1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
use std::cmp;
use std::convert::TryInto;
use std::fmt;
use std::io;
use buffered_reader::BufferedReader;
use crate::types::{
AEADAlgorithm,
SymmetricAlgorithm,
};
use crate::utils::{
write_be_u64,
};
use crate::Error;
use crate::Result;
use crate::crypto::SessionKey;
use crate::seal;
use crate::parse::Cookie;
/// Minimum AEAD chunk size.
///
/// Implementations MUST support chunk sizes down to 64B.
const MIN_CHUNK_SIZE: usize = 1 << 6; // 64B
/// Maximum AEAD chunk size.
///
/// Implementations MUST support chunk sizes up to 4MiB.
const MAX_CHUNK_SIZE: usize = 1 << 22; // 4MiB
/// Maximum size of any Nonce used by an AEAD mode.
pub const MAX_NONCE_LEN: usize = 16;
/// Converts a chunk size to a usize.
pub(crate) fn chunk_size_usize(chunk_size: u64) -> Result<usize> {
chunk_size.try_into()
.map_err(|_| Error::InvalidOperation(
format!("AEAD chunk size exceeds size of \
virtual memory: {}", chunk_size)).into())
}
/// An AEAD mode of operation.
///
/// # Sealed trait
///
/// This trait is [sealed] and cannot be implemented for types outside this crate.
/// Therefore it can be extended in a non-breaking way.
/// If you want to implement the trait inside the crate
/// you also need to implement the `seal::Sealed` marker trait.
///
/// [sealed]: https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed
pub trait Aead : seal::Sealed {
/// Encrypts one chunk `src` to `dst` adding a digest.
///
/// Note: `dst` must be large enough to accommodate both the
/// ciphertext and the digest!
fn encrypt_seal(&mut self, dst: &mut [u8], src: &[u8]) -> Result<()>;
/// Length of the digest in bytes.
fn digest_size(&self) -> usize;
/// Decrypt one chunk `src` to `dst` and verify that the digest is
/// correct.
fn decrypt_verify(&mut self, dst: &mut [u8], src: &[u8]) -> Result<()>;
}
/// Whether AEAD cipher is used for data encryption or decryption.
pub(crate) enum CipherOp {
/// Cipher is used for data encryption.
Encrypt,
/// Cipher is used for data decryption.
Decrypt,
}
impl AEADAlgorithm {
/// Returns the digest size of the AEAD algorithm.
pub fn digest_size(&self) -> Result<usize> {
use self::AEADAlgorithm::*;
match self {
// According to RFC4880bis, Section 5.16.1.
EAX => Ok(16),
// According to RFC4880bis, Section 5.16.2.
OCB => Ok(16),
GCM => Ok(16),
_ => Err(Error::UnsupportedAEADAlgorithm(*self).into()),
}
}
/// Returns the nonce size of the AEAD algorithm.
pub fn nonce_size(&self) -> Result<usize> {
use self::AEADAlgorithm::*;
match self {
// According to RFC4880bis, Section 5.16.1.
EAX => Ok(16),
// According to RFC4880bis, Section 5.16.2, the IV is "at
// least 15 octets long". GnuPG hardcodes 15 in
// openpgp_aead_algo_info.
OCB => Ok(15),
GCM => Ok(12),
_ => Err(Error::UnsupportedAEADAlgorithm(*self).into()),
}
}
/// Returns the initialization vector size of the AEAD algorithm.
///
/// This function is deprecated. Please use
/// [`AEADAlgorithm::nonce_size`].
#[deprecated = "Use nonce_size"]
pub fn iv_size(&self) -> Result<usize> {
self.nonce_size()
}
}
/// Schedules nonce and additional authenticated data for use with
/// each AEAD chunk.
pub trait Schedule: Send + Sync {
/// Calls `fun` with the appropriate nonce and additional
/// authenticated data.
///
/// This is appropriate for all but the last chunk.
///
/// `index` is the current chunk index.
fn next_chunk<F, R>(&self, index: u64, fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R;
/// Calls `fun` with the appropriate nonce and additional
/// authenticated data for the last chunk.
///
/// This is appropriate for the last chunk.
