1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
//! Elliptic-curve Diffie-Hellman.
//!
//! Sequoia implements the Elliptic-curve Diffie-Hellman key agreement
//! protocol for use in OpenPGP as described by [RFC 6637]. In short,
//! a shared secret is derived using Elliptic-curve Diffie-Hellman, a
//! wrapping key is derived from that shared secret, and the message's
//! session key is wrapped using that wrapping key.
//!
//! [RFC 6637]: https://tools.ietf.org/html/rfc6637
use crate::vec_truncate;
use crate::{Error, Result};
use crate::crypto::SessionKey;
use crate::crypto::hash::Digest;
use crate::crypto::mem::Protected;
use crate::crypto::mpi::{self, MPI};
use crate::key;
use crate::packet::Key;
use crate::types::{Curve, HashAlgorithm, PublicKeyAlgorithm, SymmetricAlgorithm};
use crate::utils::{read_be_u64, write_be_u64};
#[allow(unused_imports)]
pub(crate) use crate::crypto::backend::ecdh::{encrypt, decrypt};
/// Returns the default ECDH KDF hash function.
pub(crate) fn default_ecdh_kdf_hash(curve: &Curve) -> HashAlgorithm {
match curve {
Curve::Cv25519 => HashAlgorithm::SHA256,
// From RFC6637:
Curve::NistP256 => HashAlgorithm::SHA256,
Curve::NistP384 => HashAlgorithm::SHA384,
Curve::NistP521 => HashAlgorithm::SHA512,
// Extrapolated from RFC6637:
Curve::BrainpoolP256 => HashAlgorithm::SHA256,
Curve::BrainpoolP512 => HashAlgorithm::SHA512,
// Conservative default.
Curve::Ed25519 // Odd: Not an encryption algo.
| Curve::Unknown(_) => HashAlgorithm::SHA512,
}
}
/// Returns the default ECDH KEK cipher.
pub(crate) fn default_ecdh_kek_cipher(curve: &Curve) -> SymmetricAlgorithm {
match curve {
Curve::Cv25519 => SymmetricAlgorithm::AES128,
// From RFC6637:
Curve::NistP256 => SymmetricAlgorithm::AES128,
Curve::NistP384 => SymmetricAlgorithm::AES192,
Curve::NistP521 => SymmetricAlgorithm::AES256,
// Extrapolated from RFC6637:
Curve::BrainpoolP256 => SymmetricAlgorithm::AES128,
Curve::BrainpoolP512 => SymmetricAlgorithm::AES256,
// Conservative default.
Curve::Ed25519 // Odd: Not an encryption algo.
| Curve::Unknown(_) => SymmetricAlgorithm::AES256,
}
}
/// Wraps a session key.
///
/// After using Elliptic-curve Diffie-Hellman to compute the shared
/// secret, this function deterministically derives the wrapping key
/// from the shared secret, and uses it to wrap (i.e. encrypt) the
/// given session key.
///
/// `VB` is the ephemeral public key encoded appropriately as MPI
/// (i.e. with the 0x40 prefix for X25519, or 0x04 for the NIST
/// curves), `S` is the shared Diffie-Hellman secret.
#[allow(non_snake_case, dead_code)]
pub(crate) fn encrypt_wrap<R>(recipient: &Key<key::PublicParts, R>,
session_key: &SessionKey, VB: MPI,
S: &Protected)
-> Result<mpi::Ciphertext>
where R: key::KeyRole
{
match recipient.mpis() {
mpi::PublicKey::ECDH { ref curve, ref hash, ref sym,.. } => {
// m = sym_alg_ID || session key || checksum || pkcs5_padding;
let mut m = Vec::with_capacity(40);
m.extend_from_slice(session_key);
let m = pkcs5_pad(m.into(), 40)?;
// Note: We always pad up to 40 bytes to obfuscate the
// length of the symmetric key.
// Compute KDF input.
let param = make_param(recipient, curve, hash, sym);
// Z_len = the key size for the KEK_alg_ID used with AESKeyWrap
// Compute Z = KDF( S, Z_len, Param );
#[allow(non_snake_case)]
let Z = kdf(S, sym.key_size()?, *hash, ¶m)?;
// Compute C = AESKeyWrap( Z, m ) as per [RFC3394]
#[allow(non_snake_case)]
let C = aes_key_wrap(*sym, &Z, &m)?;
// Output (MPI(VB) || len(C) || C).
