1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
//! Memory protection and encryption.
//!
//! Sequoia makes an effort to protect secrets stored in memory.  Even
//! though a process's memory should be protected from being read by an
//! adversary, there may be bugs in the program or the architecture
//! the program is running on that allow (partial) recovery of data.
//! Or, the process may be serialized to persistent storage, and its
//! memory may be inspected while it is not running.
//!
//! To reduce the window for these kind of exfiltrations, we use
//! [`Protected`] to clear the memory once it is no longer in use, and
//! [`Encrypted`] to protect long-term secrets like passwords and
//! secret keys.
//!
//!
//! Furthermore, operations involving secrets must be carried out in a
//! way that avoids leaking information.  For example, comparison
//! must be done in constant time with [`secure_cmp`].
//!
//!   [`secure_cmp`]: secure_cmp()

use std::cmp::{min, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};

/// Whether to trace execution by default (on stderr).
const TRACE: bool = false;

/// Protected memory.
///
/// The memory is guaranteed not to be copied around, and is cleared
/// when the object is dropped.
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Protected;
///
/// {
///     let p: Protected = vec![0, 1, 2].into();
///     assert_eq!(p.as_ref(), &[0, 1, 2]);
/// }
///
/// // p is cleared once it goes out of scope.
/// ```
// # Note on the implementation
//
// We use a boxed slice, then Box::leak the Box.  This takes the
// knowledge about the shape of the heap allocation away from Rust,
// preventing any optimization based on that.
//
// For example, Rust could conceivably compact the heap: The borrow
// checker knows when no references exist, and this is an excellent
// opportunity to move the object on the heap because only one pointer
// needs to be updated.
pub struct Protected(*mut [u8]);

// Safety: Box<[u8]> is Send and Sync, we do not expose any
// functionality that was not possible before, hence Protected may
// still be Send and Sync.
unsafe impl Send for Protected {}
unsafe impl Sync for Protected {}

impl Clone for Protected {
    fn clone(&self) -> Self {
        // Make a vector with the correct size to avoid potential
        // reallocations when turning it into a `Protected`.
        let mut p = Vec::with_capacity(self.len());
        p.extend_from_slice(self);
        p.into_boxed_slice().into()
    }
}

impl PartialEq for Protected {
    fn eq(&self, other: &Self) -> bool {
        secure_cmp(self, other) == Ordering::Equal
    }
}

impl Eq for Protected {}

impl Hash for Protected {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.as_ref().hash(state);
    }
}

impl Protected {
    /// Allocates a chunk of protected memory.
    ///
    /// Effective protection of sensitive values requires avoiding any
    /// copying and reallocations.  Therefore, it is required to
    /// provide the size upfront at allocation time, then copying the
    /// secrets into this protected memory region.
    pub fn new(size: usize) -> Protected {
        vec![0; size].into_boxed_slice().into()
    }

    /// Converts to a buffer for modification.
    ///
    /// Don't expose `Protected` values unless you know what you're doing.
    pub(crate) fn expose_into_unprotected_vec(self) -> Vec<u8> {
        let mut p = Vec::with_capacity(self.len());
        p.extend_from_slice(&self);
        p
    }
}

impl Deref for Protected {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        self.as_ref()
    }
}

impl AsRef<[u8]> for Protected {
    fn as_ref(&self) -> &[u8] {
        unsafe { &*self.0 }
    }
}

impl AsMut<[u8]> for Protected {
    fn as_mut(&mut self) -> &mut [u8] {
        unsafe { &mut *self.0 }
    }
}

impl DerefMut for Protected {
    fn deref_mut(&mut self) -> &mut [u8] {
        self.as_mut()
    }
}

impl From<Vec<u8>> for Protected {
    fn from(mut v: Vec<u8>) -> Self {
        // Make a careful copy of the data.  We do this instead of
        // reusing v's allocation so that our allocation has the exact
        // size.
        let p = Protected::from(&v[..]);

