation_time(t2)?
/// .set_primary_userid(false)?;
/// let bob: UserID = "Bob".into();
/// let sig = bob.bind(&mut signer, &cert, sig)?;
/// let cert = cert.insert_packets(vec![Packet::from(bob), sig.into()])?;
/// # assert_eq!(cert.userids().count(), 2);
///
/// // Alice should still be the primary User ID, because it has the
/// // primary User ID flag set.
/// let alice = cert.with_policy(p, t2)?.primary_userid().unwrap();
/// assert_eq!(alice.value(), b"Alice");
///
///
/// // Add another User ID, whose binding signature's creation
/// // time is after Alice's and also has the primary User ID flag set.
/// let sig = template.clone()
/// .set_signature_creation_time(t2)?;
/// let carol: UserID = "Carol".into();
/// let sig = carol.bind(&mut signer, &cert, sig)?;
/// let cert = cert.insert_packets(vec![Packet::from(carol), sig.into()])?;
/// # assert_eq!(cert.userids().count(), 3);
///
/// // It should now be the primary User ID, because it is the
/// // newest User ID with the primary User ID bit is set.
/// let carol = cert.with_policy(p, t2)?.primary_userid().unwrap();
/// assert_eq!(carol.value(), b"Carol");
/// # Ok(()) }
pub fn primary_userid(&self) -> Result<ValidUserIDAmalgamation<'a>>
{
self.cert.primary_userid_relaxed(self.policy(), self.time(), true)
}
/// Returns an iterator over the certificate's valid User IDs.
///
/// # Examples
///
/// ```
/// # use std::time;
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let t0 = time::SystemTime::now() - time::Duration::from_secs(10);
/// # let t1 = t0 + time::Duration::from_secs(1);
/// # let t2 = t1 + time::Duration::from_secs(1);
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .set_creation_time(t0)
/// # .generate()?;
/// // `cert` was created at t0. Add a second User ID at t1.
/// let userid = UserID::from("alice@example.com");
/// // Use the primary User ID's current binding signature as the
/// // basis for the new User ID's binding signature.
/// let template : signature::SignatureBuilder
/// = cert.with_policy(p, None)?
/// .primary_userid()?
/// .binding_signature()
/// .clone()
/// .into();
/// let sig = template.set_signature_creation_time(t1)?;
/// let mut signer = cert
/// .primary_key().key().clone().parts_into_secret()?.into_keypair()?;
/// let binding = userid.bind(&mut signer, &cert, sig)?;
/// // Merge it.
/// let cert = cert.insert_packets(
/// vec![Packet::from(userid), binding.into()])?;
///
/// // At t0, the new User ID is not yet valid (it doesn't have a
/// // binding signature that is live at t0). Thus, it is not
/// // returned.
/// let vc = cert.with_policy(p, t0)?;
/// assert_eq!(vc.userids().count(), 1);
/// // But, at t1, we see both User IDs.
/// let vc = cert.with_policy(p, t1)?;
/// assert_eq!(vc.userids().count(), 2);
/// # Ok(())
/// # }
/// ```
pub fn userids(&self) -> ValidUserIDAmalgamationIter<'a> {
self.cert.userids().with_policy(self.policy, self.time)
}
/// Returns the primary User Attribute, if any.
///
/// If a certificate has any valid User Attributes, then it has a
/// primary User Attribute. In other words, it will not have a
/// primary User Attribute at time `t` if there are no valid User
/// Attributes at time `t`.
///
/// The primary User Attribute is determined in the same way as
/// the primary User ID. See the documentation of
/// [`ValidCert::primary_userid`] for details.
///
/// [`ValidCert::primary_userid`]: ValidCert::primary_userid()
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// let vc = cert.with_policy(p, None)?;
/// let ua = vc.primary_user_attribute();
/// # // We don't have an user attributes. So, this should return an
/// # // error.
/// # assert!(ua.is_err());
/// # Ok(())
/// # }
/// ```
pub fn primary_user_attribute(&self)
-> Result<ValidComponentAmalgamation<'a, UserAttribute>>
{
ValidComponentAmalgamation::primary(self.cert,
self.cert.user_attributes.iter(),
self.policy(), self.time(), true)
}
/// Returns an iterator over the certificate's valid
/// `UserAttribute`s.
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::packet::prelude::*;
/// # use openpgp::packet::user_attribute::Subpacket;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// # let (cert, _) =
/// # CertBuilder::general_purpose(None, Some("alice@example.org"))
/// # .generate()?;
/// #
/// # // Create some user attribute. Doctests do not pass cfg(test),
/// # // so UserAttribute::arbitrary is not available
/// # let sp = Subpacket::Unknown(7, vec![7; 7].into_boxed_slice());
/// # let ua = UserAttribute::new(&[sp]);
/// #
/// // Add a User Attribute without a self-signature to the certificate.
/// let cert = cert.insert_packets(ua)?;
/// assert_eq!(cert.user_attributes().count(), 1);
///
/// // Without a self-signature, it is definitely not valid.
/// let vc = cert.with_policy(p, None)?;
/// assert_eq!(vc.user_attributes().count(), 0);
/// # Ok(())
/// # }
/// ```
pub fn user_attributes(&self) -> ValidUserAttributeAmalgamationIter<'a> {
self.cert.user_attributes().with_policy(self.policy, self.time)
}
/// Returns a list of any designated revokers for this certificate.
///
/// This function returns the designated revokers listed on the
/// primary key's binding signatures and the certificate's direct
/// key signatures.
///
/// Note: the returned list is deduplicated.
///
/// In order to preserve our API during the 1.x series, this
/// function takes an optional policy argument. It should be
/// `None`, but if it is `Some(_)`, it will be used instead of the
/// `ValidCert`'s policy. This makes the function signature
/// compatible with [`Cert::revocation_keys`].
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
/// use openpgp::types::RevocationKey;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (alice, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// // Make Alice a designated revoker for Bob.
/// let (bob, _) =
/// CertBuilder::general_purpose(None, Some("bob@example.org"))
/// .set_revocation_keys(vec![(&alice).into()])
/// .generate()?;
///
/// // Make sure Alice is listed as a designated revoker for Bob.
/// assert_eq!(bob.with_policy(p, None)?.revocation_keys(None)
/// .collect::<Vec<&RevocationKey>>(),
/// vec![&(&alice).into()]);
/// # Ok(()) }
/// ```
pub fn revocation_keys<P>(&self, policy: P)
-> Box<dyn Iterator<Item = &'a RevocationKey> + 'a>
where
P: Into<Option<&'a dyn Policy>>,
{
self.cert.revocation_keys(
policy.into().unwrap_or_else(|| self.policy()))
}
}
macro_rules! impl_pref {
($subpacket:ident, $rt:ty) => {
#[allow(deprecated)]
fn $subpacket(&self) -> Option<$rt>
{
// When addressed by the fingerprint or keyid, we first
// look on the primary User ID and then fall back to the
// direct key signature. We need to be careful to handle
// the case where there are no User IDs.
if let Ok(u) = self.primary_userid() {
u.$subpacket()
} else if let Ok(sig) = self.direct_key_signature() {
sig.$subpacket()
} else {
None
}
}
}
}
impl<'a> seal::Sealed for ValidCert<'a> {}
impl<'a> Preferences<'a> for ValidCert<'a>
{
impl_pref!(preferred_symmetric_algorithms, &'a [SymmetricAlgorithm]);
impl_pref!(preferred_hash_algorithms, &'a [HashAlgorithm]);
impl_pref!(preferred_compression_algorithms, &'a [CompressionAlgorithm]);
impl_pref!(preferred_aead_algorithms, &'a [AEADAlgorithm]);
impl_pref!(key_server_preferences, KeyServerPreferences);
impl_pref!(preferred_key_server, &'a [u8]);
impl_pref!(policy_uri, &'a [u8]);
impl_pref!(features, Features);
}
#[cfg(test)]
mod test {
use std::convert::TryInto;
use crate::serialize::Serialize;
use crate::policy::StandardPolicy as P;
use crate::types::Curve;
use crate::packet::signature;
use crate::policy::HashAlgoSecurity;
use super::*;
use crate::{
KeyID,
types::KeyFlags,
};
fn parse_cert(data: &[u8], as_message: bool) -> Result<Cert> {
if as_message {
let pile = PacketPile::from_bytes(data).unwrap();
Cert::try_from(pile)
} else {
Cert::from_bytes(data)
}
}
#[test]
fn broken() {
use crate::types::Timestamp;
for i in 0..2 {
let cert = parse_cert(crate::tests::key("testy-broken-no-pk.pgp"),
i == 0);
assert_match!(Error::MalformedCert(_)
= cert.err().unwrap().downcast::<Error>().unwrap());
// According to 4880, a Cert must have a UserID. But, we
// don't require it.
let cert = parse_cert(crate::tests::key("testy-broken-no-uid.pgp"),
i == 0);
assert!(cert.is_ok());
// We have:
//
// [ pk, user id, sig, subkey ]
let cert = parse_cert(crate::tests::key("testy-broken-no-sig-on-subkey.pgp"),
i == 0).unwrap();
assert_eq!(cert.primary.key().creation_time(),
Timestamp::from(1511355130).into());
assert_eq!(cert.userids.len(), 1);
assert_eq!(cert.userids[0].userid().value(),
&b"Testy McTestface <testy@example.org>"[..]);
assert_eq!(cert.userids[0].self_signatures2().count(), 1);
assert_eq!(cert.userids[0].self_signatures2().next().unwrap()
.digest_prefix(),
&[ 0xc6, 0x8f ]);
assert_eq!(cert.user_attributes.len(), 0);
assert_eq!(cert.subkeys.len(), 1);
}
}
#[test]
fn basics() {
use crate::types::Timestamp;
for i in 0..2 {
let cert = parse_cert(crate::tests::key("testy.pgp"),
i == 0).unwrap();
assert_eq!(cert.primary.key().creation_time(),
Timestamp::from(1511355130).into());
assert_eq!(format!("{:X}", cert.fingerprint()),
"3E8877C877274692975189F5D03F6F865226FE8B");
assert_eq!(cert.userids.len(), 1, "number of userids");
assert_eq!(cert.userids[0].userid().value(),
&b"Testy McTestface <testy@example.org>"[..]);
assert_eq!(cert.userids[0].self_signatures2().count(), 1);
assert_eq!(cert.userids[0].self_signatures2().next().unwrap()
.digest_prefix(),
&[ 0xc6, 0x8f ]);
assert_eq!(cert.user_attributes.len(), 0);
assert_eq!(cert.subkeys.len(), 1, "number of subkeys");
assert_eq!(cert.subkeys[0].key().creation_time(),
Timestamp::from(1511355130).into());
assert_eq!(cert.subkeys[0].self_signatures2().next().unwrap()
.digest_prefix(),
&[ 0xb7, 0xb9 ]);
let cert = parse_cert(crate::tests::key("testy-no-subkey.pgp"),
i == 0).unwrap();
assert_eq!(cert.primary.key().creation_time(),
Timestamp::from(1511355130).into());
assert_eq!(format!("{:X}", cert.fingerprint()),
"3E8877C877274692975189F5D03F6F865226FE8B");
assert_eq!(cert.user_attributes.len(), 0);
assert_eq!(cert.userids.len(), 1, "number of userids");
assert_eq!(cert.userids[0].userid().value(),
&b"Testy McTestface <testy@example.org>"[..]);
assert_eq!(cert.userids[0].self_signatures2().count(), 1);
assert_eq!(cert.userids[0].self_signatures2().next().unwrap()
.digest_prefix(),
&[ 0xc6, 0x8f ]);
assert_eq!(cert.subkeys.len(), 0, "number of subkeys");
let cert = parse_cert(crate::tests::key("testy.asc"), i == 0).unwrap();
assert_eq!(format!("{:X}", cert.fingerprint()),
"3E8877C877274692975189F5D03F6F865226FE8B");
}
}
#[test]
fn only_a_public_key() {
// Make sure the Cert parser can parse a key that just consists
// of a public key---no signatures, no user ids, nothing.
let cert = Cert::from_bytes(crate::tests::key("testy-only-a-pk.pgp")).unwrap();
assert_eq!(cert.userids.len(), 0);
assert_eq!(cert.user_attributes.len(), 0);
assert_eq!(cert.subkeys.len(), 0);
}
#[test]
fn merge() {
use crate::tests::key;
let cert_base = Cert::from_bytes(key("bannon-base.gpg")).unwrap();
// When we merge it with itself, we should get the exact same
// thing.
let merged = cert_base.clone().merge_public_and_secret(cert_base.clone()).unwrap();
assert_eq!(cert_base, merged);
let cert_add_uid_1
= Cert::from_bytes(key("bannon-add-uid-1-whitehouse.gov.gpg"))
.unwrap();
let cert_add_uid_2
= Cert::from_bytes(key("bannon-add-uid-2-fox.com.gpg"))
.unwrap();
// Duplicate user id, but with a different self-sig.
let cert_add_uid_3
= Cert::from_bytes(key("bannon-add-uid-3-whitehouse.gov-dup.gpg"))
.unwrap();
let cert_all_uids
= Cert::from_bytes(key("bannon-all-uids.gpg"))
.unwrap();
// We have four User ID packets, but one has the same User ID,
// just with a different self-signature.
assert_eq!(cert_all_uids.userids.len(), 3);
// Merge in order.
let merged = cert_base.clone().merge_public_and_secret(cert_add_uid_1.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_2.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_3.clone()).unwrap();
assert_eq!(cert_all_uids, merged);
// Merge in reverse order.
let merged = cert_base.clone()
.merge_public_and_secret(cert_add_uid_3.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_2.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_1.clone()).unwrap();
assert_eq!(cert_all_uids, merged);
let cert_add_subkey_1
= Cert::from_bytes(key("bannon-add-subkey-1.gpg")).unwrap();
let cert_add_subkey_2
= Cert::from_bytes(key("bannon-add-subkey-2.gpg")).unwrap();
let cert_add_subkey_3
= Cert::from_bytes(key("bannon-add-subkey-3.gpg")).unwrap();
let cert_all_subkeys
= Cert::from_bytes(key("bannon-all-subkeys.gpg")).unwrap();
// Merge the first user, then the second, then the third.
