1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
//! Asymmetric crypto operations.
use crate::packet::{self, key, Key};
use crate::crypto::SessionKey;
use crate::crypto::mpi;
use crate::types::{Curve, HashAlgorithm, PublicKeyAlgorithm};
use crate::{Error, Result};
/// Creates a signature.
///
/// Used in the streaming [`Signer`], the methods binding components
/// to certificates (e.g. [`UserID::bind`]), [`SignatureBuilder`]'s
/// signing functions (e.g. [`SignatureBuilder::sign_standalone`]),
/// and likely many more places.
///
/// [`Signer`]: crate::serialize::stream::Signer
/// [`UserID::bind`]: crate::packet::UserID::bind()
/// [`SignatureBuilder`]: crate::packet::signature::SignatureBuilder
/// [`SignatureBuilder::sign_standalone`]: crate::packet::signature::SignatureBuilder::sign_standalone()
///
/// This is a low-level mechanism to produce an arbitrary OpenPGP
/// signature. Using this trait allows Sequoia to perform all
/// operations involving signing to use a variety of secret key
/// storage mechanisms (e.g. smart cards).
///
/// A signer consists of the public key and a way of creating a
/// signature. This crate implements `Signer` for [`KeyPair`], which
/// is a tuple containing the public and unencrypted secret key in
/// memory. Other crates may provide their own implementations of
/// `Signer` to utilize keys stored in various places. Currently, the
/// following implementations exist:
///
/// - [`KeyPair`]: In-memory keys.
/// - [`sequoia_rpc::gnupg::KeyPair`]: Connects to the `gpg-agent`.
///
/// [`sequoia_rpc::gnupg::KeyPair`]: https://docs.sequoia-pgp.org/sequoia_ipc/gnupg/struct.KeyPair.html
pub trait Signer {
/// Returns a reference to the public key.
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole>;
/// Returns a list of hashes that this signer accepts.
///
/// Some cryptographic libraries or hardware modules support signing digests
/// produced with only a limited set of hashing algorithms. This function
/// indicates to callers which algorithm digests are supported by this signer.
///
/// The default implementation of this function allows all hash algorithms to
/// be used. Provide an explicit implementation only when a smaller subset
/// of hashing algorithms is valid for this `Signer` implementation.
fn acceptable_hashes(&self) -> &[HashAlgorithm] {
&crate::crypto::hash::DEFAULT_HASHES_SORTED
}
/// Creates a signature over the `digest` produced by `hash_algo`.
fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
-> Result<mpi::Signature>;
}
impl Signer for Box<dyn Signer> {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
self.as_ref().public()
}
fn acceptable_hashes(&self) -> &[HashAlgorithm] {
self.as_ref().acceptable_hashes()
}
fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
-> Result<mpi::Signature> {
self.as_mut().sign(hash_algo, digest)
}
}
impl Signer for Box<dyn Signer + Send + Sync> {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
self.as_ref().public()
}
fn acceptable_hashes(&self) -> &[HashAlgorithm] {
self.as_ref().acceptable_hashes()
}
fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
-> Result<mpi::Signature> {
self.as_mut().sign(hash_algo, digest)
}
}
/// Decrypts a message.
///
/// Used by [`PKESK::decrypt`] to decrypt session keys.
///
/// [`PKESK::decrypt`]: crate::packet::PKESK#method.decrypt
///
/// This is a low-level mechanism to decrypt an arbitrary OpenPGP
/// ciphertext. Using this trait allows Sequoia to perform all
/// operations involving decryption to use a variety of secret key
/// storage mechanisms (e.g. smart cards).
///
/// A decryptor consists of the public key and a way of decrypting a
/// session key. This crate implements `Decryptor` for [`KeyPair`],
/// which is a tuple containing the public and unencrypted secret key
/// in memory. Other crates may provide their own implementations of
/// `Decryptor` to utilize keys stored in various places. Currently, the
/// following implementations exist:
///
/// - [`KeyPair`]: In-memory keys.
/// - [`sequoia_rpc::gnupg::KeyPair`]: Connects to the `gpg-agent`.
///
/// [`sequoia_rpc::gnupg::KeyPair`]: https://docs.sequoia-pgp.org/sequoia_ipc/gnupg/struct.KeyPair.html
pub trait Decryptor {
/// Returns a reference to the public key.
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole>;
/// Decrypts `ciphertext`, returning the plain session key.
fn decrypt(&mut self, ciphertext: &mpi::Ciphertext,
plaintext_len: Option<usize>)
-> Result<SessionKey>;
}
impl Decryptor for Box<dyn Decryptor> {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
self.as_ref().public()
}
fn decrypt(&mut self, ciphertext: &mpi::Ciphertext,
plaintext_len: Option<usize>)
-> Result<SessionKey> {
self.as_mut().decrypt(ciphertext, plaintext_len)
}
}
impl Decryptor for Box<dyn Decryptor + Send + Sync> {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
self.as_ref().public()
}
fn decrypt(&mut self, ciphertext: &mpi::Ciphertext,
plaintext_len: Option<usize>)
-> Result<SessionKey> {
self.as_mut().decrypt(ciphertext, plaintext_len)
}
}
/// A cryptographic key pair.