///
/// `index` is the current chunk index.
fn final_chunk<F, R>(&self, index: u64, length: u64, fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R;
}
const AED1AD_PREFIX_LEN: usize = 5;
pub(crate) struct AEDv1Schedule {
iv: Box<[u8]>,
ad: [u8; AED1AD_PREFIX_LEN],
}
impl AEDv1Schedule {
pub(crate) fn new(sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm,
chunk_size: usize,
iv: &[u8]) -> Result<Self>
{
if !(MIN_CHUNK_SIZE..=MAX_CHUNK_SIZE).contains(&chunk_size) {
return Err(Error::InvalidArgument(
format!("Invalid AEAD chunk size: {}", chunk_size)).into());
}
Ok(Self {
iv: iv.into(),
ad: [
// Prefix.
0xd4, // Packet tag.
1, // Version.
sym_algo.into(),
aead.into(),
chunk_size.trailing_zeros() as u8 - 6,
],
})
}
}
impl Schedule for AEDv1Schedule {
fn next_chunk<F, R>(&self, index: u64, mut fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R,
{
// Prepare the associated data.
let mut ad = [0u8; AED1AD_PREFIX_LEN + 8];
ad[..AED1AD_PREFIX_LEN].copy_from_slice(&self.ad);
write_be_u64(&mut ad[AED1AD_PREFIX_LEN..],
index);
// The nonce is computed by treating the starting
// initialization vector as a 16-octet, big-endian value and
// exclusive-oring the low eight octets of it with the chunk
// index.
let mut nonce_store = [0u8; MAX_NONCE_LEN];
let nonce_len = self.iv.len();
let nonce = &mut nonce_store[..nonce_len];
nonce.copy_from_slice(&self.iv);
let index_be: [u8; 8] = index.to_be_bytes();
for (i, o) in &mut nonce[nonce_len.saturating_sub(8)..].iter_mut()
.enumerate()
{
// The lower eight octets of the associated data
// are the big endian representation of the chunk
// index.
*o ^= index_be[i];
}
fun(nonce, &ad)
}
fn final_chunk<F, R>(&self, index: u64, length: u64, mut fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R,
{
// Prepare the associated data.
let mut ad = [0u8; AED1AD_PREFIX_LEN + 8 + 8];
ad[..AED1AD_PREFIX_LEN].copy_from_slice(&self.ad);
write_be_u64(&mut ad[AED1AD_PREFIX_LEN..AED1AD_PREFIX_LEN + 8],
index);
write_be_u64(&mut ad[AED1AD_PREFIX_LEN + 8..],
length);
// The nonce is computed by treating the starting
// initialization vector as a 16-octet, big-endian value and
// exclusive-oring the low eight octets of it with the chunk
// index.
let mut nonce_store = [0u8; MAX_NONCE_LEN];
let nonce_len = self.iv.len();
let nonce = &mut nonce_store[..nonce_len];
nonce.copy_from_slice(&self.iv);
let index_be: [u8; 8] = index.to_be_bytes();
for (i, o) in &mut nonce[nonce_len.saturating_sub(8)..].iter_mut()
.enumerate()
{
// The lower eight octets of the associated data
// are the big endian representation of the chunk
// index.
*o ^= index_be[i];
}
fun(nonce, &ad)
}
}
/// A `Read`er for decrypting AEAD-encrypted data.
pub struct Decryptor<'a, S: Schedule> {
// The encrypted data.
source: Box<dyn BufferedReader<Cookie> + 'a>,
sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm,
key: SessionKey,
schedule: S,
digest_size: usize,
chunk_size: usize,
chunk_index: u64,
bytes_decrypted: u64,
// Up to a chunk of unread data.
buffer: Vec<u8>,
}
assert_send_and_sync!(Decryptor<'_, S> where S: Schedule);
impl<'a, S: Schedule> Decryptor<'a, S> {
/// Instantiate a new AEAD decryptor.