let merged = cert_base.clone().merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_2.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_3.clone()).unwrap();
assert_eq!(cert_all_subkeys, merged);
// Merge the third user, then the second, then the first.
let merged = cert_base.clone().merge_public_and_secret(cert_add_subkey_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_2.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap();
assert_eq!(cert_all_subkeys, merged);
// Merge a lot.
let merged = cert_base.clone()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_2.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_2.clone()).unwrap();
assert_eq!(cert_all_subkeys, merged);
let cert_all
= Cert::from_bytes(key("bannon-all-uids-subkeys.gpg"))
.unwrap();
// Merge all the subkeys with all the uids.
let merged = cert_all_subkeys.clone()
.merge_public_and_secret(cert_all_uids.clone()).unwrap();
assert_eq!(cert_all, merged);
// Merge all uids with all the subkeys.
let merged = cert_all_uids.clone()
.merge_public_and_secret(cert_all_subkeys.clone()).unwrap();
assert_eq!(cert_all, merged);
// All the subkeys and the uids in a mixed up order.
let merged = cert_base.clone()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_2.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_1.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_3.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_2.clone()).unwrap()
.merge_public_and_secret(cert_add_subkey_1.clone()).unwrap()
.merge_public_and_secret(cert_add_uid_2.clone()).unwrap();
assert_eq!(cert_all, merged);
// Certifications.
let cert_donald_signs_base
= Cert::from_bytes(key("bannon-the-donald-signs-base.gpg"))
.unwrap();
let cert_donald_signs_all
= Cert::from_bytes(key("bannon-the-donald-signs-all-uids.gpg"))
.unwrap();
let cert_ivanka_signs_base
= Cert::from_bytes(key("bannon-ivanka-signs-base.gpg"))
.unwrap();
let cert_ivanka_signs_all
= Cert::from_bytes(key("bannon-ivanka-signs-all-uids.gpg"))
.unwrap();
assert!(cert_donald_signs_base.userids.len() == 1);
assert!(cert_donald_signs_base.userids[0].self_signatures2().count() == 1);
assert!(cert_base.userids[0].certifications.is_empty());
assert!(cert_donald_signs_base.userids[0].certifications.len() == 1);
let merged = cert_donald_signs_base.clone()
.merge_public_and_secret(cert_ivanka_signs_base.clone()).unwrap();
assert!(merged.userids.len() == 1);
assert!(merged.userids[0].self_signatures2().count() == 1);
assert!(merged.userids[0].certifications.len() == 2);
let merged = cert_donald_signs_base.clone()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap();
assert!(merged.userids.len() == 3);
assert!(merged.userids[0].self_signatures2().count() == 1);
// There should be two certifications from the Donald on the
// first user id.
assert!(merged.userids[0].certifications.len() == 2);
assert!(merged.userids[1].certifications.len() == 1);
assert!(merged.userids[2].certifications.len() == 1);
let merged = cert_donald_signs_base.clone()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_ivanka_signs_base.clone()).unwrap()
.merge_public_and_secret(cert_ivanka_signs_all.clone()).unwrap();
assert!(merged.userids.len() == 3);
assert!(merged.userids[0].self_signatures2().count() == 1);
// There should be two certifications from each of the Donald
// and Ivanka on the first user id, and one each on the rest.
assert!(merged.userids[0].certifications.len() == 4);
assert!(merged.userids[1].certifications.len() == 2);
assert!(merged.userids[2].certifications.len() == 2);
// Same as above, but redundant.
let merged = cert_donald_signs_base.clone()
.merge_public_and_secret(cert_ivanka_signs_base.clone()).unwrap()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_ivanka_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_ivanka_signs_base.clone()).unwrap()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_donald_signs_all.clone()).unwrap()
.merge_public_and_secret(cert_ivanka_signs_all.clone()).unwrap();
assert!(merged.userids.len() == 3);
assert!(merged.userids[0].self_signatures2().count() == 1);
// There should be two certifications from each of the Donald
// and Ivanka on the first user id, and one each on the rest.
assert!(merged.userids[0].certifications.len() == 4);
assert!(merged.userids[1].certifications.len() == 2);
assert!(merged.userids[2].certifications.len() == 2);
}
#[test]
fn out_of_order_self_sigs_test() {
// neal-out-of-order.pgp contains all of the self-signatures,
// but some are out of order. The canonicalization step
// should reorder them.
//
// original order/new order:
//
// 1/ 1. pk
// 2/ 2. user id #1: neal@walfield.org (good)
// 3/ 3. sig over user ID #1
//
// 4/ 4. user id #2: neal@gnupg.org (good)
// 5/ 7. sig over user ID #3
// 6/ 5. sig over user ID #2
//
// 7/ 6. user id #3: neal@g10code.com (bad)
//
// 8/ 8. user ID #4: neal@pep.foundation (bad)
// 9/11. sig over user ID #5
//
// 10/10. user id #5: neal@pep-project.org (bad)
// 11/ 9. sig over user ID #4
//
// 12/12. user ID #6: neal@sequoia-pgp.org (good)
// 13/13. sig over user ID #6
//
// ----------------------------------------------
//
// 14/14. signing subkey #1: 7223B56678E02528 (good)
// 15/15. sig over subkey #1
// 16/16. sig over subkey #1
//
// 17/17. encryption subkey #2: C2B819056C652598 (good)
// 18/18. sig over subkey #2
// 19/21. sig over subkey #3
// 20/22. sig over subkey #3
//
// 21/20. auth subkey #3: A3506AFB820ABD08 (bad)
// 22/19. sig over subkey #2
let cert = Cert::from_bytes(crate::tests::key("neal-sigs-out-of-order.pgp"))
.unwrap();
let mut userids = cert.userids()
.map(|u| String::from_utf8_lossy(u.value()).into_owned())
.collect::<Vec<String>>();
userids.sort();
assert_eq!(userids,
&[ "Neal H. Walfield <neal@g10code.com>",
"Neal H. Walfield <neal@gnupg.org>",
"Neal H. Walfield <neal@pep-project.org>",
"Neal H. Walfield <neal@pep.foundation>",
"Neal H. Walfield <neal@sequoia-pgp.org>",
"Neal H. Walfield <neal@walfield.org>",
]);
let mut subkeys = cert.subkeys()
.map(|sk| Some(sk.key().keyid()))
.collect::<Vec<Option<KeyID>>>();
subkeys.sort();
assert_eq!(subkeys,
&[ "7223B56678E02528".parse().ok(),
"A3506AFB820ABD08".parse().ok(),
"C2B819056C652598".parse().ok(),
]);
// DKG's key has all of the self-signatures moved to the last
// subkey; all user ids/user attributes/subkeys have nothing.
let cert =
Cert::from_bytes(crate::tests::key("dkg-sigs-out-of-order.pgp")).unwrap();
let mut userids = cert.userids()
.map(|u| String::from_utf8_lossy(u.value()).into_owned())
.collect::<Vec<String>>();
userids.sort();
assert_eq!(userids,
&[ "Daniel Kahn Gillmor <dkg-debian.org@fifthhorseman.net>",
"Daniel Kahn Gillmor <dkg@aclu.org>",
"Daniel Kahn Gillmor <dkg@astro.columbia.edu>",
"Daniel Kahn Gillmor <dkg@debian.org>",
"Daniel Kahn Gillmor <dkg@fifthhorseman.net>",
"Daniel Kahn Gillmor <dkg@openflows.com>",
]);
assert_eq!(cert.user_attributes.len(), 1);
let mut subkeys = cert.subkeys()
.map(|sk| Some(sk.key().keyid()))
.collect::<Vec<Option<KeyID>>>();
subkeys.sort();
assert_eq!(subkeys,
&[ "1075 8EBD BD7C FAB5".parse().ok(),
"1258 68EA 4BFA 08E4".parse().ok(),
"1498 ADC6 C192 3237".parse().ok(),
"24EC FF5A FF68 370A".parse().ok(),
"3714 7292 14D5 DA70".parse().ok(),
"3B7A A7F0 14E6 9B5A".parse().ok(),
"5B58 DCF9 C341 6611".parse().ok(),
"A524 01B1 1BFD FA5C".parse().ok(),
"A70A 96E1 439E A852".parse().ok(),
"C61B D3EC 2148 4CFF".parse().ok(),
"CAEF A883 2167 5333".parse().ok(),
"DC10 4C4E 0CA7 57FB".parse().ok(),
"E3A3 2229 449B 0350".parse().ok(),
]);
}
/// Tests how we deal with v3 keys, certs, and certifications.
#[test]
fn v3_packets() {
// v3 primary keys are not supported.
let cert = Cert::from_bytes(crate::tests::key("john-v3.pgp"));
assert_match!(Error::UnsupportedCert2(..)
= cert.err().unwrap().downcast::<Error>().unwrap());
let cert = Cert::from_bytes(crate::tests::key("john-v3-secret.pgp"));
assert_match!(Error::UnsupportedCert2(..)
= cert.err().unwrap().downcast::<Error>().unwrap());
// Lutz's key is a v3 key.
let cert = Cert::from_bytes(crate::tests::key("lutz.gpg"));
assert_match!(Error::UnsupportedCert2(..)
= cert.err().unwrap().downcast::<Error>().unwrap());
// v3 certifications are not supported
// dkg's includes some v3 signatures.
let cert = Cert::from_bytes(crate::tests::key("dkg.gpg"));
assert!(cert.is_ok(), "dkg.gpg: {:?}", cert);
}
#[test]
fn keyring_with_v3_public_keys() {
let dkg = crate::tests::key("dkg.gpg");
let lutz = crate::tests::key("lutz.gpg");
let cert = Cert::from_bytes(dkg);
assert!(cert.is_ok(), "dkg.gpg: {:?}", cert);
// Keyring with two good keys
let mut combined = vec![];
combined.extend_from_slice(dkg);
combined.extend_from_slice(dkg);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ true, true ]);
// Keyring with a good key, and a bad key.
let mut combined = vec![];
combined.extend_from_slice(dkg);
combined.extend_from_slice(lutz);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ true, false ]);
// Keyring with a bad key, and a good key.
let mut combined = vec![];
combined.extend_from_slice(lutz);
combined.extend_from_slice(dkg);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ false, true ]);
// Keyring with a good key, a bad key, and a good key.
let mut combined = vec![];
combined.extend_from_slice(dkg);
combined.extend_from_slice(lutz);
combined.extend_from_slice(dkg);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ true, false, true ]);
// Keyring with a good key, a bad key, and a bad key.
let mut combined = vec![];
combined.extend_from_slice(dkg);
combined.extend_from_slice(lutz);
combined.extend_from_slice(lutz);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ true, false, false ]);
// Keyring with a good key, a bad key, a bad key, and a good key.
let mut combined = vec![];
combined.extend_from_slice(dkg);
combined.extend_from_slice(lutz);
combined.extend_from_slice(lutz);
combined.extend_from_slice(dkg);
let certs = CertParser::from_bytes(&combined[..]).unwrap()
.map(|certr| certr.is_ok())
.collect::<Vec<bool>>();
assert_eq!(certs, &[ true, false, false, true ]);
}
#[test]
fn merge_with_incomplete_update() {
let p = &P::new();
let cert = Cert::from_bytes(crate::tests::key("about-to-expire.expired.pgp"))
.unwrap();
cert.primary_key().with_policy(p, None).unwrap().alive().unwrap_err();
let update =
Cert::from_bytes(crate::tests::key("about-to-expire.update-no-uid.pgp"))
.unwrap();
let cert = cert.merge_public_and_secret(update).unwrap();
cert.primary_key().with_policy(p, None).unwrap().alive().unwrap();
}
#[test]
fn packet_pile_roundtrip() {
// Make sure Cert::try_from(Cert::to_packet_pile(cert))
// does a clean round trip.
let cert = Cert::from_bytes(crate::tests::key("already-revoked.pgp")).unwrap();
let cert2
= Cert::try_from(cert.clone().into_packet_pile()).unwrap();
assert_eq!(cert, cert2);
let cert = Cert::from_bytes(
crate::tests::key("already-revoked-direct-revocation.pgp")).unwrap();
let cert2
= Cert::try_from(cert.clone().into_packet_pile()).unwrap();
assert_eq!(cert, cert2);
let cert = Cert::from_bytes(
crate::tests::key("already-revoked-userid-revocation.pgp")).unwrap();
let cert2
= Cert::try_from(cert.clone().into_packet_pile()).unwrap();
assert_eq!(cert, cert2);
let cert = Cert::from_bytes(
crate::tests::key("already-revoked-subkey-revocation.pgp")).unwrap();
let cert2
= Cert::try_from(cert.clone().into_packet_pile()).unwrap();
assert_eq!(cert, cert2);
}
#[test]
fn insert_packets_add_sig() {
use crate::armor;
use crate::packet::Tag;
// Merge the revocation certificate into the Cert and make sure
// it shows up.
let cert = Cert::from_bytes(crate::tests::key("already-revoked.pgp")).unwrap();
let rev = crate::tests::key("already-revoked.rev");
let rev = PacketPile::from_reader(armor::Reader::from_reader(rev, None))
.unwrap();
let rev : Vec<Packet> = rev.into_children().collect();
assert_eq!(rev.len(), 1);
assert_eq!(rev[0].tag(), Tag::Signature);
let packets_pre_merge = cert.clone().into_packets2().count();
let cert = cert.insert_packets(rev).unwrap();
let packets_post_merge = cert.clone().into_packets2().count();
assert_eq!(packets_post_merge, packets_pre_merge + 1);
}
#[test]
fn insert_packets_update_sig() -> Result<()> {
use std::time::Duration;
use crate::packet::signature::subpacket::Subpacket;
use crate::packet::signature::subpacket::SubpacketValue;
let (cert, _) = CertBuilder::general_purpose(None, Some("Test"))
.generate()?;
let packets = cert.clone().into_packets2().count();
// Merge a signature with different unhashed subpacket areas.