        // Now clear the previous allocation.  Just to be safe, we
        // clear the whole allocation.
        let capacity = v.capacity();
        unsafe {
            // Safety: New size is equal to the capacity, and we
            // initialize all elements.
            v.set_len(capacity);
            memsec::memzero(v.as_mut_ptr(), capacity);
        }

        p
    }
}

/// Zeros N bytes on the stack after running the given closure.
///
/// Note: In general, don't use this function directly, use the more
/// convenient and robust macro zero_stack! instead, like so:
///
/// ```ignore
/// zero_stack!(128 bytes after running {
///     let mut a = [0; 6];
///     a.copy_from_slice(b"secret");
/// })
/// ```
///
/// Or, if you need to specify the type of the expression:
///
/// ```ignore
/// zero_stack!(128 bytes after running || -> () {
///     let mut a = [0; 6];
///     a.copy_from_slice(b"secret");
/// })
/// ```
///
/// If you must use this function directly, make sure to declare `fun`
/// as `#[inline(never)]`.
#[allow(dead_code)]
#[inline(never)]
pub(crate) fn zero_stack_after<const N: usize, T>(fun: impl FnOnce() -> T) -> T
{
    zero_stack::<N, T>(fun())
}

/// Zeros N bytes on the stack, returning the given value.
///
/// Note: In general, don't use this function directly.  This is only
/// effective if `v` has been computed by a function that has been
/// marked as `#[inline(never)]`.  However, since the inline attribute
/// is only a hint that may be freely ignored by the compiler, it is
/// sometimes necessary to use this function directly.
#[allow(dead_code)]
#[inline(never)]
pub(crate) fn zero_stack<const N: usize, T>(v: T) -> T {
    tracer!(TRACE, "zero_stack");
    let mut a = [0xffu8; N];
    t!("zeroing {:?}..{:?}", a.as_ptr(), unsafe { a.as_ptr().offset(N as _) });
    unsafe {
        memsec::memzero(a.as_mut_ptr(), a.len());
    }
    std::hint::black_box(a);
    v
}

/// Very carefully copies the slice.
///
/// The obvious `to.copy_from_slice(from);` indeed leaks secrets.
pub(crate) fn careful_memcpy(from: &[u8], to: &mut [u8]) {
    from.iter().zip(to.iter_mut()).for_each(|(f, t)| *t = *f);
}

impl From<Box<[u8]>> for Protected {
    fn from(v: Box<[u8]>) -> Self {
        Protected(Box::leak(v))
    }
}

impl From<&[u8]> for Protected {
    fn from(v: &[u8]) -> Self {
        let mut p = Protected::new(v.len());
        careful_memcpy(v, &mut p);
        p
    }
}

impl<const N: usize> From<[u8; N]> for Protected {
    fn from(mut v: [u8; N]) -> Self {
        let mut p = Protected::new(v.len());
        careful_memcpy(&v, &mut p);
        unsafe {
            memsec::memzero(v.as_mut_ptr(), v.len());
        }
        p
    }
}

impl Drop for Protected {
    fn drop(&mut self) {
        unsafe {
            let len = self.len();
            memsec::memzero(self.as_mut().as_mut_ptr(), len);
            drop(Box::from_raw(self.0));
        }
    }
}

impl fmt::Debug for Protected {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if cfg!(debug_assertions) {
            write!(f, "{:?}", self.0)
        } else {
            f.write_str("[<Redacted>]")
        }
    }
}