///
/// `source` is the source to wrap.
pub fn new<R>(sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm, chunk_size: usize,
schedule: S, key: SessionKey, source: R)
-> Result<Self>
where R: io::Read + Send + Sync + 'a
{
Self::from_cookie_reader(
sym_algo, aead, chunk_size, schedule, key,
Box::new(buffered_reader::Generic::with_cookie(
source, None, Default::default())))
}
pub fn from_cookie_reader(sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm, chunk_size: usize,
schedule: S, key: SessionKey,
source: Box<dyn 'a + BufferedReader<Cookie>>)
-> Result<Self>
{
Ok(Decryptor {
source,
sym_algo,
aead,
key,
schedule,
digest_size: aead.digest_size()?,
chunk_size,
chunk_index: 0,
bytes_decrypted: 0,
buffer: Vec::with_capacity(chunk_size),
})
}
// Note: this implementation tries *very* hard to make sure we don't
// gratuitiously do a short read. Specifically, if the return value
// is less than `plaintext.len()`, then it is either because we
// reached the end of the input or an error occurred.
fn read_helper(&mut self, plaintext: &mut [u8]) -> Result<usize> {
let mut pos = 0;
// 1. Copy any buffered data.
if !self.buffer.is_empty() {
let to_copy = cmp::min(self.buffer.len(), plaintext.len());
plaintext[..to_copy].copy_from_slice(&self.buffer[..to_copy]);
crate::vec_drain_prefix(&mut self.buffer, to_copy);
pos = to_copy;
if pos == plaintext.len() {
return Ok(pos);
}
}
// 2. Decrypt the data a chunk at a time until we've filled
// `plaintext`.
//
// Unfortunately, framing is hard.
//
// Recall: AEAD data is of the form:
//
// [ chunk1 ][ tag1 ] ... [ chunkN ][ tagN ][ tagF ]
//
// And, all chunks are the same size except for the last
// chunk, which may be shorter.
//
// The naive approach to decryption is to read a chunk and a
// tag at a time. Unfortunately, this may not work if the
// last chunk is a partial chunk.
//
// Assume that the chunk size is 32 bytes and the digest size
// is 16 bytes, and consider a message with 17 bytes of data.
// That message will be encrypted as follows:
//
// [ chunk1 ][ tag1 ][ tagF ]
// 17B 16B 16B
//
// If we read a chunk and a digest, we'll successfully read 48
// bytes of data. Unfortunately, we'll have over read: the
// last 15 bytes are from the final tag.
//
// To correctly handle this case, we have to make sure that
// there are at least a tag worth of bytes left over when we
// read a chunk and a tag.
let n_chunks
= (plaintext.len() - pos + self.chunk_size - 1) / self.chunk_size;
let chunk_digest_size = self.chunk_size + self.digest_size;
let final_digest_size = self.digest_size;
for _ in 0..n_chunks {
// Do a little dance to avoid exclusively locking
// `self.source`.
let to_read = chunk_digest_size + final_digest_size;
let result = {
match self.source.data(to_read) {
Ok(_) => Ok(self.source.buffer()),
Err(err) => Err(err),
}
};
let check_final_tag;
let chunk = match result {
Ok(chunk) => {
if chunk.is_empty() {
// Exhausted source.
return Ok(pos);
}
if chunk.len() < final_digest_size {
return Err(Error::ManipulatedMessage.into());
}
check_final_tag = chunk.len() < to_read;
// Return the chunk.
&chunk[..cmp::min(chunk.len(), to_read) - final_digest_size]
},
Err(e) => return Err(e.into()),
};
assert!(chunk.len() <= chunk_digest_size);
if chunk.is_empty() {
// There is nothing to decrypt: all that is left is
// the final tag.
} else if chunk.len() <= self.digest_size {
// A chunk has to include at least one byte and a tag.
return Err(Error::ManipulatedMessage.into());
} else {
let mut aead = self.schedule.next_chunk(
self.chunk_index,
|iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Decrypt)
})?;
// Decrypt the chunk and check the tag.
let to_decrypt = chunk.len() - self.digest_size;
// If plaintext doesn't have enough room for the whole
// chunk, then we have to double buffer.
let double_buffer = to_decrypt > plaintext.len() - pos;
let buffer = if double_buffer {
self.buffer.resize(to_decrypt, 0);
&mut self.buffer[..]