// Make sure only the last variant is merged.
let sig = cert.primary_key().self_signatures().next()
.expect("binding signature");
let a = Subpacket::new(
SubpacketValue::SignatureExpirationTime(
Duration::new(1, 0).try_into()?),
false)?;
let b = Subpacket::new(
SubpacketValue::SignatureExpirationTime(
Duration::new(2, 0).try_into()?),
false)?;
let mut sig_a = sig.clone();
sig_a.unhashed_area_mut().add(a)?;
let mut sig_b = sig.clone();
sig_b.unhashed_area_mut().add(b)?;
// Insert sig_a, make sure it (and it alone) appears.
let cert2 = cert.clone().insert_packets(sig_a.clone())?;
let mut sigs = cert2.primary_key().self_signatures();
assert_eq!(sigs.next(), Some(&sig_a));
assert!(sigs.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert sig_b, make sure it (and it alone) appears.
let cert2 = cert.clone().insert_packets(sig_b.clone())?;
let mut sigs = cert2.primary_key().self_signatures();
assert_eq!(sigs.next(), Some(&sig_b));
assert!(sigs.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert sig_a and sig_b. Make sure sig_b (and it alone)
// appears.
let cert2 = cert.clone().insert_packets(
vec![ sig_a.clone(), sig_b.clone() ])?;
let mut sigs = cert2.primary_key().self_signatures();
assert_eq!(sigs.next(), Some(&sig_b));
assert!(sigs.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert sig_b and sig_a. Make sure sig_a (and it alone)
// appears.
let cert2 = cert.clone().insert_packets(
vec![ sig_b.clone(), sig_a.clone() ])?;
let mut sigs = cert2.primary_key().self_signatures();
assert_eq!(sigs.next(), Some(&sig_a));
assert!(sigs.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets);
Ok(())
}
#[test]
fn insert_packets_add_userid() -> Result<()> {
let (cert, _) = CertBuilder::general_purpose(None, Some("a"))
.generate()?;
let packets = cert.clone().into_packets2().count();
let uid_a = UserID::from("a");
let uid_b = UserID::from("b");
// Insert a, make sure it appears once.
let cert2 = cert.clone().insert_packets(uid_a.clone())?;
let mut uids = cert2.userids();
assert_eq!(uids.next().unwrap().userid(), &uid_a);
assert!(uids.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert b, make sure it also appears.
let cert2 = cert.clone().insert_packets(uid_b.clone())?;
let mut uids: Vec<UserID>
= cert2.userids().map(|ua| ua.userid().clone()).collect();
uids.sort();
let mut uids = uids.iter();
assert_eq!(uids.next().unwrap(), &uid_a);
assert_eq!(uids.next().unwrap(), &uid_b);
assert!(uids.next().is_none());
assert_eq!(cert2.clone().into_packets2().count(), packets + 1);
Ok(())
}
#[test]
fn insert_packets_update_key() -> Result<()> {
use crate::crypto::Password;
let (cert, _) = CertBuilder::new().generate()?;
let packets = cert.clone().into_packets2().count();
assert_eq!(cert.keys().count(), 1);
let key = cert.keys().secret().next().unwrap().key();
assert!(key.has_secret());
let key_a = key.clone().encrypt_secret(&Password::from("a"))?
.role_into_primary();
let key_b = key.clone().encrypt_secret(&Password::from("b"))?
.role_into_primary();
// Insert variant a.
let cert2 = cert.clone().insert_packets(key_a.clone())?;
assert_eq!(cert2.primary_key().key().parts_as_secret().unwrap(),
&key_a);
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert variant b.
let cert2 = cert.clone().insert_packets(key_b.clone())?;
assert_eq!(cert2.primary_key().key().parts_as_secret().unwrap(),
&key_b);
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert variant a then b. We should keep b.
let cert2 = cert.clone().insert_packets(
vec![ key_a.clone(), key_b.clone() ])?;
assert_eq!(cert2.primary_key().key().parts_as_secret().unwrap(),
&key_b);
assert_eq!(cert2.clone().into_packets2().count(), packets);
// Insert variant b then a. We should keep a.
let cert2 = cert.clone().insert_packets(
vec![ key_b.clone(), key_a.clone() ])?;
assert_eq!(cert2.primary_key().key().parts_as_secret().unwrap(),
&key_a);
assert_eq!(cert2.clone().into_packets2().count(), packets);
Ok(())
}
#[test]
fn set_validity_period() {
let p = &P::new();
let (cert, _) = CertBuilder::general_purpose(None, Some("Test"))
.generate().unwrap();
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
+ 1 // userid
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
);
let cert = check_set_validity_period(p, cert);
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
+ 2 // two new direct key signatures
+ 1 // userid
+ 1 // binding signature
+ 2 // two new binding signatures
+ 1 // subkey
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
);
}
#[test]
fn set_validity_period_two_uids() -> Result<()> {
use quickcheck::{Arbitrary, Gen};
let mut gen = Gen::new(16);
let p = &P::new();
let userid1 = UserID::arbitrary(&mut gen);
// The two user ids need to be unique.
let mut userid2 = UserID::arbitrary(&mut gen);
while userid1 == userid2 {
userid2 = UserID::arbitrary(&mut gen);
}
let (cert, _) = CertBuilder::general_purpose(
None, Some(userid1))
.add_userid(userid2)
.generate()?;
let primary_uid = cert.with_policy(p, None)?.primary_userid()?.userid().clone();
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
+ 1 // userid
+ 1 // binding signature
+ 1 // userid
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
);
let cert = check_set_validity_period(p, cert);
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
+ 2 // two new direct key signatures
+ 1 // userid
+ 1 // binding signature
+ 2 // two new binding signatures
+ 1 // userid
+ 1 // binding signature
+ 2 // two new binding signatures
+ 1 // subkey
+ 1 // binding signature
+ 1 // subkey
+ 1 // binding signature
);
assert_eq!(&primary_uid, cert.with_policy(p, None)?.primary_userid()?.userid());
Ok(())
}
#[test]
fn set_validity_period_uidless() {
use crate::types::Duration;
let p = &P::new();
let (cert, _) = CertBuilder::new()
.set_validity_period(None) // Just to assert this works.
.set_validity_period(Some(Duration::weeks(52).unwrap().try_into().unwrap()))
.generate().unwrap();
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
);
let cert = check_set_validity_period(p, cert);
assert_eq!(cert.clone().into_packet_pile().children().count(),
1 // primary key
+ 1 // direct key signature
+ 2 // two new direct key signatures
);
}
fn check_set_validity_period(policy: &dyn Policy, cert: Cert) -> Cert {
let now = cert.primary_key().creation_time();
let a_sec = time::Duration::new(1, 0);
let expiry_orig = cert.primary_key().with_policy(policy, now).unwrap()
.key_validity_period()
.expect("Keys expire by default.");
let mut keypair = cert.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap();
// Clear the expiration.
let as_of1 = now + time::Duration::new(10, 0);
let cert = cert.set_validity_period_as_of(
policy, &mut keypair, None, as_of1).unwrap();
{
// If t < as_of1, we should get the original expiry.
assert_eq!(cert.primary_key().with_policy(policy, now).unwrap()
.key_validity_period(),
Some(expiry_orig));
assert_eq!(cert.primary_key().with_policy(policy, as_of1 - a_sec).unwrap()
.key_validity_period(),
Some(expiry_orig));
// If t >= as_of1, we should get the new expiry.
assert_eq!(cert.primary_key().with_policy(policy, as_of1).unwrap()
.key_validity_period(),
None);
}
// Shorten the expiry. (The default expiration should be at
// least a few weeks, so removing an hour should still keep us
// over 0.)
let expiry_new = expiry_orig - time::Duration::new(60 * 60, 0);
assert!(expiry_new > time::Duration::new(0, 0));
let as_of2 = as_of1 + time::Duration::new(10, 0);
let cert = cert.set_validity_period_as_of(
policy, &mut keypair, Some(expiry_new), as_of2).unwrap();
{
// If t < as_of1, we should get the original expiry.
assert_eq!(cert.primary_key().with_policy(policy, now).unwrap()
.key_validity_period(),
Some(expiry_orig));
assert_eq!(cert.primary_key().with_policy(policy, as_of1 - a_sec).unwrap()
.key_validity_period(),
Some(expiry_orig));
// If as_of1 <= t < as_of2, we should get the second
// expiry (None).
assert_eq!(cert.primary_key().with_policy(policy, as_of1).unwrap()
.key_validity_period(),
None);
assert_eq!(cert.primary_key().with_policy(policy, as_of2 - a_sec).unwrap()
.key_validity_period(),
None);
// If t <= as_of2, we should get the new expiry.
assert_eq!(cert.primary_key().with_policy(policy, as_of2).unwrap()
.key_validity_period(),
Some(expiry_new));
}
cert
}
#[test]
fn direct_key_sig() {
use crate::types::SignatureType;
// XXX: testing sequoia against itself isn't optimal, but I couldn't
// find a tool to generate direct key signatures :-(
let p = &P::new();
let (cert1, _) = CertBuilder::new().generate().unwrap();
let mut buf = Vec::default();
cert1.serialize(&mut buf).unwrap();
let cert2 = Cert::from_bytes(&buf).unwrap();
assert_eq!(
cert2.primary_key().with_policy(p, None).unwrap()
.direct_key_signature().unwrap().typ(),
SignatureType::DirectKey);
assert_eq!(cert2.userids().count(), 0);
}
#[test]
fn revoked() {
fn check(cert: &Cert, direct_revoked: bool,
userid_revoked: bool, subkey_revoked: bool) {
let p = &P::new();
// If we have a user id---even if it is revoked---we have
// a primary key signature.
let typ = cert.primary_key().with_policy(p, None).unwrap()
.binding_signature().typ();
assert_eq!(typ, SignatureType::PositiveCertification,
"{:#?}", cert);
let revoked = cert.revocation_status(p, None);
if direct_revoked {
assert_match!(RevocationStatus::Revoked(_) = revoked,
"{:#?}", cert);
} else {
assert_eq!(revoked, RevocationStatus::NotAsFarAsWeKnow,
"{:#?}", cert);
}
for userid in cert.userids().with_policy(p, None) {
let typ = userid.binding_signature().typ();
assert_eq!(typ, SignatureType::PositiveCertification,
"{:#?}", cert);
let revoked = userid.revocation_status();
if userid_revoked {
assert_match!(RevocationStatus::Revoked(_) = revoked);
} else {
assert_eq!(RevocationStatus::NotAsFarAsWeKnow, revoked,
"{:#?}", cert);
}
}
for subkey in cert.subkeys() {
let typ = subkey.binding_signature(p, None).unwrap().typ();
assert_eq!(typ, SignatureType::SubkeyBinding,
"{:#?}", cert);
let revoked = subkey.revocation_status(p, None);
if subkey_revoked {
assert_match!(RevocationStatus::Revoked(_) = revoked);
} else {
assert_eq!(RevocationStatus::NotAsFarAsWeKnow, revoked,
"{:#?}", cert);
}
}
}
let cert = Cert::from_bytes(crate::tests::key("already-revoked.pgp")).unwrap();
check(&cert, false, false, false);
let d = Cert::from_bytes(
crate::tests::key("already-revoked-direct-revocation.pgp")).unwrap();
check(&d, true, false, false);
check(&cert.clone().merge_public_and_secret(d.clone()).unwrap(), true, false, false);
// Make sure the merge order does not matter.
check(&d.clone().merge_public_and_secret(cert.clone()).unwrap(), true, false, false);
let u = Cert::from_bytes(
crate::tests::key("already-revoked-userid-revocation.pgp")).unwrap();
check(&u, false, true, false);
check(&cert.clone().merge_public_and_secret(u.clone()).unwrap(), false, true, false);
check(&u.clone().merge_public_and_secret(cert.clone()).unwrap(), false, true, false);
let k = Cert::from_bytes(
crate::tests::key("already-revoked-subkey-revocation.pgp")).unwrap();
check(&k, false, false, true);
check(&cert.clone().merge_public_and_secret(k.clone()).unwrap(), false, false, true);
check(&k.clone().merge_public_and_secret(cert.clone()).unwrap(), false, false, true);
// direct and user id revocation.
check(&d.clone().merge_public_and_secret(u.clone()).unwrap(), true, true, false);
check(&u.clone().merge_public_and_secret(d.clone()).unwrap(), true, true, false);
// direct and subkey revocation.
check(&d.clone().merge_public_and_secret(k.clone()).unwrap(), true, false, true);
check(&k.clone().merge_public_and_secret(d.clone()).unwrap(), true, false, true);
// user id and subkey revocation.
check(&u.clone().merge_public_and_secret(k.clone()).unwrap(), false, true, true);
check(&k.clone().merge_public_and_secret(u.clone()).unwrap(), false, true, true);
// direct, user id and subkey revocation.
check(&d.clone().merge_public_and_secret(u.clone().merge_public_and_secret(k.clone()).unwrap()).unwrap(),
true, true, true);
check(&d.clone().merge_public_and_secret(k.clone().merge_public_and_secret(u.clone()).unwrap()).unwrap(),
true, true, true);
}
#[test]
fn revoke() {
let p = &P::new();
let (cert, _) = CertBuilder::general_purpose(None, Some("Test"))
.generate().unwrap();
assert_eq!(RevocationStatus::NotAsFarAsWeKnow,
cert.revocation_status(p, None));
let mut keypair = cert.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap();
let sig = CertRevocationBuilder::new()
.set_reason_for_revocation(
ReasonForRevocation::KeyCompromised,
b"It was the maid :/").unwrap()
.build(&mut keypair, &cert, None)
.unwrap();
assert_eq!(sig.typ(), SignatureType::KeyRevocation);
assert_eq!(sig.issuers().collect::<Vec<_>>(),
vec![ &cert.keyid() ]);
assert_eq!(sig.issuer_fingerprints().collect::<Vec<_>>(),
vec![ &cert.fingerprint() ]);
let cert = cert.insert_packets(sig).unwrap();
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, None));
// Have other revoke cert.
