1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
use std::time;
use crate::Error;
use crate::Result;
use crate::Cert;
use crate::types::{HashAlgorithm, SignatureType};
use crate::crypto::Signer;
use crate::packet::{UserID, UserAttribute, key, Key, signature, Signature};
impl<P: key::KeyParts> Key<P, key::SubordinateRole> {
/// Creates a binding signature.
///
/// The signature binds this subkey to `cert`. `signer` will be used
/// to create a signature using `signature` as builder.
/// The`hash_algo` defaults to SHA512, `creation_time` to the
/// current time.
///
/// Note that subkeys with signing capabilities need a [primary
/// key binding signature]. If you are creating this binding
/// signature from a previous binding signature, you can reuse the
/// primary key binding signature if it is still valid and meets
/// current algorithm requirements. Otherwise, you can create one
/// using [`SignatureBuilder::sign_primary_key_binding`].
///
/// [primary key binding signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
/// [`SignatureBuilder::sign_primary_key_binding`]: signature::SignatureBuilder::sign_primary_key_binding()
///
/// This function adds a creation time subpacket, a issuer
/// fingerprint subpacket, and a issuer subpacket to the
/// signature.
///
/// # Examples
///
/// This example demonstrates how to bind this key to a Cert. Note
/// that in general, the `CertBuilder` is a better way to add
/// subkeys to a Cert.
///
/// ```
/// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
/// # fn main() -> Result<()> {
/// use sequoia_openpgp::policy::StandardPolicy;
/// let p = &StandardPolicy::new();
///
/// // Generate a Cert, and create a keypair from the primary key.
/// let (cert, _) = CertBuilder::new().generate()?;
/// let mut keypair = cert.primary_key().key().clone()
/// .parts_into_secret()?.into_keypair()?;
///
/// // Let's add an encryption subkey.
/// let flags = KeyFlags::empty().set_storage_encryption();
/// assert_eq!(cert.keys().with_policy(p, None).alive().revoked(false)
/// .key_flags(&flags).count(),
/// 0);
///
/// // Generate a subkey and a binding signature.
/// let subkey: Key<_, key::SubordinateRole> =
/// Key4::generate_ecc(false, Curve::Cv25519)?
/// .into();
/// let builder = signature::SignatureBuilder::new(SignatureType::SubkeyBinding)
/// .set_key_flags(flags.clone())?;
/// let binding = subkey.bind(&mut keypair, &cert, builder)?;
///
/// // Now merge the key and binding signature into the Cert.
/// let cert = cert.insert_packets(vec![Packet::from(subkey),
/// binding.into()])?;
///
/// // Check that we have an encryption subkey.
/// assert_eq!(cert.keys().with_policy(p, None).alive().revoked(false)
/// .key_flags(flags).count(),
/// 1);
/// # Ok(()) }
pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
signature: signature::SignatureBuilder)
-> Result<Signature>
{
signature.sign_subkey_binding(
signer, cert.primary_key().key(), self)
}
}
impl UserID {
/// Creates a binding signature.
///
/// The signature binds this User ID to `cert`. `signer` will be used
/// to create a signature using `signature` as builder.
/// The`hash_algo` defaults to SHA512, `creation_time` to the
/// current time.
///
/// This function adds a creation time subpacket, a issuer
/// fingerprint subpacket, and a issuer subpacket to the
/// signature.
///
/// # Examples
///
/// This example demonstrates how to bind this User ID to a Cert.
/// Note that in general, the `CertBuilder` is a better way to add
/// User IDs to a Cert.
///
/// ```
/// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
/// # fn main() -> Result<()> {
/// // Generate a Cert, and create a keypair from the primary key.
/// let (cert, _) = CertBuilder::new().generate()?;
/// let mut keypair = cert.primary_key().key().clone()
/// .parts_into_secret()?.into_keypair()?;
/// assert_eq!(cert.userids().len(), 0);
///
/// // Generate a User ID and a binding signature.
/// let userid = UserID::from("test@example.org");
/// let builder =
/// signature::SignatureBuilder::new(SignatureType::PositiveCertification);
/// let binding = userid.bind(&mut keypair, &cert, builder)?;
///
/// // Now merge the User ID and binding signature into the Cert.