/// Encrypted memory.
///
/// This type encrypts sensitive data, such as secret keys, in memory
/// while they are unused, and decrypts them on demand.  This protects
/// against cross-protection-boundary readout via microarchitectural
/// flaws like Spectre or Meltdown, via attacks on physical layout
/// like Rowbleed, and even via coldboot attacks.
///
/// The key insight is that these kinds of attacks are imperfect,
/// i.e. the recovered data contains bitflips, or the attack only
/// provides a probability for any given bit.  Applied to
/// cryptographic keys, these kind of imperfect attacks are enough to
/// recover the actual key.
///
/// This implementation on the other hand, derives a sealing key from
/// a large area of memory, the "pre-key", using a key derivation
/// function.  Now, any single bitflip in the readout of the pre-key
/// will avalanche through all the bits in the sealing key, rendering
/// it unusable with no indication of where the error occurred.
///
/// This kind of protection was pioneered by OpenSSH.  The commit
/// adding it can be found
/// [here](https://marc.info/?l=openbsd-cvs&m=156109087822676).
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Encrypted;
///
/// let e = Encrypted::new(vec![0, 1, 2].into());
/// e.map(|p| {
///     // e is temporarily decrypted and made available to the closure.
///     assert_eq!(p.as_ref(), &[0, 1, 2]);
///     // p is cleared once the function returns.
/// });
/// ```
#[derive(Clone, Debug)]
pub struct Encrypted {
    ciphertext: Protected,
    salt: [u8; 32],
    plaintext_len: usize,
}
assert_send_and_sync!(Encrypted);

impl PartialEq for Encrypted {
    fn eq(&self, other: &Self) -> bool {
        // Protected::eq is time-constant.
        self.map(|a| other.map(|b| a == b))
    }
}

impl Eq for Encrypted {}

impl Hash for Encrypted {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.map(|k| Hash::hash(k, state));
    }
}

/// Opt out of memory encryption.
const DANGER_DISABLE_ENCRYPTED_MEMORY: bool = false;

/// The number of pages containing random bytes to derive the prekey
/// from.
const ENCRYPTED_MEMORY_PREKEY_PAGES: usize = 4;

/// Page size.
const ENCRYPTED_MEMORY_PAGE_SIZE: usize = 4096;

/// This module contains the code that needs to access the prekey.
///
/// Code outside of it cannot access it, because `PREKEY` is private.
mod has_access_to_prekey {
    use std::io::{self, Read, Write};
    use buffered_reader::Memory;
    use crate::types::{AEADAlgorithm, HashAlgorithm, SymmetricAlgorithm};
    use crate::crypto::{aead, SessionKey};
    use crate::crypto::hash::Digest;
    use super::*;

    lazy_static::lazy_static! {
        static ref PREKEY: Box<[Box<[u8]>]> = {
            let mut pages = Vec::new();
            for _ in 0..ENCRYPTED_MEMORY_PREKEY_PAGES {
                let mut page = vec![0; ENCRYPTED_MEMORY_PAGE_SIZE];
                crate::crypto::random(&mut page);
                pages.push(page.into());
            }
            pages.into()
        };
    }

    // Algorithms used for the memory encryption.
    //
    // The digest of the hash algorithm must be at least as large as
    // the size of the key used by the symmetric algorithm.  All
    // algorithms MUST be supported by the cryptographic library.
    const HASH_ALGO: HashAlgorithm = HashAlgorithm::SHA256;
    const SYMMETRIC_ALGO: SymmetricAlgorithm = SymmetricAlgorithm::AES256;
    const AEAD_ALGO: AEADAlgorithm = AEADAlgorithm::const_default();

    impl Encrypted {
        /// Computes the sealing key used to encrypt the memory.
        fn sealing_key(salt: &[u8; 32]) -> SessionKey {
            let mut ctx = HASH_ALGO.context()
                .expect("Mandatory algorithm unsupported");
            ctx.update(salt);
            PREKEY.iter().for_each(|page| ctx.update(page));
            let mut sk: SessionKey = Protected::new(256/8).into();
            let _ = ctx.digest(&mut sk);
            sk
        }

        /// Encrypts the given chunk of memory.
        pub fn new(p: Protected) -> Self {
            if DANGER_DISABLE_ENCRYPTED_MEMORY {
                return Encrypted {
                    plaintext_len: p.len(),
                    ciphertext: p,
                    salt: Default::default(),
                };
            }

            let mut salt = [0; 32];
            crate::crypto::random(&mut salt);
            let mut ciphertext = Protected::new(
                p.len() + 2 * AEAD_ALGO.digest_size().expect("supported"));

