1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//! Memory protection and encryption.
//!
//! Sequoia makes an effort to protect secrets stored in memory. Even
//! though a process's memory should be protected from being read by an
//! adversary, there may be bugs in the program or the architecture
//! the program is running on that allow (partial) recovery of data.
//! Or, the process may be serialized to persistent storage, and its
//! memory may be inspected while it is not running.
//!
//! To reduce the window for these kind of exfiltrations, we use
//! [`Protected`] to clear the memory once it is no longer in use, and
//! [`Encrypted`] to protect long-term secrets like passwords and
//! secret keys.
//!
//!
//! Furthermore, operations involving secrets must be carried out in a
//! way that avoids leaking information. For example, comparison
//! must be done in constant time with [`secure_cmp`].
//!
//! [`secure_cmp`]: secure_cmp()
use std::cmp::{min, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
/// Whether to trace execution by default (on stderr).
const TRACE: bool = false;
/// Protected memory.
///
/// The memory is guaranteed not to be copied around, and is cleared
/// when the object is dropped.
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Protected;
///
/// {
/// let p: Protected = vec![0, 1, 2].into();
/// assert_eq!(p.as_ref(), &[0, 1, 2]);
/// }
///
/// // p is cleared once it goes out of scope.
/// ```
// # Note on the implementation
//
// We use a boxed slice, then Box::leak the Box. This takes the
// knowledge about the shape of the heap allocation away from Rust,
// preventing any optimization based on that.
//
// For example, Rust could conceivably compact the heap: The borrow
// checker knows when no references exist, and this is an excellent
// opportunity to move the object on the heap because only one pointer
// needs to be updated.
pub struct Protected(*mut [u8]);
// Safety: Box<[u8]> is Send and Sync, we do not expose any
// functionality that was not possible before, hence Protected may
// still be Send and Sync.
unsafe impl Send for Protected {}
unsafe impl Sync for Protected {}
impl Clone for Protected {
fn clone(&self) -> Self {
// Make a vector with the correct size to avoid potential
// reallocations when turning it into a `Protected`.
let mut p = Vec::with_capacity(self.len());
p.extend_from_slice(self);
p.into_boxed_slice().into()
}
}
impl PartialEq for Protected {
fn eq(&self, other: &Self) -> bool {
secure_cmp(self, other) == Ordering::Equal
}
}
impl Eq for Protected {}
impl Hash for Protected {
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_ref().hash(state);
}
}
impl Protected {
/// Allocates a chunk of protected memory.
///
/// Effective protection of sensitive values requires avoiding any
/// copying and reallocations. Therefore, it is required to
/// provide the size upfront at allocation time, then copying the
/// secrets into this protected memory region.
pub fn new(size: usize) -> Protected {
vec![0; size].into_boxed_slice().into()
}
/// Converts to a buffer for modification.
///
/// Don't expose `Protected` values unless you know what you're doing.
pub(crate) fn expose_into_unprotected_vec(self) -> Vec<u8> {
let mut p = Vec::with_capacity(self.len());
p.extend_from_slice(&self);
p
}
}
impl Deref for Protected {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl AsRef<[u8]> for Protected {
fn as_ref(&self) -> &[u8] {
unsafe { &*self.0 }
}
}
impl AsMut<[u8]> for Protected {
fn as_mut(&mut self) -> &mut [u8] {
unsafe { &mut *self.0 }
}
}
impl DerefMut for Protected {
fn deref_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl From<Vec<u8>> for Protected {
fn from(mut v: Vec<u8>) -> Self {
// Make a careful copy of the data. We do this instead of
// reusing v's allocation so that our allocation has the exact
// size.
let p = Protected::from(&v[..]);
// Now clear the previous allocation. Just to be safe, we
// clear the whole allocation.
let capacity = v.capacity();
unsafe {
// Safety: New size is equal to the capacity, and we
// initialize all elements.
v.set_len(capacity);
memsec::memzero(v.as_mut_ptr(), capacity);
}
p
}
}
/// Zeros N bytes on the stack after running the given closure.
///
/// Note: In general, don't use this function directly, use the more
/// convenient and robust macro zero_stack! instead, like so:
///
/// ```ignore
/// zero_stack!(128 bytes after running {
/// let mut a = [0; 6];
/// a.copy_from_slice(b"secret");
/// })
/// ```
///
/// Or, if you need to specify the type of the expression:
///
/// ```ignore
/// zero_stack!(128 bytes after running || -> () {
/// let mut a = [0; 6];
/// a.copy_from_slice(b"secret");
/// })
/// ```
///
/// If you must use this function directly, make sure to declare `fun`
/// as `#[inline(never)]`.
#[allow(dead_code)]
#[inline(never)]
pub(crate) fn zero_stack_after<const N: usize, T>(fun: impl FnOnce() -> T) -> T
{
zero_stack::<N, T>(fun())
}
/// Zeros N bytes on the stack, returning the given value.