/// let cert = cert.insert_packets(vec![Packet::from(userid),
/// binding.into()])?;
///
/// // Check that we have a User ID.
/// assert_eq!(cert.userids().len(), 1);
/// # Ok(()) }
pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
signature: signature::SignatureBuilder)
-> Result<Signature>
{
signature.sign_userid_binding(
signer, cert.primary_key().key(), self)
}
/// Returns a certification for the User ID.
///
/// The signature binds this User ID to `cert`. `signer` will be
/// used to create a certification signature of type
/// `signature_type`. `signature_type` defaults to
/// `SignatureType::GenericCertification`, `hash_algo` to SHA512,
/// `creation_time` to the current time.
///
/// This function adds a creation time subpacket, a issuer
/// fingerprint subpacket, and a issuer subpacket to the
/// signature.
///
/// # Errors
///
/// Returns `Error::InvalidArgument` if `signature_type` is not
/// one of `SignatureType::{Generic, Persona, Casual,
/// Positive}Certification`
///
/// # Examples
///
/// This example demonstrates how to certify a User ID.
///
/// ```
/// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
/// # fn main() -> Result<()> {
/// // Generate a Cert, and create a keypair from the primary key.
/// let (alice, _) = CertBuilder::new()
/// .set_primary_key_flags(KeyFlags::empty().set_certification())
/// .add_userid("alice@example.org")
/// .generate()?;
/// let mut keypair = alice.primary_key().key().clone()
/// .parts_into_secret()?.into_keypair()?;
///
/// // Generate a Cert for Bob.
/// let (bob, _) = CertBuilder::new()
/// .set_primary_key_flags(KeyFlags::empty().set_certification())
/// .add_userid("bob@example.org")
/// .generate()?;
///
/// // Alice now certifies the binding between `bob@example.org` and `bob`.
/// let certification =
/// bob.userids().nth(0).unwrap()
/// .certify(&mut keypair, &bob, SignatureType::PositiveCertification,
/// None, None)?;
///
/// // `certification` can now be used, e.g. by merging it into `bob`.
/// let bob = bob.insert_packets(certification)?;
///
/// // Check that we have a certification on the User ID.
/// assert_eq!(bob.userids().nth(0).unwrap()
/// .certifications().count(), 1);
/// # Ok(()) }
pub fn certify<S, H, T>(&self, signer: &mut dyn Signer, cert: &Cert,
signature_type: S,
hash_algo: H, creation_time: T)
-> Result<Signature>
where S: Into<Option<SignatureType>>,
H: Into<Option<HashAlgorithm>>,
T: Into<Option<time::SystemTime>>
{
let typ = signature_type.into();
let typ = match typ {
Some(SignatureType::GenericCertification)
| Some(SignatureType::PersonaCertification)
| Some(SignatureType::CasualCertification)
| Some(SignatureType::PositiveCertification) => typ.unwrap(),
Some(t) => return Err(Error::InvalidArgument(
format!("Invalid signature type: {}", t)).into()),
None => SignatureType::GenericCertification,
};
let mut sig = signature::SignatureBuilder::new(typ);
if let Some(algo) = hash_algo.into() {
sig = sig.set_hash_algo(algo);
}
if let Some(creation_time) = creation_time.into() {
sig = sig.set_signature_creation_time(creation_time)?;
}
self.bind(signer, cert, sig)
}
}
impl UserAttribute {
/// Creates a binding signature.
///
/// The signature binds this user attribute to `cert`. `signer`
/// will be used to create a signature using `signature` as
/// builder. The`hash_algo` defaults to SHA512, `creation_time`
/// to the current time.
///
/// This function adds a creation time subpacket, a issuer
/// fingerprint subpacket, and a issuer subpacket to the
/// signature.
///
/// # Examples
///
/// This example demonstrates how to bind this user attribute to a
/// Cert. Note that in general, the `CertBuilder` is a better way
/// to add User IDs to a Cert.
///
/// ```
/// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*,
/// # packet::user_attribute::*};
/// # fn main() -> Result<()> {
/// // Generate a Cert, and create a keypair from the primary key.