} else {
&mut plaintext[pos..pos + to_decrypt]
};
aead.decrypt_verify(buffer, chunk)?;
if double_buffer {
let to_copy = plaintext.len() - pos;
assert!(0 < to_copy);
assert!(to_copy < self.chunk_size);
plaintext[pos..pos + to_copy]
.copy_from_slice(&self.buffer[..to_copy]);
crate::vec_drain_prefix(&mut self.buffer, to_copy);
pos += to_copy;
} else {
pos += to_decrypt;
}
// Increase index, update position in plaintext.
self.chunk_index += 1;
self.bytes_decrypted += to_decrypt as u64;
// Consume the data only on success so that we keep
// returning the error.
let chunk_len = chunk.len();
self.source.consume(chunk_len);
}
if check_final_tag {
// We read the whole ciphertext, now check the final digest.
let mut aead = self.schedule.final_chunk(
self.chunk_index, self.bytes_decrypted,
|iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Decrypt)
})?;
let final_digest = self.source.data(final_digest_size)?;
aead.decrypt_verify(&mut [], final_digest)?;
// Consume the data only on success so that we keep
// returning the error.
self.source.consume(final_digest_size);
break;
}
}
Ok(pos)
}
}
// Note: this implementation tries *very* hard to make sure we don't
// gratuitiously do a short read. Specifically, if the return value
// is less than `plaintext.len()`, then it is either because we
// reached the end of the input or an error occurred.
impl<'a, S: Schedule> io::Read for Decryptor<'a, S> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
match self.read_helper(buf) {
Ok(n) => Ok(n),
Err(e) => match e.downcast::<io::Error>() {
// An io::Error. Pass as-is.
Ok(e) => Err(e),
// A failure. Wrap it.
Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
},
}
}
}
/// A `BufferedReader` that decrypts AEAD-encrypted data as it is
/// read.
pub(crate) struct BufferedReaderDecryptor<'a, S: Schedule> {
reader: buffered_reader::Generic<Decryptor<'a, S>, Cookie>,
}
impl<'a, S: Schedule> BufferedReaderDecryptor<'a, S> {
/// Like `new()`, but sets a cookie, which can be retrieved using
/// the `cookie_ref` and `cookie_mut` methods, and set using
/// the `cookie_set` method.
pub fn with_cookie(sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm, chunk_size: usize, schedule: S,
key: SessionKey, source: Box<dyn BufferedReader<Cookie> + 'a>,
cookie: Cookie)
-> Result<Self>
{
Ok(BufferedReaderDecryptor {
reader: buffered_reader::Generic::with_cookie(
Decryptor::from_cookie_reader(
sym_algo, aead, chunk_size, schedule, key, source)?,
None, cookie),
})
}
}
impl<'a, S: Schedule> io::Read for BufferedReaderDecryptor<'a, S> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.reader.read(buf)
}
}
impl<'a, S: Schedule> fmt::Display for BufferedReaderDecryptor<'a, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "BufferedReaderDecryptor")
}
}
impl<'a, S: Schedule> fmt::Debug for BufferedReaderDecryptor<'a, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("BufferedReaderDecryptor")
.field("reader", &self.get_ref().unwrap())
.finish()
}
}
impl<'a, S: Schedule> BufferedReader<Cookie> for BufferedReaderDecryptor<'a, S> {
fn buffer(&self) -> &[u8] {
self.reader.buffer()
}
fn data(&mut self, amount: usize) -> io::Result<&[u8]> {
self.reader.data(amount)
}
fn data_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
self.reader.data_hard(amount)
}
fn data_eof(&mut self) -> io::Result<&[u8]> {
self.reader.data_eof()
}
fn consume(&mut self, amount: usize) -> &[u8] {
self.reader.consume(amount)
}
fn data_consume(&mut self, amount: usize)
-> io::Result<&[u8]> {
self.reader.data_consume(amount)
}
fn data_consume_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
self.reader.data_consume_hard(amount)
}
fn read_be_u16(&mut self) -> io::Result<u16> {
self.reader.read_be_u16()
}
fn read_be_u32(&mut self) -> io::Result<u32> {
self.reader.read_be_u32()
}
fn steal(&mut self, amount: usize) -> io::Result<Vec<u8>> {
self.reader.steal(amount)
}
fn steal_eof(&mut self) -> io::Result<Vec<u8>> {
self.reader.steal_eof()
}
fn get_mut(&mut self) -> Option<&mut dyn BufferedReader<Cookie>> {
Some(&mut self.reader.reader_mut().source)
}
fn get_ref(&self) -> Option<&dyn BufferedReader<Cookie>> {
Some(&self.reader.reader_ref().source)
}
fn into_inner<'b>(self: Box<Self>)
-> Option<Box<dyn BufferedReader<Cookie> + 'b>> where Self: 'b {
Some(self.reader.into_reader().source.into_boxed())
}
fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
self.reader.cookie_set(cookie)
}
fn cookie_ref(&self) -> &Cookie {
self.reader.cookie_ref()
}
fn cookie_mut(&mut self) -> &mut Cookie {
self.reader.cookie_mut()
}
}
/// A `Write`r for AEAD encrypting data.