///
/// Note: In general, don't use this function directly. This is only
/// effective if `v` has been computed by a function that has been
/// marked as `#[inline(never)]`. However, since the inline attribute
/// is only a hint that may be freely ignored by the compiler, it is
/// sometimes necessary to use this function directly.
#[allow(dead_code)]
#[inline(never)]
pub(crate) fn zero_stack<const N: usize, T>(v: T) -> T {
tracer!(TRACE, "zero_stack");
let mut a = [0xffu8; N];
t!("zeroing {:?}..{:?}", a.as_ptr(), unsafe { a.as_ptr().offset(N as _) });
unsafe {
memsec::memzero(a.as_mut_ptr(), a.len());
}
std::hint::black_box(a);
v
}
/// Very carefully copies the slice.
///
/// The obvious `to.copy_from_slice(from);` indeed leaks secrets.
pub(crate) fn careful_memcpy(from: &[u8], to: &mut [u8]) {
from.iter().zip(to.iter_mut()).for_each(|(f, t)| *t = *f);
}
impl From<Box<[u8]>> for Protected {
fn from(v: Box<[u8]>) -> Self {
Protected(Box::leak(v))
}
}
impl From<&[u8]> for Protected {
fn from(v: &[u8]) -> Self {
let mut p = Protected::new(v.len());
careful_memcpy(v, &mut p);
p
}
}
impl<const N: usize> From<[u8; N]> for Protected {
fn from(mut v: [u8; N]) -> Self {
let mut p = Protected::new(v.len());
careful_memcpy(&v, &mut p);
unsafe {
memsec::memzero(v.as_mut_ptr(), v.len());
}
p
}
}
impl Drop for Protected {
fn drop(&mut self) {
unsafe {
let len = self.len();
memsec::memzero(self.as_mut().as_mut_ptr(), len);
drop(Box::from_raw(self.0));
}
}
}
impl fmt::Debug for Protected {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if cfg!(debug_assertions) {
write!(f, "{:?}", self.0)
} else {
f.write_str("[<Redacted>]")
}
}
}
/// Encrypted memory.
///
/// This type encrypts sensitive data, such as secret keys, in memory
/// while they are unused, and decrypts them on demand. This protects
/// against cross-protection-boundary readout via microarchitectural
/// flaws like Spectre or Meltdown, via attacks on physical layout
/// like Rowbleed, and even via coldboot attacks.
///
/// The key insight is that these kinds of attacks are imperfect,
/// i.e. the recovered data contains bitflips, or the attack only
/// provides a probability for any given bit. Applied to
/// cryptographic keys, these kind of imperfect attacks are enough to
/// recover the actual key.
///
/// This implementation on the other hand, derives a sealing key from
/// a large area of memory, the "pre-key", using a key derivation
/// function. Now, any single bitflip in the readout of the pre-key
/// will avalanche through all the bits in the sealing key, rendering
/// it unusable with no indication of where the error occurred.
///
/// This kind of protection was pioneered by OpenSSH. The commit
/// adding it can be found
/// [here](https://marc.info/?l=openbsd-cvs&m=156109087822676).
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Encrypted;
///
/// let e = Encrypted::new(vec![0, 1, 2].into());
/// e.map(|p| {
/// // e is temporarily decrypted and made available to the closure.
/// assert_eq!(p.as_ref(), &[0, 1, 2]);
/// // p is cleared once the function returns.
/// });
/// ```
#[derive(Clone, Debug)]
pub struct Encrypted {
ciphertext: Protected,
salt: [u8; 32],
plaintext_len: usize,
}
assert_send_and_sync!(Encrypted);
impl PartialEq for Encrypted {
fn eq(&self, other: &Self) -> bool {
// Protected::eq is time-constant.
self.map(|a| other.map(|b| a == b))
}
}
impl Eq for Encrypted {}
impl Hash for Encrypted {
fn hash<H: Hasher>(&self, state: &mut H) {
self.map(|k| Hash::hash(k, state));
}
}
/// Opt out of memory encryption.
const DANGER_DISABLE_ENCRYPTED_MEMORY: bool = false;
/// The number of pages containing random bytes to derive the prekey
/// from.
const ENCRYPTED_MEMORY_PREKEY_PAGES: usize = 4;
/// Page size.
const ENCRYPTED_MEMORY_PAGE_SIZE: usize = 4096;
/// This module contains the code that needs to access the prekey.
///
/// Code outside of it cannot access it, because `PREKEY` is private.
mod has_access_to_prekey {
use std::io::{self, Read, Write};
use buffered_reader::Memory;
use crate::types::{AEADAlgorithm, HashAlgorithm, SymmetricAlgorithm};
use crate::crypto::{aead, SessionKey};
use crate::crypto::hash::Digest;
use super::*;
lazy_static::lazy_static! {
static ref PREKEY: Box<[Box<[u8]>]> = {
let mut pages = Vec::new();
for _ in 0..ENCRYPTED_MEMORY_PREKEY_PAGES {
let mut page = vec![0; ENCRYPTED_MEMORY_PAGE_SIZE];
crate::crypto::random(&mut page);
pages.push(page.into());
}
pages.into()
};
}
// Algorithms used for the memory encryption.