let (other, _) = CertBuilder::general_purpose(None, Some("Test 2"))
.generate().unwrap();
let mut keypair = other.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap();
let sig = CertRevocationBuilder::new()
.set_reason_for_revocation(
ReasonForRevocation::KeyCompromised,
b"It was the maid :/").unwrap()
.build(&mut keypair, &cert, None)
.unwrap();
assert_eq!(sig.typ(), SignatureType::KeyRevocation);
assert_eq!(sig.issuers().collect::<Vec<_>>(),
vec![ &other.keyid() ]);
assert_eq!(sig.issuer_fingerprints().collect::<Vec<_>>(),
vec![ &other.fingerprint() ]);
}
#[test]
fn revoke_subkey() {
let p = &P::new();
let (cert, _) = CertBuilder::new()
.add_transport_encryption_subkey()
.generate().unwrap();
let sig = {
let subkey = cert.subkeys().next().unwrap();
assert_eq!(RevocationStatus::NotAsFarAsWeKnow,
subkey.revocation_status(p, None));
let mut keypair = cert.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap();
SubkeyRevocationBuilder::new()
.set_reason_for_revocation(
ReasonForRevocation::UIDRetired,
b"It was the maid :/").unwrap()
.build(&mut keypair, &cert, subkey.key(), None)
.unwrap()
};
assert_eq!(sig.typ(), SignatureType::SubkeyRevocation);
let cert = cert.insert_packets(sig).unwrap();
assert_eq!(RevocationStatus::NotAsFarAsWeKnow,
cert.revocation_status(p, None));
let subkey = cert.subkeys().next().unwrap();
assert_match!(RevocationStatus::Revoked(_)
= subkey.revocation_status(p, None));
}
#[test]
fn revoke_uid() {
let p = &P::new();
let (cert, _) = CertBuilder::new()
.add_userid("Test1")
.add_userid("Test2")
.generate().unwrap();
let sig = {
let uid = cert.userids().with_policy(p, None).nth(1).unwrap();
assert_eq!(RevocationStatus::NotAsFarAsWeKnow, uid.revocation_status());
let mut keypair = cert.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap();
UserIDRevocationBuilder::new()
.set_reason_for_revocation(
ReasonForRevocation::UIDRetired,
b"It was the maid :/").unwrap()
.build(&mut keypair, &cert, uid.userid(), None)
.unwrap()
};
assert_eq!(sig.typ(), SignatureType::CertificationRevocation);
let cert = cert.insert_packets(sig).unwrap();
assert_eq!(RevocationStatus::NotAsFarAsWeKnow,
cert.revocation_status(p, None));
let uid = cert.userids().with_policy(p, None).nth(1).unwrap();
assert_match!(RevocationStatus::Revoked(_) = uid.revocation_status());
}
#[test]
fn key_revoked() {
use crate::types::Features;
use crate::packet::key::Key4;
use rand::{thread_rng, Rng, distributions::Open01};
let p = &P::new();
/*
* t1: 1st binding sig ctime
* t2: soft rev sig ctime
* t3: 2nd binding sig ctime
* t4: hard rev sig ctime
*
* [0,t1): invalid, but not revoked
* [t1,t2): valid (not revocations)
* [t2,t3): revoked (soft revocation)
* [t3,t4): valid again (new self sig)
* [t4,inf): hard revocation (hard revocation)
*
* Once the hard revocation is merged, then the Cert is
* considered revoked at all times.
*/
let t1 = time::UNIX_EPOCH + time::Duration::new(946681200, 0); // 2000-1-1
let t2 = time::UNIX_EPOCH + time::Duration::new(978303600, 0); // 2001-1-1
let t3 = time::UNIX_EPOCH + time::Duration::new(1009839600, 0); // 2002-1-1
let t4 = time::UNIX_EPOCH + time::Duration::new(1041375600, 0); // 2003-1-1
let mut key: key::SecretKey
= Key4::generate_ecc(true, Curve::Ed25519).unwrap().into();
key.set_creation_time(t1).unwrap();
let mut pair = key.clone().into_keypair().unwrap();
let (bind1, rev1, bind2, rev2) = {
let bind1 = signature::SignatureBuilder::new(SignatureType::DirectKey)
.set_features(Features::sequoia()).unwrap()
.set_key_flags(KeyFlags::empty()).unwrap()
.set_signature_creation_time(t1).unwrap()
.set_key_validity_period(Some(time::Duration::new(10 * 52 * 7 * 24 * 60 * 60, 0))).unwrap()
.set_preferred_hash_algorithms(vec![HashAlgorithm::SHA512]).unwrap()
.sign_direct_key(&mut pair, key.parts_as_public()).unwrap();
let rev1 = signature::SignatureBuilder::new(SignatureType::KeyRevocation)
.set_signature_creation_time(t2).unwrap()
.set_reason_for_revocation(ReasonForRevocation::KeySuperseded,
&b""[..]).unwrap()
.sign_direct_key(&mut pair, key.parts_as_public()).unwrap();
let bind2 = signature::SignatureBuilder::new(SignatureType::DirectKey)
.set_features(Features::sequoia()).unwrap()
.set_key_flags(KeyFlags::empty()).unwrap()
.set_signature_creation_time(t3).unwrap()
.set_key_validity_period(Some(time::Duration::new(10 * 52 * 7 * 24 * 60 * 60, 0))).unwrap()
.set_preferred_hash_algorithms(vec![HashAlgorithm::SHA512]).unwrap()
.sign_direct_key(&mut pair, key.parts_as_public()).unwrap();
let rev2 = signature::SignatureBuilder::new(SignatureType::KeyRevocation)
.set_signature_creation_time(t4).unwrap()
.set_reason_for_revocation(ReasonForRevocation::KeyCompromised,
&b""[..]).unwrap()
.sign_direct_key(&mut pair, key.parts_as_public()).unwrap();
(bind1, rev1, bind2, rev2)
};
let pk : key::PublicKey = key.into();
let cert = Cert::try_from(vec![
pk.into(),
bind1.into(),
bind2.into(),
rev1.into()
]).unwrap();
let f1: f32 = thread_rng().sample(Open01);
let f2: f32 = thread_rng().sample(Open01);
let f3: f32 = thread_rng().sample(Open01);
let f4: f32 = thread_rng().sample(Open01);
let te1 = t1 - time::Duration::new((60. * 60. * 24. * 300.0 * f1) as u64, 0);
let t12 = t1 + time::Duration::new((60. * 60. * 24. * 300.0 * f2) as u64, 0);
let t23 = t2 + time::Duration::new((60. * 60. * 24. * 300.0 * f3) as u64, 0);
let t34 = t3 + time::Duration::new((60. * 60. * 24. * 300.0 * f4) as u64, 0);
assert_eq!(cert.revocation_status(p, te1), RevocationStatus::NotAsFarAsWeKnow);
assert_eq!(cert.revocation_status(p, t12), RevocationStatus::NotAsFarAsWeKnow);
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, t23));
assert_eq!(cert.revocation_status(p, t34), RevocationStatus::NotAsFarAsWeKnow);
// Merge in the hard revocation.
let cert = cert.insert_packets(rev2).unwrap();
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, te1));
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, t12));
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, t23));
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, t34));
assert_match!(RevocationStatus::Revoked(_) = cert.revocation_status(p, t4));
assert_match!(RevocationStatus::Revoked(_)
= cert.revocation_status(p, crate::now()));
}
#[test]
fn key_revoked2() {
tracer!(true, "cert_revoked2", 0);
let p = &P::new();
fn cert_revoked<T>(p: &dyn Policy, cert: &Cert, t: T) -> bool
where T: Into<Option<time::SystemTime>>
{
!matches!(
cert.revocation_status(p, t),
RevocationStatus::NotAsFarAsWeKnow
)
}
fn subkey_revoked<T>(p: &dyn Policy, cert: &Cert, t: T) -> bool
where T: Into<Option<time::SystemTime>>
{
!matches!(
cert.subkeys().next().unwrap().bundle().revocation_status(p, t),
RevocationStatus::NotAsFarAsWeKnow
)
}
let tests : [(&str, Box<dyn Fn(&dyn Policy, &Cert, _) -> bool>); 2] = [
("cert", Box::new(cert_revoked)),
("subkey", Box::new(subkey_revoked)),
];
for (f, revoked) in tests.iter()
{
t!("Checking {} revocation", f);
t!("Normal key");
let cert = Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-0-public.pgp", f))).unwrap();
let selfsig0 = cert.primary_key().with_policy(p, None).unwrap()
.binding_signature().signature_creation_time().unwrap();
assert!(!revoked(p, &cert, Some(selfsig0)));
assert!(!revoked(p, &cert, None));
t!("Soft revocation");
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-1-soft-revocation.pgp", f))
).unwrap()).unwrap();
// A soft revocation made after `t` is ignored when
// determining whether the key is revoked at time `t`.
assert!(!revoked(p, &cert, Some(selfsig0)));
assert!(revoked(p, &cert, None));
t!("New self signature");
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-2-new-self-sig.pgp", f))
).unwrap()).unwrap();
assert!(!revoked(p, &cert, Some(selfsig0)));
// Newer self-sig override older soft revocations.
assert!(!revoked(p, &cert, None));
t!("Hard revocation");
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-3-hard-revocation.pgp", f))
).unwrap()).unwrap();
// Hard revocations trump all.
assert!(revoked(p, &cert, Some(selfsig0)));
assert!(revoked(p, &cert, None));
t!("New self signature");
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-4-new-self-sig.pgp", f))
).unwrap()).unwrap();
assert!(revoked(p, &cert, Some(selfsig0)));
assert!(revoked(p, &cert, None));
}
}
#[test]
fn userid_revoked2() {
fn check_userids<T>(p: &dyn Policy, cert: &Cert, revoked: bool, t: T)
where T: Into<Option<time::SystemTime>>, T: Copy
{
assert_match!(RevocationStatus::NotAsFarAsWeKnow
= cert.revocation_status(p, None));
let mut slim_shady = false;
let mut eminem = false;
for b in cert.userids().with_policy(p, t) {
if b.userid().value() == b"Slim Shady" {
assert!(!slim_shady);
slim_shady = true;
if revoked {
assert_match!(RevocationStatus::Revoked(_)
= b.revocation_status());
} else {
assert_match!(RevocationStatus::NotAsFarAsWeKnow
= b.revocation_status());
}
} else {
assert!(!eminem);
eminem = true;
assert_match!(RevocationStatus::NotAsFarAsWeKnow
= b.revocation_status());
}
}
assert!(slim_shady);
assert!(eminem);
}
fn check_uas<T>(p: &dyn Policy, cert: &Cert, revoked: bool, t: T)
where T: Into<Option<time::SystemTime>>, T: Copy
{
assert_match!(RevocationStatus::NotAsFarAsWeKnow
= cert.revocation_status(p, None));
assert_eq!(cert.user_attributes().count(), 1);
let ua = cert.user_attributes().next().unwrap();
if revoked {
assert_match!(RevocationStatus::Revoked(_)
= ua.revocation_status(p, t));
} else {
assert_match!(RevocationStatus::NotAsFarAsWeKnow
= ua.revocation_status(p, t));
}
}
tracer!(true, "userid_revoked2", 0);
let p = &P::new();
let tests : [(&str, Box<dyn Fn(&dyn Policy, &Cert, bool, _)>); 2] = [
("userid", Box::new(check_userids)),
("user-attribute", Box::new(check_uas)),
];
for (f, check) in tests.iter()
{
t!("Checking {} revocation", f);
t!("Normal key");
let cert = Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-0-public.pgp", f))).unwrap();
let now = crate::now();
let selfsig0
= cert.userids().with_policy(p, now).map(|b| {
b.binding_signature().signature_creation_time().unwrap()
})
.max().unwrap();
check(p, &cert, false, selfsig0);
check(p, &cert, false, now);
// A soft-revocation.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-1-soft-revocation.pgp", f))
).unwrap()).unwrap();
check(p, &cert, false, selfsig0);
check(p, &cert, true, now);
// A new self signature. This should override the soft-revocation.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-2-new-self-sig.pgp", f))
).unwrap()).unwrap();
check(p, &cert, false, selfsig0);
check(p, &cert, false, now);
// A hard revocation. Unlike for Certs, this does NOT trumps
// everything.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-3-hard-revocation.pgp", f))
).unwrap()).unwrap();
check(p, &cert, false, selfsig0);
check(p, &cert, true, now);
// A newer self signature.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key(
&format!("really-revoked-{}-4-new-self-sig.pgp", f))
).unwrap()).unwrap();
check(p, &cert, false, selfsig0);
check(p, &cert, false, now);
}
}
#[test]
fn unrevoked() {
let p = &P::new();
let cert =
Cert::from_bytes(crate::tests::key("un-revoked-userid.pgp")).unwrap();
for uid in cert.userids().with_policy(p, None) {
assert_eq!(uid.revocation_status(), RevocationStatus::NotAsFarAsWeKnow);
}
}
#[test]
fn is_tsk() {
let cert = Cert::from_bytes(
crate::tests::key("already-revoked.pgp")).unwrap();
assert!(! cert.is_tsk());
let cert = Cert::from_bytes(
crate::tests::key("already-revoked-private.pgp")).unwrap();
assert!(cert.is_tsk());
}
#[test]
fn export_only_exports_public_key() {
let cert = Cert::from_bytes(
crate::tests::key("testy-new-private.pgp")).unwrap();
assert!(cert.is_tsk());
let mut v = Vec::new();
cert.serialize(&mut v).unwrap();
let cert = Cert::from_bytes(&v).unwrap();
assert!(! cert.is_tsk());
}
// Make sure that when merging two Certs, the primary key and
// subkeys with and without a private key are merged.