pub struct Encryptor<W: io::Write, S: Schedule> {
inner: Option<W>,
sym_algo: SymmetricAlgorithm,
aead: AEADAlgorithm,
key: SessionKey,
schedule: S,
digest_size: usize,
chunk_size: usize,
chunk_index: u64,
bytes_encrypted: u64,
// Up to a chunk of unencrypted data.
buffer: Vec<u8>,
// A place to write encrypted data into.
scratch: Vec<u8>,
}
assert_send_and_sync!(Encryptor<W, S> where W: io::Write, S: Schedule);
impl<W: io::Write, S: Schedule> Encryptor<W, S> {
/// Instantiate a new AEAD encryptor.
pub fn new(sym_algo: SymmetricAlgorithm, aead: AEADAlgorithm,
chunk_size: usize, schedule: S, key: SessionKey, sink: W)
-> Result<Self> {
Ok(Encryptor {
inner: Some(sink),
sym_algo,
aead,
key,
schedule,
digest_size: aead.digest_size()?,
chunk_size,
chunk_index: 0,
bytes_encrypted: 0,
buffer: Vec::with_capacity(chunk_size),
scratch: vec![0; chunk_size + aead.digest_size()?],
})
}
// Like io::Write, but returns our Result.
fn write_helper(&mut self, mut buf: &[u8]) -> Result<usize> {
if self.inner.is_none() {
return Err(io::Error::new(io::ErrorKind::BrokenPipe,
"Inner writer was taken").into());
}
let amount = buf.len();
// First, fill the buffer if there is something in it.
if !self.buffer.is_empty() {
let n = cmp::min(buf.len(), self.chunk_size - self.buffer.len());
self.buffer.extend_from_slice(&buf[..n]);
assert!(self.buffer.len() <= self.chunk_size);
buf = &buf[n..];
// And possibly encrypt the chunk.
if self.buffer.len() == self.chunk_size {
let mut aead =
self.schedule.next_chunk(self.chunk_index, |iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Encrypt)
})?;
let inner = self.inner.as_mut().unwrap();
// Encrypt the chunk.
aead.encrypt_seal(&mut self.scratch, &self.buffer)?;
self.bytes_encrypted += self.chunk_size as u64;
self.chunk_index += 1;
// XXX: clear plaintext buffer.
crate::vec_truncate(&mut self.buffer, 0);
inner.write_all(&self.scratch)?;
}
}
// Then, encrypt all whole chunks.
for chunk in buf.chunks(self.chunk_size) {
if chunk.len() == self.chunk_size {
// Complete chunk.
let mut aead =
self.schedule.next_chunk(self.chunk_index, |iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Encrypt)
})?;
let inner = self.inner.as_mut().unwrap();
// Encrypt the chunk.
aead.encrypt_seal(&mut self.scratch, chunk)?;
self.bytes_encrypted += self.chunk_size as u64;
self.chunk_index += 1;
inner.write_all(&self.scratch)?;
} else {
// Stash for later.
assert!(self.buffer.is_empty());
self.buffer.extend_from_slice(chunk);
}
}
Ok(amount)
}
/// Finish encryption and write last partial chunk.
pub fn finish(&mut self) -> Result<W> {
if let Some(mut inner) = self.inner.take() {
if !self.buffer.is_empty() {
let mut aead =
self.schedule.next_chunk(self.chunk_index, |iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Encrypt)
})?;
// Encrypt the chunk.
unsafe {
// Safety: remaining data is less than the chunk
// size. The vector has capacity chunk size plus
// digest size.