///
/// A `KeyPair` is a combination of public and secret key. If both
/// are available in memory, a `KeyPair` is a convenient
/// implementation of [`Signer`] and [`Decryptor`].
///
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::types::Curve;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
///
/// // Conveniently create a KeyPair from a bare key:
/// let keypair =
/// Key4::<_, key::UnspecifiedRole>::generate_ecc(false, Curve::Cv25519)?
/// .into_keypair()?;
///
/// // Or from a query over a certificate:
/// let (cert, _) =
/// CertBuilder::general_purpose(None, Some("alice@example.org"))
/// .generate()?;
/// let keypair =
/// cert.keys().unencrypted_secret().nth(0).unwrap().key().clone()
/// .into_keypair()?;
/// # Ok(()) }
/// ```
#[derive(Clone)]
pub struct KeyPair {
public: Key<key::PublicParts, key::UnspecifiedRole>,
secret: packet::key::Unencrypted,
}
assert_send_and_sync!(KeyPair);
impl KeyPair {
/// Creates a new key pair.
pub fn new(public: Key<key::PublicParts, key::UnspecifiedRole>,
secret: packet::key::Unencrypted)
-> Result<Self>
{
Ok(Self {
public,
secret,
})
}
/// Returns a reference to the public key.
pub fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
&self.public
}
/// Returns a reference to the secret key.
pub fn secret(&self) -> &packet::key::Unencrypted {
&self.secret
}
}
impl From<KeyPair> for Key<key::SecretParts, key::UnspecifiedRole> {
fn from(p: KeyPair) -> Self {
let (key, secret) = (p.public, p.secret);
key.add_secret(secret.into()).0
}
}
impl Signer for KeyPair {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
KeyPair::public(self)
}
fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
-> Result<mpi::Signature>
{
use crate::crypto::backend::{Backend, interface::Asymmetric};
self.secret().map(|secret| {
match (self.public().pk_algo(), self.public().mpis(), secret) {
(PublicKeyAlgorithm::EdDSA,
mpi::PublicKey::EdDSA { curve, q },
mpi::SecretKeyMaterial::EdDSA { scalar }) => match curve {
Curve::Ed25519 => {
let public = q.decode_point(&Curve::Ed25519)?.0
.try_into()?;
let secret = scalar.value_padded(32);
let sig =
Backend::ed25519_sign(&secret, &public, digest)?;
Ok(mpi::Signature::EdDSA {
r: mpi::MPI::new(&sig[..32]),
s: mpi::MPI::new(&sig[32..]),
})
},
_ => Err(
Error::UnsupportedEllipticCurve(curve.clone()).into()),
},
(_algo, _public, secret) =>
self.sign_backend(secret, hash_algo, digest),
}
})
}
}
impl Decryptor for KeyPair {
fn public(&self) -> &Key<key::PublicParts, key::UnspecifiedRole> {
KeyPair::public(self)
}
fn decrypt(&mut self,
ciphertext: &mpi::Ciphertext,
plaintext_len: Option<usize>)
-> Result<SessionKey>
{
use crate::crypto::backend::{Backend, interface::Asymmetric};
self.secret().map(|secret| {
#[allow(non_snake_case)]
#[allow(clippy::match_single_binding)]
match (self.public().mpis(), secret, ciphertext) {
(mpi::PublicKey::ECDH { curve: Curve::Cv25519, .. },
mpi::SecretKeyMaterial::ECDH { scalar, },
mpi::Ciphertext::ECDH { e, .. }) =>
{
// Get the public part V of the ephemeral key.
let V = e.decode_point(&Curve::Cv25519)?.0;
// X25519 expects the private key to be exactly 32
// bytes long but OpenPGP allows leading zeros to
// be stripped. Padding has to be unconditional;
// otherwise we have a secret-dependent branch.
let mut r = scalar.value_padded(32);
// Reverse the scalar. See
// https://lists.gnupg.org/pipermail/gnupg-devel/2018-February/033437.html
r.reverse();
// Compute the shared point S = rV = rvG, where
// (r, R) is the recipient's key pair.
let S = Backend::x25519_shared_point(&r, &V.try_into()?)?;
crate::crypto::ecdh::decrypt_unwrap2(
self.public(), &S, ciphertext, plaintext_len)
},
(_public, secret, _ciphertext) =>
self.decrypt_backend(secret, ciphertext, plaintext_len),
}
})
}
}