Ok(mpi::Ciphertext::ECDH {
e: VB,
key: C.into_boxed_slice(),
})
}
_ =>
Err(Error::InvalidArgument("Expected an ECDHPublicKey".into()).into()),
}
}
/// Unwraps a session key.
///
/// After using Elliptic-curve Diffie-Hellman to compute the shared
/// secret, this function deterministically derives the wrapping key
/// from the shared secret, and uses it to unwrap (i.e. decrypt) the
/// session key.
///
/// `recipient` is the message receiver's public key, `S` is the
/// shared Diffie-Hellman secret used to encrypt `ciphertext`.
#[allow(non_snake_case)]
pub fn decrypt_unwrap2(recipient: &Key<key::PublicParts,
key::UnspecifiedRole>,
S: &Protected,
ciphertext: &mpi::Ciphertext,
plaintext_len: Option<usize>)
-> Result<SessionKey>
{
match (recipient.mpis(), ciphertext) {
(mpi::PublicKey::ECDH { ref curve, ref hash, ref sym, ..},
mpi::Ciphertext::ECDH { ref key, .. }) => {
// Compute KDF input.
let param = make_param(recipient, curve, hash, sym);
// Z_len = the key size for the KEK_alg_ID used with AESKeyWrap
// Compute Z = KDF( S, Z_len, Param );
#[allow(non_snake_case)]
let Z = kdf(S, sym.key_size()?, *hash, ¶m)?;
// Compute m = AESKeyUnwrap( Z, C ) as per [RFC3394]
let m = aes_key_unwrap(*sym, &Z, key)?;
let plaintext_len =
plaintext_len.ok_or_else(|| Error::InvalidOperation(
"Need the plaintext length to decrypt this PKESK".into()))
.or_else(|_| -> Result<usize> {
let cipher = SymmetricAlgorithm::from(m[0]);
Ok(1 + cipher.key_size()? + 2)
})?;
let m = pkcs5_unpad(m, plaintext_len)?;
Ok(m.into())
},
_ =>
Err(Error::InvalidArgument(
"Expected an ECDH key and ciphertext".into()).into()),
}
}
/// Unwraps a session key.
#[allow(non_snake_case)]
#[deprecated(note = "Use decrypt_unwrap2")]
pub fn decrypt_unwrap<R>(recipient: &Key<key::PublicParts, R>,
S: &Protected,
ciphertext: &mpi::Ciphertext)
-> Result<SessionKey>
where R: key::KeyRole
{
decrypt_unwrap2(recipient.role_as_unspecified(), S, ciphertext, None)
}
/// Derives a secret key for session key wrapping.
///
/// See [Section 7 of RFC 6637].
///
/// [Section 7 of RFC 6637]: https://tools.ietf.org/html/rfc6637#section-7
fn kdf(x: &Protected, obits: usize, hash: HashAlgorithm, param: &[u8])
-> Result<Protected> {
let mut hash = hash.context()?;
if obits > hash.digest_size() {
return Err(
Error::InvalidArgument("Hash digest too short".into()).into());
}
hash.update(&[0, 0, 0, 1]);
hash.update(x);
hash.update(param);
// Providing a smaller buffer will truncate the digest.
let mut key: Protected = vec![0; obits].into();
hash.digest(&mut key)?;
Ok(key)
}
/// Pads a session key using PKCS5.
///
/// See [Section 8 of RFC 6637].
///
/// [Section 8 of RFC 6637]: https://tools.ietf.org/html/rfc6637#section-8
#[allow(dead_code)]
fn pkcs5_pad(sk: Protected, target_len: usize) -> Result<Protected> {
if sk.len() > target_len {
return Err(Error::InvalidArgument(
"Plaintext data too large".into()).into());
}
// !!! THIS FUNCTION MUST NOT FAIL FROM THIS POINT ON !!!
let mut buf: Vec<u8> = sk.expose_into_unprotected_vec();
let missing = target_len - buf.len();
assert!(missing <= 0xff);
for _ in 0..missing {
buf.push(missing as u8);
}
assert_eq!(buf.len(), target_len);
Ok(buf.into())
}
/// Removes PKCS5 padding from a session key.
///
/// See [Section 8 of RFC 6637].