#[test]
fn public_private_merge() {
let (tsk, _) = CertBuilder::general_purpose(None, Some("foo@example.com"))
.generate().unwrap();
// tsk is now a cert, but it still has its private bits.
assert!(tsk.primary.key().has_secret());
assert!(tsk.is_tsk());
let subkey_count = tsk.subkeys().len();
assert!(subkey_count > 0);
assert!(tsk.subkeys().all(|k| k.key().has_secret()));
// This will write out the tsk as a cert, i.e., without any
// private bits.
let mut cert_bytes = Vec::new();
tsk.serialize(&mut cert_bytes).unwrap();
// Reading it back in, the private bits have been stripped.
let cert = Cert::from_bytes(&cert_bytes[..]).unwrap();
assert!(! cert.primary.key().has_secret());
assert!(!cert.is_tsk());
assert!(cert.subkeys().all(|k| ! k.key().has_secret()));
let merge1 = cert.clone().merge_public_and_secret(tsk.clone()).unwrap();
assert!(merge1.is_tsk());
assert!(merge1.primary.key().has_secret());
assert_eq!(merge1.subkeys().len(), subkey_count);
assert!(merge1.subkeys().all(|k| k.key().has_secret()));
let merge2 = tsk.clone().merge_public_and_secret(cert.clone()).unwrap();
assert!(merge2.is_tsk());
assert!(merge2.primary.key().has_secret());
assert_eq!(merge2.subkeys().len(), subkey_count);
assert!(merge2.subkeys().all(|k| k.key().has_secret()));
}
#[test]
fn issue_120() {
let cert = "
-----BEGIN PGP ARMORED FILE-----
xcBNBFoVcvoBCACykTKOJddF8SSUAfCDHk86cNTaYnjCoy72rMgWJsrMLnz/V16B
J9M7l6nrQ0JMnH2Du02A3w+kNb5q97IZ/M6NkqOOl7uqjyRGPV+XKwt0G5mN/ovg
8630BZAYS3QzavYf3tni9aikiGH+zTFX5pynTNfYRXNBof3Xfzl92yad2bIt4ITD
NfKPvHRko/tqWbclzzEn72gGVggt1/k/0dKhfsGzNogHxg4GIQ/jR/XcqbDFR3RC
/JJjnTOUPGsC1y82Xlu8udWBVn5mlDyxkad5laUpWWg17anvczEAyx4TTOVItLSu
43iPdKHSs9vMXWYID0bg913VusZ2Ofv690nDABEBAAHNJFRlc3R5IE1jVGVzdGZh
Y2UgPHRlc3R5QGV4YW1wbGUub3JnPsLAlAQTAQgAPhYhBD6Id8h3J0aSl1GJ9dA/
b4ZSJv6LBQJaFXL6AhsDBQkDwmcABQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJ
ENA/b4ZSJv6Lxo8H/1XMt+Nqa6e0SG/up3ypKe5nplA0p/9j/s2EIsP8S8uPUd+c
WS17XOmPwkNDmHeL3J6hzwL74NlYSLEtyf7WoOV74xAKQA9WkqaKPHCtpll8aFWA
ktQDLWTPeKuUuSlobAoRtO17ZmheSQzmm7JYt4Ahkxt3agqGT05OsaAey6nIKqpq
ArokvdHTZ7AFZeSJIWmuCoT9M1lo3LAtLnRGOhBMJ5dDIeOwflJwNBXlJVi4mDPK
+fumV0MbSPvZd1/ivFjSpQyudWWtv1R1nAK7+a4CPTGxPvAQkLtRsL/V+Q7F3BJG
jAn4QVx8p4t3NOPuNgcoZpLBE3sc4Nfs5/CphMLHwE0EWhVy+gEIALSpjYD+tuWC
rj6FGP6crQjQzVlH+7axoM1ooTwiPs4fzzt2iLw3CJyDUviM5F9ZBQTei635RsAR
a/CJTSQYAEU5yXXxhoe0OtwnuvsBSvVT7Fox3pkfNTQmwMvkEbodhfKpqBbDKCL8
f5A8Bb7aISsLf0XRHWDkHVqlz8LnOR3f44wEWiTeIxLc8S1QtwX/ExyW47oPsjs9
ShCmwfSpcngH/vGBRTO7WeI54xcAtKSm/20B/MgrUl5qFo17kUWot2C6KjuZKkHk
3WZmJwQz+6rTB11w4AXt8vKkptYQCkfat2FydGpgRO5dVg6aWNJefOJNkC7MmlzC
ZrrAK8FJ6jcAEQEAAcLAdgQYAQgAIBYhBD6Id8h3J0aSl1GJ9dA/b4ZSJv6LBQJa
FXL6AhsMAAoJENA/b4ZSJv6Lt7kH/jPr5wg8lcamuLj4lydYiLttvvTtDTlD1TL+
IfwVARB/ruoerlEDr0zX1t3DCEcvJDiZfOqJbXtHt70+7NzFXrYxfaNFmikMgSQT
XqHrMQho4qpseVOeJPWGzGOcrxCdw/ZgrWbkDlAU5KaIvk+M4wFPivjbtW2Ro2/F
J4I/ZHhJlIPmM+hUErHC103b08pBENXDQlXDma7LijH5kWhyfF2Ji7Ft0EjghBaW
AeGalQHjc5kAZu5R76Mwt06MEQ/HL1pIvufTFxkr/SzIv8Ih7Kexb0IrybmfD351
Pu1xwz57O4zo1VYf6TqHJzVC3OMvMUM2hhdecMUe5x6GorNaj6g=
=1Vzu
-----END PGP ARMORED FILE-----
";
assert!(Cert::from_bytes(cert).is_err());
}
#[test]
fn missing_uids() {
let (cert, _) = CertBuilder::new()
.add_userid("test1@example.com")
.add_userid("test2@example.com")
.add_transport_encryption_subkey()
.add_certification_subkey()
.generate().unwrap();
assert_eq!(cert.subkeys().len(), 2);
let pile = cert
.into_packet_pile()
.into_children()
.filter(|pkt| {
match pkt {
&Packet::PublicKey(_) | &Packet::PublicSubkey(_)
| &Packet::SecretKey(_) | &Packet::SecretSubkey(_) => true,
&Packet::Signature(ref sig) => {
sig.typ() == SignatureType::DirectKey
|| sig.typ() == SignatureType::SubkeyBinding
}
e => {
eprintln!("{:?}", e);
false
}
}
})
.collect::<Vec<_>>();
eprintln!("parse back");
let cert = Cert::try_from(pile).unwrap();
assert_eq!(cert.subkeys().len(), 2);
}
#[test]
fn signature_order() {
let p = &P::new();
let neal = Cert::from_bytes(crate::tests::key("neal.pgp")).unwrap();
// This test is useless if we don't have some lists with more
// than one signature.
let mut cmps = 0;
for uid in neal.userids() {
for sigs in [
uid.self_signatures().collect::<Vec<_>>(),
uid.certifications().collect::<Vec<_>>(),
uid.self_revocations().collect::<Vec<_>>(),
uid.other_revocations().collect::<Vec<_>>()
].iter() {
for sigs in sigs.windows(2) {
cmps += 1;
assert!(sigs[0].signature_creation_time()
>= sigs[1].signature_creation_time());
}
}
// Make sure we return the most recent first.
assert_eq!(uid.self_signatures().next().unwrap(),
uid.binding_signature(p, None).unwrap());
}
assert!(cmps > 0);
}
#[test]
fn cert_reject_keyrings() {
let mut keyring = Vec::new();
keyring.extend_from_slice(crate::tests::key("neal.pgp"));
keyring.extend_from_slice(crate::tests::key("neal.pgp"));
assert!(Cert::from_bytes(&keyring).is_err());
}
#[test]
fn primary_userid() {
// 'really-revoked-userid' has two user ids. One of them is
// revoked and then restored. Neither of the user ids has the
// primary userid bit set.
//
// This test makes sure that Cert::primary_userid prefers
// unrevoked user ids to revoked user ids, even if the latter
// have newer self signatures.
let p = &P::new();
let cert = Cert::from_bytes(
crate::tests::key("really-revoked-userid-0-public.pgp")).unwrap();
let now = crate::now();
let selfsig0
= cert.userids().with_policy(p, now).map(|b| {
b.binding_signature().signature_creation_time().unwrap()
})
.max().unwrap();
// The self-sig for:
//
// Slim Shady: 2019-09-14T14:21
// Eminem: 2019-09-14T14:22
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
// A soft-revocation for "Slim Shady".
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("really-revoked-userid-1-soft-revocation.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
// A new self signature for "Slim Shady". This should
// override the soft-revocation.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("really-revoked-userid-2-new-self-sig.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"Slim Shady");
// A hard revocation for "Slim Shady".
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("really-revoked-userid-3-hard-revocation.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
// A newer self signature for "Slim Shady". Unlike for Certs, this
// does NOT trump everything.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("really-revoked-userid-4-new-self-sig.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"Eminem");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"Slim Shady");
// Play with the primary user id flag.
let cert = Cert::from_bytes(
crate::tests::key("primary-key-0-public.pgp")).unwrap();
let selfsig0
= cert.userids().with_policy(p, now).map(|b| {
b.binding_signature().signature_creation_time().unwrap()
})
.max().unwrap();
// There is only a single User ID.
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
// Add a second user id. Since neither is marked primary, the
// newer one should be considered primary.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-1-add-userid-bbbbb.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"bbbbb");
// Mark aaaaa as primary. It is now primary and the newest one.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-2-make-aaaaa-primary.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
// Update the preferences on bbbbb. It is now the newest, but
// it is not marked as primary.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-3-make-bbbbb-new-self-sig.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
// Mark bbbbb as primary. It is now the newest and marked as
// primary.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-4-make-bbbbb-primary.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"bbbbb");
// Update the preferences on aaaaa. It is now has the newest
// self sig, but that self sig does not say that it is
// primary.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-5-make-aaaaa-self-sig.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"bbbbb");
// Hard revoke aaaaa. Unlike with Certs, a hard revocation is
// not treated specially.
let cert = cert.merge_public_and_secret(
Cert::from_bytes(
crate::tests::key("primary-key-6-revoked-aaaaa.pgp")
).unwrap()).unwrap();
assert_eq!(cert.with_policy(p, selfsig0).unwrap()
.primary_userid().unwrap().userid().value(),
b"aaaaa");
assert_eq!(cert.with_policy(p, now).unwrap()
.primary_userid().unwrap().userid().value(),
b"bbbbb");
}
#[test]
fn binding_signature_lookup() {
// Check that searching for the right binding signature works
// even when there are signatures with the same time.
use crate::types::Features;
use crate::packet::key::Key4;
let p = &P::new();
let a_sec = time::Duration::new(1, 0);
let time_zero = time::UNIX_EPOCH;
let t1 = time::UNIX_EPOCH + time::Duration::new(946681200, 0); // 2000-1-1
let t2 = time::UNIX_EPOCH + time::Duration::new(978303600, 0); // 2001-1-1
let t3 = time::UNIX_EPOCH + time::Duration::new(1009839600, 0); // 2002-1-1
let t4 = time::UNIX_EPOCH + time::Duration::new(1041375600, 0); // 2003-1-1
let mut key: key::SecretKey
= Key4::generate_ecc(true, Curve::Ed25519).unwrap().into();
key.set_creation_time(t1).unwrap();
let mut pair = key.clone().into_keypair().unwrap();
let pk : key::PublicKey = key.clone().into();
let mut cert = Cert::try_from(vec![
pk.into(),
]).unwrap();
let uid: UserID = "foo@example.org".into();
let sig = uid.certify(&mut pair, &cert,
SignatureType::PositiveCertification,
None,
t1).unwrap();
cert = cert.insert_packets(
vec![Packet::from(uid), sig.into()]).unwrap();
const N: usize = 5;
for (t, offset) in &[ (t2, 0), (t4, 0), (t3, 1 * N), (t1, 3 * N) ] {
for i in 0..N {
let binding = signature::SignatureBuilder::new(SignatureType::DirectKey)
.set_features(Features::sequoia()).unwrap()
.set_key_flags(KeyFlags::empty()).unwrap()
.set_signature_creation_time(t1).unwrap()
// Vary this...