//
// The digest of the hash algorithm must be at least as large as
// the size of the key used by the symmetric algorithm. All
// algorithms MUST be supported by the cryptographic library.
const HASH_ALGO: HashAlgorithm = HashAlgorithm::SHA256;
const SYMMETRIC_ALGO: SymmetricAlgorithm = SymmetricAlgorithm::AES256;
const AEAD_ALGO: AEADAlgorithm = AEADAlgorithm::const_default();
impl Encrypted {
/// Computes the sealing key used to encrypt the memory.
fn sealing_key(salt: &[u8; 32]) -> SessionKey {
let mut ctx = HASH_ALGO.context()
.expect("Mandatory algorithm unsupported");
ctx.update(salt);
PREKEY.iter().for_each(|page| ctx.update(page));
let mut sk: SessionKey = Protected::new(256/8).into();
let _ = ctx.digest(&mut sk);
sk
}
/// Encrypts the given chunk of memory.
pub fn new(p: Protected) -> Self {
if DANGER_DISABLE_ENCRYPTED_MEMORY {
return Encrypted {
plaintext_len: p.len(),
ciphertext: p,
salt: Default::default(),
};
}
let mut salt = [0; 32];
crate::crypto::random(&mut salt);
let mut ciphertext = Protected::new(
p.len() + 2 * AEAD_ALGO.digest_size().expect("supported"));
{
let mut encryptor =
aead::Encryptor::new(SYMMETRIC_ALGO,
AEAD_ALGO,
p.len(),
CounterSchedule::default(),
Self::sealing_key(&salt),
io::Cursor::new(&mut ciphertext[..]))
.expect("Mandatory algorithm unsupported");
encryptor.write_all(&p).unwrap();
encryptor.finish().unwrap();
}
Encrypted {
plaintext_len: p.len(),
ciphertext,
salt,
}
}
/// Maps the given function over the temporarily decrypted
/// memory.
pub fn map<F, T>(&self, mut fun: F) -> T
where F: FnMut(&Protected) -> T
{
if DANGER_DISABLE_ENCRYPTED_MEMORY {
return fun(&self.ciphertext);
}
let ciphertext =
Memory::with_cookie(&self.ciphertext, Default::default());
let mut plaintext = Protected::new(self.plaintext_len);
let mut decryptor =
aead::Decryptor::from_cookie_reader(
SYMMETRIC_ALGO,
AEAD_ALGO,
self.plaintext_len,
CounterSchedule::default(),
Self::sealing_key(&self.salt),
Box::new(ciphertext))
.expect("Mandatory algorithm unsupported");
// Be careful not to leak partially decrypted plain text.
let r = decryptor.read_exact(&mut plaintext);
if r.is_err() {
drop(plaintext); // Securely erase partial plaintext.
panic!("Encrypted memory modified or corrupted");
}
fun(&plaintext)
}
}
#[derive(Default)]
struct CounterSchedule {}
impl aead::Schedule for CounterSchedule {
fn next_chunk<F, R>(&self, index: u64, mut fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R,
{
// The nonce is a simple counter.
let mut nonce_store = [0u8; aead::MAX_NONCE_LEN];
let nonce_len = AEAD_ALGO.nonce_size()
.expect("Mandatory algorithm unsupported");
assert!(nonce_len >= 8);
let nonce = &mut nonce_store[..nonce_len];
let index_be: [u8; 8] = index.to_be_bytes();
nonce[nonce_len - 8..].copy_from_slice(&index_be);
// No AAD.
fun(nonce, &[])
}
fn final_chunk<F, R>(&self, index: u64, length: u64, mut fun: F) -> R
where
F: FnMut(&[u8], &[u8]) -> R
{
// The nonce is a simple counter.
let mut nonce_store = [0u8; aead::MAX_NONCE_LEN];
let nonce_len = AEAD_ALGO.nonce_size()
.expect("Mandatory algorithm unsupported");
assert!(nonce_len >= 8);
let nonce = &mut nonce_store[..nonce_len];
let index_be: [u8; 8] = index.to_be_bytes();
nonce[nonce_len - 8..].copy_from_slice(&index_be);
// Plaintext bytes as AAD to prevent truncation.
let aad: [u8; 8] = length.to_be_bytes();
fun(nonce, &aad)
}
}
}
/// Time-constant comparison.
pub fn secure_cmp(a: &[u8], b: &[u8]) -> Ordering {
let ord1 = a.len().cmp(&b.len());
let ord2 = unsafe {
memsec::memcmp(a.as_ptr(), b.as_ptr(), min(a.len(), b.len()))
};
let ord2 = match ord2 {
1..=std::i32::MAX => Ordering::Greater,
0 => Ordering::Equal,
std::i32::MIN..=-1 => Ordering::Less,
};
if ord1 == Ordering::Equal { ord2 } else { ord1 }
}