///
/// [Section 8 of RFC 6637]: https://tools.ietf.org/html/rfc6637#section-8
fn pkcs5_unpad(sk: Protected, target_len: usize) -> Result<Protected> {
if sk.len() > 0xff {
return Err(Error::InvalidArgument("message too large".into()).into());
}
if sk.len() < target_len {
return Err(Error::InvalidArgument("message too small".into()).into());
}
let mut buf: Vec<u8> = sk.expose_into_unprotected_vec();
let mut good = true;
let missing = (buf.len() - target_len) as u8;
for &b in &buf[target_len..] {
good = b == missing && good;
}
if good {
vec_truncate(&mut buf, target_len);
Ok(buf.into())
} else {
let sk: Protected = buf.into();
drop(sk);
Err(Error::InvalidArgument("bad padding".into()).into())
}
}
/// Wraps a key using the AES Key Wrap Algorithm.
///
/// See [RFC 3394].
///
/// [RFC 3394]: https://tools.ietf.org/html/rfc3394
pub fn aes_key_wrap(algo: SymmetricAlgorithm, key: &Protected,
plaintext: &Protected)
-> Result<Vec<u8>> {
if plaintext.len() % 8 != 0 {
return Err(Error::InvalidArgument(
"Plaintext must be a multiple of 8".into()).into());
}
if key.len() != algo.key_size()? {
return Err(Error::InvalidArgument("Bad key size".into()).into());
}
let mut cipher = algo.make_encrypt_ecb(key)?;
// Inputs: Plaintext, n 64-bit values {P1, P2, ..., Pn}, and
// Key, K (the KEK).
// Outputs: Ciphertext, (n+1) 64-bit values {C0, C1, ..., Cn}.
let n = plaintext.len() / 8;
let mut ciphertext = vec![0; 8 + plaintext.len()];
// 1) Initialize variables.
//
// Set A = IV, an initial value (see 2.2.3)
let mut a = AES_KEY_WRAP_IV;
{
// For i = 1 to n
// R[i] = P[i]
let r = &mut ciphertext[8..];
r.copy_from_slice(plaintext);
let mut b = [0; 16];
let mut tmp = [0; 16];
// 2) Calculate intermediate values.
// For j = 0 to 5
for j in 0..6 {
// For i=1 to n
for i in 0..n {
// B = AES(K, A | R[i])
write_be_u64(&mut tmp[..8], a);
tmp[8..].copy_from_slice(&r[8 * i..8 * (i + 1)]);
cipher.encrypt(&mut b, &tmp)?;
// A = MSB(64, B) ^ t where t = (n*j)+i
a = read_be_u64(&b[..8]) ^ ((n * j) + i + 1) as u64;
// (Note that our i runs from 0 to n-1 instead of 1 to
// n, hence the index shift.
// R[i] = LSB(64, B)
r[8 * i..8 * (i + 1)].copy_from_slice(&b[8..]);
}
}
}
// 3) Output the results.
//
// Set C[0] = A
// For i = 1 to n
// C[i] = R[i]
write_be_u64(&mut ciphertext[..8], a);
Ok(ciphertext)
}
/// Unwraps an encrypted key using the AES Key Wrap Algorithm.
///
/// See [RFC 3394].
///
/// [RFC 3394]: https://tools.ietf.org/html/rfc3394
pub fn aes_key_unwrap(algo: SymmetricAlgorithm, key: &Protected,
ciphertext: &[u8])
-> Result<Protected> {
if ciphertext.len() % 8 != 0 {
return Err(Error::InvalidArgument(
"Ciphertext must be a multiple of 8".into()).into());
}
if key.len() != algo.key_size()? {
return Err(Error::InvalidArgument("Bad key size".into()).into());
}
let mut cipher = algo.make_decrypt_ecb(key)?;
// Inputs: Ciphertext, (n+1) 64-bit values {C0, C1, ..., Cn}, and
// Key, K (the KEK).
// Outputs: Plaintext, n 64-bit values {P1, P2, ..., Pn}.
let n = ciphertext.len() / 8 - 1;
let mut plaintext = Vec::with_capacity(ciphertext.len() - 8);
// 1) Initialize variables.
//
// Set A = C[0]
// For i = 1 to n
// R[i] = C[i]
let mut a = read_be_u64(&ciphertext[..8]);
plaintext.extend_from_slice(&ciphertext[8..]);
let mut plaintext: Protected = plaintext.into();
// 2) Calculate intermediate values.