.set_key_validity_period(Some(
time::Duration::new((1 + i as u64) * 24 * 60 * 60, 0)))
.unwrap()
.set_preferred_hash_algorithms(vec![HashAlgorithm::SHA512]).unwrap()
.set_signature_creation_time(*t).unwrap()
.sign_direct_key(&mut pair, key.parts_as_public()).unwrap();
let binding : Packet = binding.into();
cert = cert.insert_packets(binding).unwrap();
// A time that matches multiple signatures.
let direct_signatures =
cert.primary_key().bundle().self_signatures2()
.collect::<Vec<_>>();
assert_eq!(cert.primary_key().with_policy(p, *t).unwrap()
.direct_key_signature().ok(),
direct_signatures.get(*offset).cloned());
// A time that doesn't match any signature.
assert_eq!(cert.primary_key().with_policy(p, *t + a_sec).unwrap()
.direct_key_signature().ok(),
direct_signatures.get(*offset).cloned());
// The current time, which should use the first signature.
assert_eq!(cert.primary_key().with_policy(p, None).unwrap()
.direct_key_signature().ok(),
direct_signatures.get(0).cloned());
// The beginning of time, which should return no
// binding signatures.
assert!(cert.primary_key().with_policy(p, time_zero).is_err());
}
}
}
#[test]
fn keysigning_party() {
use crate::packet::signature;
for cs in &[ CipherSuite::Cv25519,
CipherSuite::P256,
CipherSuite::P384,
CipherSuite::P521,
CipherSuite::RSA2k ]
{
if cs.is_supported().is_err() {
eprintln!("Skipping {:?} because it is not supported.", cs);
continue;
}
let (alice, _) = CertBuilder::new()
.set_cipher_suite(*cs)
.add_userid("alice@foo.com")
.generate().unwrap();
let (bob, _) = CertBuilder::new()
.set_cipher_suite(*cs)
.add_userid("bob@bar.com")
.add_signing_subkey()
.generate().unwrap();
assert_eq!(bob.userids().len(), 1);
let bob_userid_binding = bob.userids().next().unwrap();
assert_eq!(bob_userid_binding.userid().value(), b"bob@bar.com");
let sig_template
= signature::SignatureBuilder::new(SignatureType::GenericCertification)
.set_trust_signature(255, 120)
.unwrap();
// Have alice certify the binding "bob@bar.com" and bob's key.
let alice_certifies_bob
= bob_userid_binding.userid().bind(
&mut alice.primary_key().key().clone().parts_into_secret()
.unwrap().into_keypair().unwrap(),
&bob,
sig_template).unwrap();
let bob = bob.insert_packets(alice_certifies_bob.clone()).unwrap();
// Make sure the certification is merged, and put in the right
// place.
assert_eq!(bob.userids().len(), 1);
let bob_userid_binding = bob.userids().next().unwrap();
assert_eq!(bob_userid_binding.userid().value(), b"bob@bar.com");
// Canonicalizing Bob's cert without having Alice's key
// has to resort to a heuristic to order third party
// signatures. However, since we know the signature's
// type (GenericCertification), we know that it can only
// go to the only userid, so there is no ambiguity in this
// case.
assert_eq!(bob_userid_binding.certifications().collect::<Vec<_>>(),
vec![&alice_certifies_bob]);
// Make sure the certification is correct.
alice_certifies_bob
.verify_userid_binding(alice.primary_key().key(),
bob.primary_key().key(),
bob_userid_binding.userid()).unwrap();
}
}
#[test]
fn decrypt_encrypt_secrets() -> Result<()> {
let p: crate::crypto::Password = "streng geheim".into();
let (mut cert, _) = CertBuilder::new()
.add_transport_encryption_subkey()
.set_password(Some(p.clone()))
.generate()?;
assert_eq!(cert.keys().secret().count(), 2);
assert_eq!(cert.keys().unencrypted_secret().count(), 0);
for (i, ka) in cert.clone().keys().secret().enumerate() {
let key = ka.key().clone().decrypt_secret(&p)?;
cert = if i == 0 {
cert.insert_packets(key.role_into_primary())?
} else {
cert.insert_packets(key.role_into_subordinate())?
};
assert_eq!(cert.keys().secret().count(), 2);
assert_eq!(cert.keys().unencrypted_secret().count(), i + 1);
}
assert_eq!(cert.keys().secret().count(), 2);
assert_eq!(cert.keys().unencrypted_secret().count(), 2);
for (i, ka) in cert.clone().keys().secret().enumerate() {
let key = ka.key().clone().encrypt_secret(&p)?;
cert = if i == 0 {
cert.insert_packets(key.role_into_primary())?
} else {
cert.insert_packets(key.role_into_subordinate())?
};
assert_eq!(cert.keys().secret().count(), 2);
assert_eq!(cert.keys().unencrypted_secret().count(), 2 - 1 - i);
}
assert_eq!(cert.keys().secret().count(), 2);
assert_eq!(cert.keys().unencrypted_secret().count(), 0);
Ok(())
}
/// Tests that Cert:.into_packets2() and Cert::serialize(..) agree.
#[test]
fn test_into_packets2() -> Result<()> {
use crate::serialize::SerializeInto;
let dkg = Cert::from_bytes(crate::tests::key("dkg.gpg"))?;
let mut buf = Vec::new();
for p in dkg.clone().into_packets2() {
p.serialize(&mut buf)?;
}
let dkg = dkg.to_vec()?;
if false && buf != dkg {
std::fs::write("/tmp/buf", &buf)?;
std::fs::write("/tmp/dkg", &dkg)?;
}
assert_eq!(buf, dkg);
Ok(())
}
#[test]
fn test_canonicalization() -> Result<()> {
let p = crate::policy::StandardPolicy::new();
let primary: Key<_, key::PrimaryRole> =
key::Key4::generate_ecc(true, Curve::Ed25519)?.into();
let mut primary_pair = primary.clone().into_keypair()?;
let cert = Cert::try_from(vec![primary.into()])?;
// We now add components without binding signatures. They
// should be kept, be enumerable, but ignored if a policy is
// applied.
// Add a bare userid.
let uid = UserID::from("foo@example.org");
let cert = cert.insert_packets(uid)?;
assert_eq!(cert.userids().count(), 1);
assert_eq!(cert.userids().with_policy(&p, None).count(), 0);
// Add a bare user attribute.
use packet::user_attribute::{Subpacket, Image};
let ua = UserAttribute::new(&[
Subpacket::Image(
Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
])?;
let cert = cert.insert_packets(ua)?;
assert_eq!(cert.user_attributes().count(), 1);
assert_eq!(cert.user_attributes().with_policy(&p, None).count(), 0);
// Add a bare signing subkey.
let signing_subkey: Key<_, key::SubordinateRole> =
key::Key4::generate_ecc(true, Curve::Ed25519)?.into();
let _signing_subkey_pair = signing_subkey.clone().into_keypair()?;
let cert = cert.insert_packets(signing_subkey)?;
assert_eq!(cert.keys().subkeys().count(), 1);
assert_eq!(cert.keys().subkeys().with_policy(&p, None).count(), 0);
// Add a component that Sequoia doesn't understand.
let mut fake_key = packet::Unknown::new(
packet::Tag::PublicSubkey, anyhow::anyhow!("fake key"));
fake_key.set_body("fake key".into());
let fake_binding = signature::SignatureBuilder::new(
SignatureType::Unknown(SignatureType::SubkeyBinding.into()))
.sign_standalone(&mut primary_pair)?;
let cert = cert.insert_packets(vec![Packet::from(fake_key),
fake_binding.clone().into()])?;
assert_eq!(cert.unknowns().count(), 1);
assert_eq!(cert.unknowns().next().unwrap().unknown().tag(),
packet::Tag::PublicSubkey);
assert_eq!(cert.unknowns().next().unwrap().self_signatures().collect::<Vec<_>>(),
vec![&fake_binding]);
Ok(())
}
#[test]
fn canonicalize_with_v3_sig() -> Result<()> {
if ! crate::types::PublicKeyAlgorithm::DSA.is_supported() {
eprintln!("Skipping because DSA is not supported");
return Ok(());
}
// This test relies on being able to validate SHA-1
// signatures. The standard policy rejects SHA-1. So, use a
// custom policy.
let p = &P::new();
let sha1 =
p.hash_cutoff(
HashAlgorithm::SHA1, HashAlgoSecurity::CollisionResistance)
.unwrap();
let p = &P::at(sha1 - std::time::Duration::from_secs(1));
let cert = Cert::from_bytes(
crate::tests::key("eike-v3-v4.pgp"))?;
dbg!(&cert);
assert_eq!(cert.userids()
.with_policy(p, None)
.count(), 1);
Ok(())
}
/// Asserts that key expiration times on direct key signatures are
/// honored.
#[test]
fn issue_215() {
let p = &P::new();
let cert = Cert::from_bytes(crate::tests::key(
"issue-215-expiration-on-direct-key-sig.pgp")).unwrap();
assert_match!(
Error::Expired(_)
= cert.with_policy(p, None).unwrap().alive()
.unwrap_err().downcast().unwrap());
assert_match!(
Error::Expired(_)
= cert.primary_key().with_policy(p, None).unwrap()
.alive().unwrap_err().downcast().unwrap());
}
/// Tests that secrets are kept when merging.
#[test]
fn merge_keeps_secrets() -> Result<()> {
let (cert_s, _) =
CertBuilder::general_purpose(None, Some("uid")).generate()?;
let cert_p = cert_s.clone().strip_secret_key_material();
// Merge key into cert.
let cert = cert_p.clone().merge_public_and_secret(cert_s.clone())?;
assert!(cert.keys().all(|ka| ka.has_secret()));
// Merge cert into key.
let cert = cert_s.clone().merge_public_and_secret(cert_p.clone())?;
assert!(cert.keys().all(|ka| ka.has_secret()));
Ok(())
}
/// Tests that secrets that are merged in are preferred to
/// existing secrets.
#[test]
fn merge_prefers_merged_in_secrets() -> Result<()> {
let pw: crate::crypto::Password = "foo".into();
let (cert_encrypted_secrets, _) =
CertBuilder::general_purpose(None, Some("uid"))
.set_password(Some(pw.clone()))
.generate()?;
let mut cert_plain_secrets = cert_encrypted_secrets.clone();
for ka in cert_encrypted_secrets.keys().secret() {
assert!(! ka.has_unencrypted_secret());
let key = ka.key().clone().decrypt_secret(&pw)?;
assert!(key.has_unencrypted_secret());
let key: Packet = if ka.primary() {
key.role_into_primary().into()
} else {
key.role_into_subordinate().into()
};
cert_plain_secrets =
cert_plain_secrets.insert_packets(vec![key])?;
}
assert!(
cert_plain_secrets.keys().all(|ka| ka.has_unencrypted_secret()));
// Merge unencrypted secrets into encrypted secrets.
let cert = cert_encrypted_secrets.clone().merge_public_and_secret(
cert_plain_secrets.clone())?;
assert!(cert.keys().all(|ka| ka.has_unencrypted_secret()));
// Merge encrypted secrets into unencrypted secrets.
let cert = cert_plain_secrets.clone().merge_public_and_secret(
cert_encrypted_secrets.clone())?;
assert!(cert.keys().all(|ka| ka.has_secret()
&& ! ka.has_unencrypted_secret()));
Ok(())
}
/// Tests that secrets are kept when canonicalizing.
#[test]
fn canonicalizing_keeps_secrets() -> Result<()> {
let primary: Key<_, key::PrimaryRole> =
key::Key4::generate_ecc(true, Curve::Ed25519)?.into();
let mut primary_pair = primary.clone().into_keypair()?;
let cert = Cert::try_from(vec![primary.clone().into()])?;
let subkey_sec: Key<_, key::SubordinateRole> =
key::Key4::generate_ecc(false, Curve::Cv25519)?.into();
let subkey_pub = subkey_sec.clone().take_secret().0;
let builder = signature::SignatureBuilder::new(SignatureType::SubkeyBinding)
.set_key_flags(KeyFlags::empty()
.set_transport_encryption())?;
let binding = subkey_sec.bind(&mut primary_pair, &cert, builder)?;
let cert = Cert::try_from(vec![
primary.clone().into(),
subkey_pub.clone().into(),
binding.clone().into(),
subkey_sec.clone().into(),
binding.clone().into(),
])?;
assert_eq!(cert.keys().subkeys().count(), 1);
assert_eq!(cert.keys().unencrypted_secret().subkeys().count(), 1);
let cert = Cert::try_from(vec![
primary.clone().into(),
subkey_sec.clone().into(),
binding.clone().into(),
subkey_pub.clone().into(),
binding.clone().into(),
])?;
assert_eq!(cert.keys().subkeys().count(), 1);
assert_eq!(cert.keys().unencrypted_secret().subkeys().count(), 1);
Ok(())
}
/// Demonstrates that subkeys are kept if a userid is later added
/// without any keyflags.
#[test]
fn issue_361() -> Result<()> {
let (cert, _) = CertBuilder::new()
.add_transport_encryption_subkey()
.generate()?;
let p = &P::new();
let cert_at = cert.with_policy(p,
cert.primary_key().creation_time()
+ time::Duration::new(300, 0))
.unwrap();
assert_eq!(cert_at.userids().count(), 0);
assert_eq!(cert_at.keys().count(), 2);
let mut primary_pair = cert.primary_key().key().clone()
.parts_into_secret()?.into_keypair()?;
let uid: UserID = "foo@example.org".into();
let sig = uid.bind(
&mut primary_pair, &cert,
signature::SignatureBuilder::new(SignatureType::PositiveCertification))?;
let cert = cert.insert_packets(vec![
Packet::from(uid),
sig.into(),
])?;
let cert_at = cert.with_policy(p,
cert.primary_key().creation_time()
+ time::Duration::new(300, 0))
.unwrap();
assert_eq!(cert_at.userids().count(), 1);
assert_eq!(cert_at.keys().count(), 2);
Ok(())
}
/// Demonstrates that binding signatures are considered valid even
/// if the primary key is not marked as certification-capable.
#[test]
fn issue_321() -> Result<()> {
let cert = Cert::from_bytes(
crate::tests::file("contrib/pep/pEpkey-netpgp.asc"))?;
assert_eq!(cert.userids().count(), 1);
assert_eq!(cert.keys().count(), 1);
let mut p = P::new();
p.accept_hash(HashAlgorithm::SHA1);
let cert_at = cert.with_policy(&p, cert.primary_key().creation_time())
.unwrap();
assert_eq!(cert_at.userids().count(), 1);
assert_eq!(cert_at.keys().count(), 1);
Ok(())
}
#[test]
fn policy_uri_some() -> Result<()> {
use crate::packet::prelude::SignatureBuilder;
use crate::policy::StandardPolicy;
let p = &StandardPolicy::new();
let (alice, _) = CertBuilder::new().add_userid("Alice").generate()?;
let sig = SignatureBuilder::from(
alice
.with_policy(p, None)?
.direct_key_signature().expect("Direct key signature")
.clone()
)
.set_policy_uri("https://example.org/~alice/signing-policy.txt")?;
assert_eq!(sig.policy_uri(), Some("https://example.org/~alice/signing-policy.txt".as_bytes()));
Ok(())
}
#[test]
fn policy_uri_none() -> Result<()> {
use crate::packet::prelude::SignatureBuilder;
use crate::policy::StandardPolicy;
let p = &StandardPolicy::new();
let (alice, _) = CertBuilder::new().add_userid("Alice").generate()?;
let sig = SignatureBuilder::from(
alice
.with_policy(p, None)?