debug_assert!(self.buffer.len() < self.chunk_size);
self.scratch.set_len(self.buffer.len() + self.digest_size)
}
aead.encrypt_seal(&mut self.scratch, &self.buffer)?;
self.bytes_encrypted += self.buffer.len() as u64;
self.chunk_index += 1;
// XXX: clear plaintext buffer
crate::vec_truncate(&mut self.buffer, 0);
inner.write_all(&self.scratch)?;
}
// Write final digest.
let mut aead = self.schedule.final_chunk(
self.chunk_index, self.bytes_encrypted,
|iv, ad| {
self.aead.context(self.sym_algo, &self.key, ad, iv,
CipherOp::Encrypt)
})?;
debug_assert!(self.digest_size <= self.scratch.len());
aead.encrypt_seal(&mut self.scratch[..self.digest_size], b"")?;
inner.write_all(&self.scratch[..self.digest_size])?;
Ok(inner)
} else {
Err(io::Error::new(io::ErrorKind::BrokenPipe,
"Inner writer was taken").into())
}
}
/// Acquires a reference to the underlying writer.
pub fn get_ref(&self) -> Option<&W> {
self.inner.as_ref()
}
/// Acquires a mutable reference to the underlying writer.
#[allow(dead_code)]
pub fn get_mut(&mut self) -> Option<&mut W> {
self.inner.as_mut()
}
}
impl<W: io::Write, S: Schedule> io::Write for Encryptor<W, S> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
match self.write_helper(buf) {
Ok(n) => Ok(n),
Err(e) => match e.downcast::<io::Error>() {
// An io::Error. Pass as-is.
Ok(e) => Err(e),
// A failure. Wrap it.
Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
},
}
}
fn flush(&mut self) -> io::Result<()> {
// It is not clear how we can implement this, because we can
// only operate on chunk sizes. We will, however, ask our
// inner writer to flush.
if let Some(ref mut inner) = self.inner {
inner.flush()
} else {
Err(io::Error::new(io::ErrorKind::BrokenPipe,
"Inner writer was taken"))
}
}
}
impl<W: io::Write, S: Schedule> Drop for Encryptor<W, S> {
fn drop(&mut self) {
// Unfortunately, we cannot handle errors here. If error
// handling is a concern, call finish() and properly handle
// errors there.
let _ = self.finish();
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::{Read, Write};
/// This test tries to encrypt, then decrypt some data.
#[test]
fn roundtrip() {
use std::io::Cursor;
// EAX and OCB can be used with all symmetric algorithms using
// a 16-byte block size.
for sym_algo in [SymmetricAlgorithm::AES128,
SymmetricAlgorithm::AES192,
SymmetricAlgorithm::AES256,
SymmetricAlgorithm::Twofish,
SymmetricAlgorithm::Camellia128,
SymmetricAlgorithm::Camellia192,
SymmetricAlgorithm::Camellia256]
.iter()
.filter(|algo| algo.is_supported()) {
for aead in [
AEADAlgorithm::EAX,
AEADAlgorithm::OCB,
].iter().filter(|algo| algo.is_supported() && algo.supports_symmetric_algo(sym_algo)) {
let chunk_size = 64;
let mut key = vec![0; sym_algo.key_size().unwrap()];
crate::crypto::random(&mut key);
let key: SessionKey = key.into();
let mut iv = vec![0; aead.nonce_size().unwrap()];
crate::crypto::random(&mut iv);
let mut ciphertext = Vec::new();
{
let schedule = AEDv1Schedule::new(
*sym_algo,
*aead,
chunk_size,
&iv).expect("valid parameters");
let mut encryptor = Encryptor::new(*sym_algo,
*aead,
chunk_size,
schedule,
key.clone(),
&mut ciphertext)
.unwrap();
encryptor.write_all(crate::tests::manifesto()).unwrap();
}
let mut plaintext = Vec::new();
{
let schedule = AEDv1Schedule::new(
*sym_algo,
*aead,
chunk_size,
&iv).expect("valid parameters");
let mut decryptor = Decryptor::new(*sym_algo,
*aead,
chunk_size,
schedule,
key,
Cursor::new(&ciphertext))
.unwrap();
decryptor.read_to_end(&mut plaintext).unwrap();
}
assert_eq!(&plaintext[..], crate::tests::manifesto());
}
}
}
}