{
let r = &mut plaintext;
let mut b = [0; 16];
let mut tmp = [0; 16];
// For j = 5 to 0
for j in (0..=5).rev() {
// For i = n to 1
for i in (0..=n-1).rev() {
// B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
write_be_u64(&mut tmp[..8], a ^ ((n * j) + i + 1) as u64);
tmp[8..].copy_from_slice(&r[8 * i..8 * (i + 1)]);
// (Note that our i runs from n-1 to 0 instead of n to
// 1, hence the index shift.
cipher.decrypt(&mut b, &tmp)?;
// A = MSB(64, B)
a = read_be_u64(&b[..8]);
// R[i] = LSB(64, B)
r[8 * i..8 * (i + 1)].copy_from_slice(&b[8..]);
}
}
}
// 3) Output results.
//
// If A is an appropriate initial value (see 2.2.3),
// Then
// For i = 1 to n
// P[i] = R[i]
// Else
// Return an error
if a == AES_KEY_WRAP_IV {
Ok(plaintext)
} else {
Err(Error::InvalidArgument("Bad key".into()).into())
}
}
fn make_param<P, R>(recipient: &Key<P, R>,
curve: &Curve, hash: &HashAlgorithm,
sym: &SymmetricAlgorithm)
-> Vec<u8>
where P: key::KeyParts,
R: key::KeyRole
{
// Param = curve_OID_len || curve_OID ||
// public_key_alg_ID || 03 || 01 || KDF_hash_ID ||
// KEK_alg_ID for AESKeyWrap || "Anonymous Sender " ||
// recipient_fingerprint;
let fp = recipient.fingerprint();
let mut param = Vec::with_capacity(
1 + curve.oid().len() // Length and Curve OID,
+ 1 // Public key algorithm ID,
+ 4 // KDF parameters,
+ 20 // "Anonymous Sender ",
+ fp.as_bytes().len()); // Recipients key fingerprint.
param.push(curve.oid().len() as u8);
param.extend_from_slice(curve.oid());
param.push(PublicKeyAlgorithm::ECDH.into());
// KDF parameters.
param.push(3); // Octet count of the following parameters.
param.push(1); // 1-octet value 0x01, reserved for future extensions.
param.push((*hash).into());
param.push((*sym).into());
param.extend_from_slice(b"Anonymous Sender ");
param.extend_from_slice(fp.as_bytes());
assert_eq!(param.len(),
1 + curve.oid().len() // Length and Curve OID,
+ 1 // Public key algorithm ID,
+ 4 // KDF parameters,
+ 20 // "Anonymous Sender ",
+ fp.as_bytes().len()); // Recipients key fingerprint.
param
}
const AES_KEY_WRAP_IV: u64 = 0xa6a6a6a6a6a6a6a6;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn pkcs5_padding() {
let v = pkcs5_pad(vec![0, 0, 0].into(), 8).unwrap();
assert_eq!(&v, &Protected::from(&[0, 0, 0, 5, 5, 5, 5, 5][..]));
let v = pkcs5_unpad(v, 3).unwrap();
assert_eq!(&v, &Protected::from(&[0, 0, 0][..]));
let v = pkcs5_pad(vec![].into(), 8).unwrap();
assert_eq!(&v, &Protected::from(&[8, 8, 8, 8, 8, 8, 8, 8][..]));
let v = pkcs5_unpad(v, 0).unwrap();
assert_eq!(&v, &Protected::from(&[][..]));
}
#[test]
fn aes_wrapping() {
struct Test {
algo: SymmetricAlgorithm,
kek: &'static [u8],
key_data: &'static [u8],
ciphertext: &'static [u8],
}
// These are the test vectors from RFC3394.