.direct_key_signature().expect("Direct key signature")
.clone()
);
assert_eq!(sig.policy_uri(), None);
Ok(())
}
#[test]
fn different_preferences() -> Result<()> {
use crate::cert::Preferences;
let p = &crate::policy::StandardPolicy::new();
// This key returns different preferences depending on how you
// address it. (It has two user ids and the user ids have
// different preference packets on their respective self
// signatures.)
let cert = Cert::from_bytes(
crate::tests::key("different-preferences.asc"))?;
assert_eq!(cert.userids().count(), 2);
if let Some(userid) = cert.userids().next() {
assert_eq!(userid.userid().value(),
&b"Alice Confusion <alice@example.com>"[..]);
let userid = userid.with_policy(p, None).expect("valid");
use crate::types::SymmetricAlgorithm::*;
assert_eq!(userid.preferred_symmetric_algorithms(),
Some(&[ AES256, AES192, AES128, TripleDES ][..]));
use crate::types::HashAlgorithm::*;
assert_eq!(userid.preferred_hash_algorithms(),
Some(&[ SHA512, SHA384, SHA256, SHA224, SHA1 ][..]));
use crate::types::CompressionAlgorithm::*;
assert_eq!(userid.preferred_compression_algorithms(),
Some(&[ Zlib, BZip2, Zip ][..]));
#[allow(deprecated)] {
assert_eq!(userid.preferred_aead_algorithms(), None);
}
// assert_eq!(userid.key_server_preferences(),
// Some(KeyServerPreferences::new(&[])));
assert_eq!(userid.features(),
Some(Features::new(&[]).set_seipdv1()));
} else {
panic!("two user ids");
}
if let Some(userid) = cert.userids().next() {
assert_eq!(userid.userid().value(),
&b"Alice Confusion <alice@example.com>"[..]);
let userid = userid.with_policy(p, None).expect("valid");
use crate::types::SymmetricAlgorithm::*;
assert_eq!(userid.preferred_symmetric_algorithms(),
Some(&[ AES256, AES192, AES128, TripleDES ][..]));
use crate::types::HashAlgorithm::*;
assert_eq!(userid.preferred_hash_algorithms(),
Some(&[ SHA512, SHA384, SHA256, SHA224, SHA1 ][..]));
use crate::types::CompressionAlgorithm::*;
assert_eq!(userid.preferred_compression_algorithms(),
Some(&[ Zlib, BZip2, Zip ][..]));
#[allow(deprecated)] {
assert_eq!(userid.preferred_aead_algorithms(), None);
}
assert_eq!(userid.key_server_preferences(),
Some(KeyServerPreferences::new(&[0x80])));
assert_eq!(userid.features(),
Some(Features::new(&[]).set_seipdv1()));
// Using the certificate should choose the primary user
// id, which is this one (because it is lexicographically
// earlier).
let cert = cert.with_policy(p, None).expect("valid");
assert_eq!(userid.preferred_symmetric_algorithms(),
cert.preferred_symmetric_algorithms());
assert_eq!(userid.preferred_hash_algorithms(),
cert.preferred_hash_algorithms());
assert_eq!(userid.preferred_compression_algorithms(),
cert.preferred_compression_algorithms());
#[allow(deprecated)] {
assert_eq!(userid.preferred_aead_algorithms(),
cert.preferred_aead_algorithms());
}
assert_eq!(userid.key_server_preferences(),
cert.key_server_preferences());
assert_eq!(userid.features(),
cert.features());
} else {
panic!("two user ids");
}
if let Some(userid) = cert.userids().nth(1) {
assert_eq!(userid.userid().value(),
&b"Alice Confusion <alice@example.net>"[..]);
let userid = userid.with_policy(p, None).expect("valid");
use crate::types::SymmetricAlgorithm::*;
assert_eq!(userid.preferred_symmetric_algorithms(),
Some(&[ AES192, AES256, AES128, TripleDES ][..]));
use crate::types::HashAlgorithm::*;
assert_eq!(userid.preferred_hash_algorithms(),
Some(&[ SHA384, SHA512, SHA256, SHA224, SHA1 ][..]));
use crate::types::CompressionAlgorithm::*;
assert_eq!(userid.preferred_compression_algorithms(),
Some(&[ BZip2, Zlib, Zip ][..]));
#[allow(deprecated)] {
assert_eq!(userid.preferred_aead_algorithms(), None);
}
assert_eq!(userid.key_server_preferences(),
Some(KeyServerPreferences::new(&[0x80])));
assert_eq!(userid.features(),
Some(Features::new(&[]).set_seipdv1()));
} else {
panic!("two user ids");
}
Ok(())
}
#[test]
fn unsigned_components() -> Result<()> {
// We have a certificate with an unsigned User ID, User
// Attribute, encryption-capable subkey, and signing-capable
// subkey. (Actually, they are signed, but the signatures are
// bad.) We expect that when we parse such a certificate the
// unsigned components are not dropped and they appear when
// iterating over the components using, e.g., Cert::userids,
// but not when we check for valid components.
let p = &crate::policy::StandardPolicy::new();
let cert = Cert::from_bytes(
crate::tests::key("certificate-with-unsigned-components.asc"))?;
assert_eq!(cert.userids().count(), 2);
assert_eq!(cert.userids().with_policy(p, None).count(), 1);
assert_eq!(cert.user_attributes().count(), 2);
assert_eq!(cert.user_attributes().with_policy(p, None).count(), 1);
assert_eq!(cert.keys().count(), 1 + 4);
assert_eq!(cert.keys().with_policy(p, None).count(), 1 + 2);
Ok(())
}
#[test]
fn issue_504() -> Result<()> {
let mut keyring = crate::tests::key("testy.pgp").to_vec();
keyring.extend_from_slice(crate::tests::key("testy-new.pgp"));
// TryFrom<PacketPile>
let pp = PacketPile::from_bytes(&keyring)?;
assert!(matches!(
Cert::try_from(pp.clone()).unwrap_err().downcast().unwrap(),
Error::MalformedCert(_)
));
// Cert::TryFrom<Vec<Packet>>
let v: Vec<Packet> = pp.into();
assert!(matches!(
Cert::try_from(v.clone()).unwrap_err().downcast().unwrap(),
Error::MalformedCert(_)
));
// Cert::from_packet
assert!(matches!(
Cert::from_packets(v.into_iter()).unwrap_err().downcast().unwrap(),
Error::MalformedCert(_)
));
// Cert::TryFrom<PacketParserResult>
let ppr = PacketParser::from_bytes(&keyring)?;
assert!(matches!(
Cert::try_from(ppr).unwrap_err().downcast().unwrap(),
Error::MalformedCert(_)
));
Ok(())
}
/// Tests whether the policy is applied to primary key binding
/// signatures.
#[test]
fn issue_531() -> Result<()> {
let cert =
Cert::from_bytes(crate::tests::key("peter-sha1-backsig.pgp"))?;
let p = &crate::policy::NullPolicy::new();
assert_eq!(cert.with_policy(p, None)?.keys().for_signing().count(), 1);
let mut p = crate::policy::StandardPolicy::new();
p.reject_hash(HashAlgorithm::SHA1);
assert_eq!(cert.with_policy(&p, None)?.keys().for_signing().count(), 0);
Ok(())
}
/// Tests whether expired primary key binding signatures are
/// rejected.
#[test]
fn issue_539() -> Result<()> {
let cert =
Cert::from_bytes(crate::tests::key("peter-expired-backsig.pgp"))?;
let p = &crate::policy::NullPolicy::new();
assert_eq!(cert.with_policy(p, None)?.keys().for_signing().count(), 0);
let p = &crate::policy::StandardPolicy::new();
assert_eq!(cert.with_policy(p, None)?.keys().for_signing().count(), 0);
Ok(())
}
/// Tests whether signatures are properly deduplicated.
#[test]
fn issue_568() -> Result<()> {
use crate::packet::signature::subpacket::*;
let (cert, _) = CertBuilder::general_purpose(
None, Some("alice@example.org")).generate().unwrap();
assert_eq!(cert.userids().count(), 1);
assert_eq!(cert.subkeys().count(), 2);
assert_eq!(cert.unknowns().count(), 0);
assert_eq!(cert.bad_signatures().count(), 0);
assert_eq!(cert.userids().next().unwrap().self_signatures().count(), 1);
assert_eq!(cert.subkeys().next().unwrap().self_signatures().count(), 1);
assert_eq!(cert.subkeys().nth(1).unwrap().self_signatures().count(), 1);
// Create a variant of cert where the signatures have
// additional information in the unhashed area.
let cert_b = cert.clone();
let mut packets = crate::PacketPile::from(cert_b).into_children()
.collect::<Vec<_>>();
for p in packets.iter_mut() {
if let Packet::Signature(sig) = p {
assert_eq!(sig.hashed_area().subpackets(
SubpacketTag::IssuerFingerprint).count(),
1);
sig.unhashed_area_mut().add(Subpacket::new(
SubpacketValue::Issuer("AAAA BBBB CCCC DDDD".parse()?),
false)?)?;
}
}
let cert_b = Cert::from_packets(packets.into_iter())?;
let cert = cert.merge_public_and_secret(cert_b)?;
assert_eq!(cert.userids().count(), 1);
assert_eq!(cert.subkeys().count(), 2);
assert_eq!(cert.unknowns().count(), 0);
assert_eq!(cert.bad_signatures().count(), 0);
assert_eq!(cert.userids().next().unwrap().self_signatures().count(), 1);
assert_eq!(cert.subkeys().next().unwrap().self_signatures().count(), 1);
assert_eq!(cert.subkeys().nth(1).unwrap().self_signatures().count(), 1);
Ok(())
}
/// Checks that missing or bad embedded signatures cause the
/// signature to be considered bad.
#[test]
fn missing_backsig_is_bad() -> Result<()> {
use crate::packet::{
key::Key4,
signature::{
SignatureBuilder,
subpacket::{Subpacket, SubpacketValue},
},
};
// We'll study this certificate, because it contains a
// signing-capable subkey.
let cert = crate::Cert::from_bytes(crate::tests::key(
"emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
let mut pp = crate::PacketPile::from_bytes(crate::tests::key(
"emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
assert_eq!(pp.children().count(), 5);
if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[4]) {
// Add a bogus but plausible embedded signature subpacket.
let key: key::SecretKey
= Key4::generate_ecc(true, Curve::Ed25519)?.into();
let mut pair = key.into_keypair()?;
sig.unhashed_area_mut().replace(Subpacket::new(
SubpacketValue::EmbeddedSignature(
SignatureBuilder::new(SignatureType::PrimaryKeyBinding)
.sign_primary_key_binding(
&mut pair,
cert.primary_key().key(),
cert.keys().subkeys().next().unwrap().key())?),
false)?)?;
} else {
panic!("expected a signature");
}
// Parse into cert.
use std::convert::TryFrom;
let malicious_cert = Cert::try_from(pp)?;
// The subkey binding signature should no longer check out.
let p = &crate::policy::StandardPolicy::new();
assert_eq!(malicious_cert.with_policy(p, None)?.keys().subkeys()
.for_signing().count(), 0);
// Instead, it should be considered bad.
assert_eq!(malicious_cert.bad_signatures().count(), 1);
Ok(())
}
/// Checks that multiple embedded signatures are correctly
/// handled.
#[test]
fn multiple_embedded_signatures() -> Result<()> {
use crate::packet::{
key::Key4,
signature::{
SignatureBuilder,
subpacket::{Subpacket, SubpacketValue},
},
};
// We'll study this certificate, because it contains a
// signing-capable subkey.
let cert = crate::Cert::from_bytes(crate::tests::key(
"emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
// Add a bogus but plausible embedded signature subpacket with
// this key.
let key: key::SecretKey
= Key4::generate_ecc(true, Curve::Ed25519)?.into();
let mut pair = key.into_keypair()?;
// Create a malicious cert to merge in.
let mut pp = crate::PacketPile::from_bytes(crate::tests::key(
"emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
assert_eq!(pp.children().count(), 5);
if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[4]) {
// Prepend a bad backsig.
let backsig = sig.embedded_signatures().next().unwrap().clone();
sig.unhashed_area_mut().replace(Subpacket::new(
SubpacketValue::EmbeddedSignature(
SignatureBuilder::new(SignatureType::PrimaryKeyBinding)
.sign_primary_key_binding(
&mut pair,
cert.primary_key().key(),
cert.keys().subkeys().next().unwrap().key())?),
false)?)?;
sig.unhashed_area_mut().add(Subpacket::new(
SubpacketValue::EmbeddedSignature(backsig), false)?)?;
} else {
panic!("expected a signature");
}
// Parse into cert.
use std::convert::TryFrom;
let malicious_cert = Cert::try_from(pp)?;
// The subkey binding signature should still be fine.
let p = &crate::policy::StandardPolicy::new();
assert_eq!(malicious_cert.with_policy(p, None)?.keys().subkeys()
.for_signing().count(), 1);
assert_eq!(malicious_cert.bad_signatures().count(), 0);
// Now try to merge it in.
let merged = cert.clone().merge_public_and_secret(malicious_cert.clone())?;
// The subkey binding signature should still be fine.
assert_eq!(merged.with_policy(p, None)?.keys().subkeys()
.for_signing().count(), 1);
let sig = merged.with_policy(p, None)?.keys().subkeys()
.for_signing().next().unwrap().binding_signature();
assert_eq!(sig.embedded_signatures().count(), 2);
// Now the other way around.
let merged = malicious_cert.clone().merge_public_and_secret(cert.clone())?;
// The subkey binding signature should still be fine.
assert_eq!(merged.with_policy(p, None)?.keys().subkeys()
.for_signing().count(), 1);
let sig = merged.with_policy(p, None)?.keys().subkeys()
.for_signing().next().unwrap().binding_signature();
assert_eq!(sig.embedded_signatures().count(), 2);
Ok(())
}
/// Checks that Cert::merge(cert, cert) == cert.