            {
                let mut encryptor =
                    aead::Encryptor::new(SYMMETRIC_ALGO,
                                         AEAD_ALGO,
                                         p.len(),
                                         CounterSchedule::default(),
                                         Self::sealing_key(&salt),
                                         io::Cursor::new(&mut ciphertext[..]))
                    .expect("Mandatory algorithm unsupported");
                encryptor.write_all(&p).unwrap();
                encryptor.finish().unwrap();
            }

            Encrypted {
                plaintext_len: p.len(),
                ciphertext,
                salt,
            }
        }

        /// Maps the given function over the temporarily decrypted
        /// memory.
        pub fn map<F, T>(&self, mut fun: F) -> T
            where F: FnMut(&Protected) -> T
        {
            if DANGER_DISABLE_ENCRYPTED_MEMORY {
                return fun(&self.ciphertext);
            }

            let ciphertext =
                Memory::with_cookie(&self.ciphertext, Default::default());
            let mut plaintext = Protected::new(self.plaintext_len);

            let mut decryptor =
                aead::Decryptor::from_cookie_reader(
                                     SYMMETRIC_ALGO,
                                     AEAD_ALGO,
                                     self.plaintext_len,
                                     CounterSchedule::default(),
                                     Self::sealing_key(&self.salt),
                                     Box::new(ciphertext))
                .expect("Mandatory algorithm unsupported");

            // Be careful not to leak partially decrypted plain text.
            let r = decryptor.read_exact(&mut plaintext);
            if r.is_err() {
                drop(plaintext); // Securely erase partial plaintext.
                panic!("Encrypted memory modified or corrupted");
            }
            fun(&plaintext)
        }
    }

    #[derive(Default)]
    struct CounterSchedule {}

    impl aead::Schedule for CounterSchedule {
        fn next_chunk<F, R>(&self, index: u64, mut fun: F) -> R
        where
            F: FnMut(&[u8], &[u8]) -> R,
        {
            // The nonce is a simple counter.
            let mut nonce_store = [0u8; aead::MAX_NONCE_LEN];
            let nonce_len = AEAD_ALGO.nonce_size()
                .expect("Mandatory algorithm unsupported");
            assert!(nonce_len >= 8);
            let nonce = &mut nonce_store[..nonce_len];
            let index_be: [u8; 8] = index.to_be_bytes();
            nonce[nonce_len - 8..].copy_from_slice(&index_be);

            // No AAD.
            fun(nonce, &[])
        }

        fn final_chunk<F, R>(&self, index: u64, length: u64, mut fun: F) -> R
        where
            F: FnMut(&[u8], &[u8]) -> R
        {
            // The nonce is a simple counter.
            let mut nonce_store = [0u8; aead::MAX_NONCE_LEN];
            let nonce_len = AEAD_ALGO.nonce_size()
                .expect("Mandatory algorithm unsupported");
            assert!(nonce_len >= 8);
            let nonce = &mut nonce_store[..nonce_len];
            let index_be: [u8; 8] = index.to_be_bytes();
            nonce[nonce_len - 8..].copy_from_slice(&index_be);

            // Plaintext bytes as AAD to prevent truncation.
            let aad: [u8; 8] = length.to_be_bytes();

            fun(nonce, &aad)
        }
    }
}

/// Time-constant comparison.
pub fn secure_cmp(a: &[u8], b: &[u8]) -> Ordering {
    let ord1 = a.len().cmp(&b.len());
    let ord2 = unsafe {
        memsec::memcmp(a.as_ptr(), b.as_ptr(), min(a.len(), b.len()))
    };
    let ord2 = match ord2 {
        1..=std::i32::MAX => Ordering::Greater,
        0 => Ordering::Equal,
        std::i32::MIN..=-1 => Ordering::Less,
    };

    if ord1 == Ordering::Equal { ord2 } else { ord1 }
}