const TESTS: &[Test] = &[
Test {
algo: SymmetricAlgorithm::AES128,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF],
ciphertext: &[0x1F, 0xA6, 0x8B, 0x0A, 0x81, 0x12, 0xB4, 0x47,
0xAE, 0xF3, 0x4B, 0xD8, 0xFB, 0x5A, 0x7B, 0x82,
0x9D, 0x3E, 0x86, 0x23, 0x71, 0xD2, 0xCF, 0xE5],
},
Test {
algo: SymmetricAlgorithm::AES192,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF],
ciphertext: &[0x96, 0x77, 0x8B, 0x25, 0xAE, 0x6C, 0xA4, 0x35,
0xF9, 0x2B, 0x5B, 0x97, 0xC0, 0x50, 0xAE, 0xD2,
0x46, 0x8A, 0xB8, 0xA1, 0x7A, 0xD8, 0x4E, 0x5D],
},
Test {
algo: SymmetricAlgorithm::AES256,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF],
ciphertext: &[0x64, 0xE8, 0xC3, 0xF9, 0xCE, 0x0F, 0x5B, 0xA2,
0x63, 0xE9, 0x77, 0x79, 0x05, 0x81, 0x8A, 0x2A,
0x93, 0xC8, 0x19, 0x1E, 0x7D, 0x6E, 0x8A, 0xE7],
},
Test {
algo: SymmetricAlgorithm::AES192,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07],
ciphertext: &[0x03, 0x1D, 0x33, 0x26, 0x4E, 0x15, 0xD3, 0x32,
0x68, 0xF2, 0x4E, 0xC2, 0x60, 0x74, 0x3E, 0xDC,
0xE1, 0xC6, 0xC7, 0xDD, 0xEE, 0x72, 0x5A, 0x93,
0x6B, 0xA8, 0x14, 0x91, 0x5C, 0x67, 0x62, 0xD2],
},
Test {
algo: SymmetricAlgorithm::AES256,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07],
ciphertext: &[0xA8, 0xF9, 0xBC, 0x16, 0x12, 0xC6, 0x8B, 0x3F,
0xF6, 0xE6, 0xF4, 0xFB, 0xE3, 0x0E, 0x71, 0xE4,
0x76, 0x9C, 0x8B, 0x80, 0xA3, 0x2C, 0xB8, 0x95,
0x8C, 0xD5, 0xD1, 0x7D, 0x6B, 0x25, 0x4D, 0xA1],
},
Test {
algo: SymmetricAlgorithm::AES256,
kek: &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F],
key_data: &[0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F],
ciphertext: &[0x28, 0xC9, 0xF4, 0x04, 0xC4, 0xB8, 0x10, 0xF4,
0xCB, 0xCC, 0xB3, 0x5C, 0xFB, 0x87, 0xF8, 0x26,
0x3F, 0x57, 0x86, 0xE2, 0xD8, 0x0E, 0xD3, 0x26,
0xCB, 0xC7, 0xF0, 0xE7, 0x1A, 0x99, 0xF4, 0x3B,
0xFB, 0x98, 0x8B, 0x9B, 0x7A, 0x02, 0xDD, 0x21],
},
];
for test in TESTS {
let ciphertext = aes_key_wrap(test.algo,
&test.kek.into(),
&test.key_data.into())
.unwrap();
assert_eq!(test.ciphertext, &ciphertext[..]);
let key_data = aes_key_unwrap(test.algo,
&test.kek.into(),
&ciphertext[..])
.unwrap();
assert_eq!(&Protected::from(test.key_data), &key_data);
}
}
#[test]
fn cv25519_generation() -> Result<()> {
const CURVE25519_SIZE: usize = 32;
fn check_clamping<S: AsRef<[u8]>>(s: S) {
// Curve25519 Paper, Sec. 3: A user can, for example,
// generate 32 uniform random bytes, clear bits 0, 1, 2 of
// the first byte, clear bit 7 of the last byte, and set
// bit 6 of the last byte.
// OpenPGP stores the secret in reverse order.
const FIRST: usize = CURVE25519_SIZE - 1;
const LAST: usize = 0;
let s = s.as_ref();
assert_eq!(s[FIRST] & ! 0b1111_1000, 0,
"bits 0, 1 and 2 of the first byte should be cleared");
assert_eq!(s[LAST] & 0b1100_0000, 0b0100_0000,
"bits 7 should be cleared and bit 6 should be set in the last byte");
}
for _ in 0..5 {
let k: key::Key4<_, key::SubordinateRole> =
key::Key4::generate_ecc(false, Curve::Cv25519)?;
match k.secret() {
key::SecretKeyMaterial::Unencrypted(m) => m.map(|mpis| {
match mpis {
mpi::SecretKeyMaterial::ECDH { scalar } =>
check_clamping(scalar.value()),
o => panic!("unexpected key material: {:?}", o),
}
}),
o => panic!("expected unencrypted material: {:?}", o),
}
}
Ok(())
}
}