#[test]
fn issue_579() -> Result<()> {
use std::convert::TryFrom;
use crate::packet::signature::subpacket::SubpacketTag;
let mut pp = crate::PacketPile::from_bytes(crate::tests::key(
"emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
assert_eq!(pp.children().count(), 5);
// Drop issuer information from the unhashed areas.
if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[2]) {
sig.unhashed_area_mut().remove_all(SubpacketTag::Issuer);
} else {
panic!("expected a signature");
}
if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[4]) {
sig.unhashed_area_mut().remove_all(SubpacketTag::Issuer);
} else {
panic!("expected a signature");
}
let cert = Cert::try_from(pp)?;
assert_eq!(cert.clone().merge_public_and_secret(cert.clone())?, cert);
Ok(())
}
/// Checks that Cert::merge_public ignores secret key material.
#[test]
fn merge_public() -> Result<()> {
let cert =
Cert::from_bytes(crate::tests::key("testy-new.pgp"))?;
let key =
Cert::from_bytes(crate::tests::key("testy-new-private.pgp"))?;
assert!(! cert.is_tsk());
assert!(key.is_tsk());
// Secrets are ignored in `other`.
let merged = cert.clone().merge_public(key.clone())?;
assert!(! merged.is_tsk());
assert_eq!(merged, cert);
// Secrets are retained in `self`.
let merged = key.clone().merge_public(cert.clone())?;
assert!(merged.is_tsk());
assert_eq!(merged, key);
Ok(())
}
/// Make sure we can parse a key where the primary key is its own
/// subkeys.
#[test]
fn primary_key_is_subkey() -> Result<()> {
let p = &crate::policy::StandardPolicy::new();
let cert =
Cert::from_bytes(crate::tests::key("primary-key-is-also-subkey.pgp"))?;
// There should be three keys:
//
// Fingerprint: 8E8C 33FA 4626 3379 76D9 7978 069C 0C34 8DD8 2C19
// Public-key algo: EdDSA Edwards-curve Digital Signature Algorithm
// Public-key size: 256 bits
// Secret key: Unencrypted
// Creation time: 2018-06-11 14:12:09 UTC
// Key flags: certification, signing
//
// Subkey: 8E8C 33FA 4626 3379 76D9 7978 069C 0C34 8DD8 2C19
// Public-key algo: EdDSA Edwards-curve Digital Signature Algorithm
// Public-key size: 256 bits
// Secret key: Unencrypted
// Creation time: 2018-06-11 14:12:09 UTC
// Key flags: certification, signing
//
// Subkey: 061C 3CA4 4AFF 0EC5 8DC6 6E95 22E3 FAFE 96B5 6C32
// Public-key algo: EdDSA Edwards-curve Digital Signature Algorithm
// Public-key size: 256 bits
// Secret key: Unencrypted
// Creation time: 2018-08-27 10:55:43 UTC
// Key flags: signing
//
// UserID: Emmelie Dorothea Dina Samantha Awina Ed25519
assert_eq!(cert.keys().count(), 3);
// Make sure there is a subkey with the same fingerprint as
// the primary key.
assert!(cert.keys().subkeys().any(|k| {
k.fingerprint() == cert.primary_key().fingerprint()
}));
// Make sure the self sig is valid, too.
assert_eq!(cert.keys().count(), 3);
let vc = cert.with_policy(p, None)?;
assert!(vc.keys().subkeys().any(|k| {
k.fingerprint() == vc.primary_key().fingerprint()
}));
Ok(())
}
/// Makes sure that attested key signatures are correctly handled.
#[test]
fn attested_key_signatures() -> Result<()> {
use crate::{
packet::signature::SignatureBuilder,
types::*,
};
let p = &crate::policy::StandardPolicy::new();
let (alice, _) = CertBuilder::new()
.add_userid("alice@foo.com")
.generate()?;
let mut alice_signer =
alice.primary_key().key().clone().parts_into_secret()?
.into_keypair()?;
let (bob, _) = CertBuilder::new()
.add_userid("bob@bar.com")
.generate()?;
let mut bob_signer =
bob.primary_key().key().clone().parts_into_secret()?
.into_keypair()?;
let bob_pristine = bob.clone();
// Have Alice certify the binding between "bob@bar.com" and
// Bob's key.
let alice_certifies_bob
= bob.userids().next().unwrap().userid().bind(
&mut alice_signer, &bob,
SignatureBuilder::new(SignatureType::GenericCertification))?;
let bob = bob.insert_packets(vec![
alice_certifies_bob.clone(),
])?;
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.certifications().count(), 1);
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 0);
// Have Bob attest that certification.
#[allow(deprecated)]
let attestations =
bob.userids().next().unwrap().attest_certifications(
p,
&mut bob_signer,
vec![&alice_certifies_bob])?;
assert_eq!(attestations.len(), 1);
let attestation = attestations[0].clone();
let bob = bob.insert_packets(vec![
attestation.clone(),
])?;
assert_eq!(bob.bad_signatures().count(), 0);
assert_eq!(bob.userids().next().unwrap().certifications().next(),
Some(&alice_certifies_bob));
assert_eq!(bob.userids().next().unwrap().bundle().attestations().next().unwrap(),
&attestation);
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.certifications().count(), 1);
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 1);
// Check that attested key signatures are kept over merges.
let bob_ = bob.clone().merge_public(bob_pristine.clone())?;
assert_eq!(bob_.bad_signatures().count(), 0);
assert_eq!(bob_.userids().next().unwrap().certifications().next(),
Some(&alice_certifies_bob));
assert_eq!(bob_.userids().next().unwrap().bundle().attestations().next().unwrap(),
&attestation);
assert_eq!(bob_.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 1);
// And the other way around.
let bob_ = bob_pristine.clone().merge_public(bob.clone())?;
assert_eq!(bob_.bad_signatures().count(), 0);
assert_eq!(bob_.userids().next().unwrap().certifications().next(),
Some(&alice_certifies_bob));
assert_eq!(bob_.userids().next().unwrap().bundle().attestations().next().unwrap(),
&attestation);
assert_eq!(bob_.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 1);
// Have Bob withdraw any prior attestations.
#[allow(deprecated)]
let attestations =
bob.userids().next().unwrap().attest_certifications(
p,
&mut bob_signer,
&[])?;
assert_eq!(attestations.len(), 1);
let attestation = attestations[0].clone();
let bob = bob.insert_packets(vec![
attestation.clone(),
])?;
assert_eq!(bob.bad_signatures().count(), 0);
assert_eq!(bob.userids().next().unwrap().certifications().next(),
Some(&alice_certifies_bob));
assert_eq!(bob.userids().next().unwrap().bundle().attestations().next().unwrap(),
&attestation);
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.certifications().count(), 1);
assert_eq!(bob.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 0);
Ok(())
}
/// Makes sure that attested key signatures are correctly handled.
#[test]
fn attested_key_signatures_dkgpg() -> Result<()> {
const DUMP: bool = false;
use crate::{
crypto::hash::Digest,
};
let p = &crate::policy::StandardPolicy::new();
let test = Cert::from_bytes(crate::tests::key("1pa3pc-dkgpg.pgp"))?;
assert_eq!(test.bad_signatures().count(), 0);
assert_eq!(test.userids().next().unwrap().certifications().count(),
1);
assert_eq!(test.userids().next().unwrap().bundle().attestations().count(),
1);
let attestation =
test.userids().next().unwrap().bundle().attestations().next().unwrap();
if DUMP {
for (i, d) in attestation.attested_certifications()?.enumerate() {
crate::fmt::hex::Dumper::new(std::io::stderr(), "")
.write(d, format!("expected digest {}", i))?;
}
}
let digests: std::collections::HashSet<_> =
attestation.attested_certifications()?.collect();
for (i, certification) in
test.userids().next().unwrap().certifications().enumerate()
{
// Hash the certification.
let mut h = attestation.hash_algo().context()?;
certification.hash_for_confirmation(&mut h);
let digest = h.into_digest()?;
if DUMP {
crate::fmt::hex::Dumper::new(std::io::stderr(), "")
.write(&digest, format!("computed digest {}", i))?;
}
assert!(digests.contains(&digest[..]));
}
assert_eq!(test.with_policy(p, None)?.userids().next().unwrap()
.certifications().count(), 1);
assert_eq!(test.with_policy(p, None)?.userids().next().unwrap()
.attested_certifications().count(), 1);
Ok(())
}
/// Makes sure that attested key signatures are correctly reordered.
#[test]
fn attested_key_signature_out_of_order() -> Result<()> {
let p = &crate::policy::StandardPolicy::new();
let (alice, _) = CertBuilder::general_purpose(
None, Some("alice@example.org")).generate().unwrap();
assert!(alice.keys().subkeys().count() > 0);
let mut alice_signer =
alice.primary_key().key().clone().parts_into_secret()?
.into_keypair()?;
// Now, create new attestation signatures.
let mut attestation_signatures = Vec::new();
for uid in alice.userids() {
#[allow(deprecated)]
attestation_signatures.append(&mut uid.attest_certifications(
p,
&mut alice_signer,
uid.certifications(),
)?);
}
// Add the new signatures. This appends the attestation
// signature so that it is considered part of last component,
// a subkey.
let alice2 = alice.insert_packets(attestation_signatures)?;
// Now we make sure the attestation signature was correctly reordered.
assert_eq!(alice2.bad_signatures().count(), 0);
assert!(alice2.keys().all(|ka| ka.attestations().count() == 0));
let ua = alice2.userids().next().unwrap();
assert_eq!(ua.attestations().count(), 1);
Ok(())
}
/// Makes sure that marker packets are ignored when parsing certs.
#[test]
fn marker_packets() -> Result<()> {
let cert = Cert::from_bytes(crate::tests::key("neal.pgp"))?;
let mut buf = Vec::new();
Packet::Marker(Default::default()).serialize(&mut buf)?;
cert.serialize(&mut buf)?;
let cert_ = Cert::from_bytes(&buf)?;
assert_eq!(cert, cert_);
Ok(())
}
/// Checks that messing with a revocation signature merely
/// invalidates the signature and keeps the cert's revocation
/// status unchanged.
#[test]
fn issue_486() -> Result<()> {
use crate::{
crypto::mpi,
types::RevocationStatus::*,
packet::signature::Signature4,
policy::StandardPolicy,
};
let p = &StandardPolicy::new();
let (cert, revocation) = CertBuilder::new().generate()?;
// Base case.
let c = cert.clone().insert_packets(Some(revocation.clone()))?;
if let Revoked(_) = c.revocation_status(p, None) {
// cert is considered revoked
} else {
panic!("Should be revoked, but is not: {:?}",
c.revocation_status(p, None));
}
// Breaking the revocation signature by changing the MPIs.
let c = cert.clone().insert_packets(Some(
Signature4::new(
revocation.typ(),
revocation.pk_algo(),
revocation.hash_algo(),
revocation.hashed_area().clone(),
revocation.unhashed_area().clone(),
*revocation.digest_prefix(),
// MPI is replaced with a dummy one
mpi::Signature::RSA {
s: mpi::MPI::from(vec![1, 2, 3])
})))?;
if let NotAsFarAsWeKnow = c.revocation_status(p, None) {
assert_eq!(c.bad_signatures().count(), 1);
} else {
panic!("Should not be revoked, but is: {:?}",
c.revocation_status(p, None));
}
// Breaking the revocation signature by changing the MPIs and
// the digest prefix.
let c = cert.clone().insert_packets(Some(
Signature4::new(
revocation.typ(),
revocation.pk_algo(),
revocation.hash_algo(),
revocation.hashed_area().clone(),
revocation.unhashed_area().clone(),
// Prefix replaced with a dummy one
[0, 1],
// MPI is replaced with a dummy one
mpi::Signature::RSA {
s: mpi::MPI::from(vec![1, 2, 3])
})))?;
if let NotAsFarAsWeKnow = c.revocation_status(p, None) {
assert_eq!(c.bad_signatures().count(), 1);
} else {
panic!("Should not be revoked, but is: {:?}",
c.revocation_status(p, None));
}
Ok(())
}
/// Tests v3 binding signatures.
#[test]
fn v3_binding_signature() -> Result<()> {
if ! crate::types::PublicKeyAlgorithm::DSA.is_supported() {
eprintln!("Skipping because DSA is not supported");
return Ok(());
}
let c = Cert::from_bytes(
crate::tests::key("pgp5-dsa-elg-v3-subkey-binding.pgp"))?;
assert_eq!(c.bad_signatures().count(), 0);
let np = crate::policy::NullPolicy::new();
// The subkey is interesting because it is bound using a v3
// signature.
let vcert = c.with_policy(&np, None)?;
assert_eq!(vcert.keys().subkeys().count(), 1);
// A v3 signature has no subpackets, so there are no key
// flags. But, we then consider the key role and public key
// algorithm.
assert_eq!(vcert.keys().for_signing().count(), 1);
assert_eq!(vcert.keys().for_transport_encryption().count(), 1);
// The subkey is interesting because it is bound using a v3
// signature.
assert_eq!(c.keys().subkeys().with_policy(&np, None).count(), 1);
// A v3 signature has no subpackets, so there are no key
// flags. But, we then consider the key role and public key
// algorithm.
assert_eq!(c.keys().with_policy(&np, None).for_signing().count(), 1);
assert_eq!(c.keys().with_policy(&np, None)
.for_transport_encryption().count(), 1);
Ok(())
}
/// Tests v3 revocation signatures.
#[test]
fn v3_revocation_signature() -> Result<()> {
if ! crate::types::PublicKeyAlgorithm::ECDSA.is_supported()
|| ! crate::types::Curve::NistP521.is_supported()
{
eprintln!("Skipping because ECDSA/NistP521 is not supported");
return Ok(());
}
let c = Cert::from_bytes(
crate::tests::key("v4-revoked-by-v3.pgp"))?;
assert_eq!(c.bad_signatures().count(), 0);
let sp = crate::policy::StandardPolicy::new();
assert!(matches!(c.revocation_status(&sp, None),
RevocationStatus::Revoked(_)));
Ok(())
}
}