/// let (cert, _) = CertBuilder::new()
/// .generate()?;
/// let mut keypair = cert.primary_key().key().clone()
/// .parts_into_secret()?.into_keypair()?;
/// assert_eq!(cert.userids().len(), 0);
///
/// // Generate a user attribute and a binding signature.
/// let user_attr = UserAttribute::new(&[
/// Subpacket::Image(
/// Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
/// ])?;
/// let builder =
/// signature::SignatureBuilder::new(SignatureType::PositiveCertification);
/// let binding = user_attr.bind(&mut keypair, &cert, builder)?;
///
/// // Now merge the user attribute and binding signature into the Cert.
/// let cert = cert.insert_packets(vec![Packet::from(user_attr),
/// binding.into()])?;
///
/// // Check that we have a user attribute.
/// assert_eq!(cert.user_attributes().count(), 1);
/// # Ok(()) }
pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
signature: signature::SignatureBuilder)
-> Result<Signature>
{
signature.sign_user_attribute_binding(
signer, cert.primary_key().key(), self)
}
/// Returns a certification for the user attribute.
///
/// The signature binds this user attribute to `cert`. `signer` will be
/// used to create a certification signature of type
/// `signature_type`. `signature_type` defaults to
/// `SignatureType::GenericCertification`, `hash_algo` to SHA512,
/// `creation_time` to the current time.
///
/// This function adds a creation time subpacket, a issuer
/// fingerprint subpacket, and a issuer subpacket to the
/// signature.
///
/// # Errors
///
/// Returns `Error::InvalidArgument` if `signature_type` is not
/// one of `SignatureType::{Generic, Persona, Casual,
/// Positive}Certification`
///
/// # Examples
///
/// This example demonstrates how to certify a User ID.
///
/// ```
/// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*,
/// # packet::user_attribute::*};
/// # fn main() -> Result<()> {
/// // Generate a Cert, and create a keypair from the primary key.
/// let (alice, _) = CertBuilder::new()
/// .add_userid("alice@example.org")
/// .generate()?;
/// let mut keypair = alice.primary_key().key().clone()
/// .parts_into_secret()?.into_keypair()?;
///
/// // Generate a Cert for Bob.
/// let user_attr = UserAttribute::new(&[
/// Subpacket::Image(
/// Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
/// ])?;
/// let (bob, _) = CertBuilder::new()
/// .set_primary_key_flags(KeyFlags::empty().set_certification())
/// .add_user_attribute(user_attr)
/// .generate()?;
///
/// // Alice now certifies the binding between `bob@example.org` and `bob`.
/// let certification =
/// bob.user_attributes().nth(0).unwrap()
/// .certify(&mut keypair, &bob, SignatureType::PositiveCertification,
/// None, None)?;
///
/// // `certification` can now be used, e.g. by merging it into `bob`.
/// let bob = bob.insert_packets(certification)?;
///
/// // Check that we have a certification on the User ID.
/// assert_eq!(bob.user_attributes().nth(0).unwrap()
/// .certifications().count(),
/// 1);
/// # Ok(()) }
pub fn certify<S, H, T>(&self, signer: &mut dyn Signer, cert: &Cert,
signature_type: S,
hash_algo: H, creation_time: T)
-> Result<Signature>
where S: Into<Option<SignatureType>>,
H: Into<Option<HashAlgorithm>>,
T: Into<Option<time::SystemTime>>
{
let typ = signature_type.into();
let typ = match typ {
Some(SignatureType::GenericCertification)
| Some(SignatureType::PersonaCertification)
| Some(SignatureType::CasualCertification)
| Some(SignatureType::PositiveCertification) => typ.unwrap(),
Some(t) => return Err(Error::InvalidArgument(
format!("Invalid signature type: {}", t)).into()),
None => SignatureType::GenericCertification,
};
let mut sig = signature::SignatureBuilder::new(typ);
if let Some(algo) = hash_algo.into() {
sig = sig.set_hash_algo(algo);
}
if let Some(creation_time) = creation_time.into() {
sig = sig.set_signature_creation_time(creation_time)?;
}
self.bind(signer, cert, sig)
}
}