1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//! Cryptographic primitives.
//!
//! This module contains cryptographic primitives as defined and used
//! by OpenPGP.  It abstracts over the cryptographic library chosen at
//! compile time.  Most of the time, it will not be necessary to
//! explicitly use types from this module directly, but they are used
//! in the API (e.g. [`Password`]).  Advanced users may use these
//! primitives to provide custom extensions to OpenPGP.
//!
//!
//! # Common Operations
//!
//!  - *Converting a string to a [`Password`]*: Use [`Password::from`].
//!  - *Create a session key*: Use [`SessionKey::new`].
//!  - *Use secret keys*: See the [`KeyPair` example].
//!
//!   [`Password::from`]: std::convert::From
//!   [`SessionKey::new`]: SessionKey::new()
//!   [`KeyPair` example]: KeyPair#examples

use std::cmp::Ordering;
use std::ops::{Deref, DerefMut};
use std::fmt;
use std::borrow::Cow;

use crate::{
    Error,
    Result,
};

pub(crate) mod aead;
mod asymmetric;
pub use self::asymmetric::{Signer, Decryptor, KeyPair};
pub(crate) mod backend;
pub mod ecdh;
pub mod hash;
pub mod mem;
pub mod mpi;
mod s2k;
pub use s2k::S2K;
pub(crate) mod symmetric;

#[cfg(test)]
mod tests;

/// Returns a short, human-readable description of the backend.
///
/// This starts with the name of the backend, possibly a version, and
/// any optional features that are available.  This is meant for
/// inclusion in version strings to improve bug reports.
pub fn backend() -> String {
    use backend::interface::Backend;
    backend::Backend::backend()
}

/// Fills the given buffer with random data.
///
/// Fills the given buffer with random data produced by a
/// cryptographically secure pseudorandom number generator (CSPRNG).
/// The output may be used as session keys or to derive long-term
/// cryptographic keys from.  However, to create session keys,
/// consider using [`SessionKey::new`].
///
///   [`SessionKey::new`]: crate::crypto::SessionKey::new()
pub fn random<B: AsMut<[u8]>>(mut buf: B) {
    use backend::interface::Backend;
    backend::Backend::random(buf.as_mut()).unwrap();
}

/// Holds a session key.
///
/// The session key is cleared when dropped.  Sequoia uses this type
/// to ensure that session keys are not left in memory returned to the
/// allocator.
///
/// Session keys can be generated using [`SessionKey::new`], or
/// converted from various types using [`From`].
///
///   [`SessionKey::new`]: SessionKey::new()
///   [`From`]: std::convert::From
#[derive(Clone, PartialEq, Eq)]
pub struct SessionKey(mem::Protected);
assert_send_and_sync!(SessionKey);

impl SessionKey {
    /// Creates a new session key.
    ///
    /// Creates a new session key `size` bytes in length initialized
    /// using a strong cryptographic number generator.
    ///
    /// # Examples
    ///
    /// This creates a session key and encrypts it for a given
    /// recipient key producing a [`PKESK`] packet.
    ///
    ///   [`PKESK`]: crate::packet::PKESK
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::{Curve, SymmetricAlgorithm};
    /// use openpgp::crypto::SessionKey;
    /// use openpgp::packet::prelude::*;
    ///
    /// let cipher = SymmetricAlgorithm::AES256;
    /// let sk = SessionKey::new(cipher.key_size().unwrap());
    ///
    /// let key: Key<key::SecretParts, key::UnspecifiedRole> =
    ///     Key4::generate_ecc(false, Curve::Cv25519)?.into();
    ///
    /// let pkesk: PKESK =
    ///     PKESK3::for_recipient(cipher, &sk, &key)?.into();
    /// # Ok(()) }
    /// ```
    pub fn new(size: usize) -> Self {
        let mut sk: mem::Protected = vec![0; size].into();
        random(&mut sk);
        Self(sk)
    }

    /// Returns a reference to the inner [`mem::Protected`].
    pub fn as_protected(&self) -> &mem::Protected {
        &self.0
    }
}

impl Deref for SessionKey {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl AsRef<[u8]> for SessionKey {
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl DerefMut for SessionKey {
    fn deref_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl AsMut<[u8]> for SessionKey {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl From<mem::Protected> for SessionKey {
    fn from(v: mem::Protected) -> Self {
        SessionKey(v)
    }
}

impl From<Vec<u8>> for SessionKey {
    fn from(v: Vec<u8>) -> Self {
        SessionKey(v.into())
    }
}

impl From<Box<[u8]>> for SessionKey {
    fn from(v: Box<[u8]>) -> Self {
        SessionKey(v.into())
    }
}

impl From<&[u8]> for SessionKey {
    fn from(v: &[u8]) -> Self {
        Vec::from(v).into()
    }
}

impl fmt::Debug for SessionKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "SessionKey ({:?})", self.0)
    }
}

/// Holds a password.
///
/// `Password`s can be converted from various types using [`From`].
/// The password is encrypted in memory and only decrypted on demand.
/// See [`mem::Encrypted`] for details.
///
///   [`From`]: std::convert::From
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::crypto::Password;
///
/// // Convert from a &str.
/// let p: Password = "hunter2".into();
///
/// // Convert from a &[u8].
/// let p: Password = b"hunter2"[..].into();
///
/// // Convert from a String.
/// let p: Password = String::from("hunter2").into();
///
/// // ...
/// ```
#[derive(Clone, PartialEq, Eq)]
pub struct Password(mem::Encrypted);
assert_send_and_sync!(Password);

impl From<Vec<u8>> for Password {
    fn from(v: Vec<u8>) -> Self {
        Password(mem::Encrypted::new(v.into()))
    }
}

impl From<Box<[u8]>> for Password {
    fn from(v: Box<[u8]>) -> Self {
        Password(mem::Encrypted::new(v.into()))
    }
}

impl From<String> for Password {
    fn from(v: String) -> Self {
        v.into_bytes().into()
    }
}

impl<'a> From<&'a str> for Password {
    fn from(v: &'a str) -> Self {
        v.to_owned().into()
    }
}

impl From<&[u8]> for Password {
    fn from(v: &[u8]) -> Self {
        Vec::from(v).into()
    }
}

impl fmt::Debug for Password {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if cfg!(debug_assertions) {
            self.map(|p| write!(f, "Password({:?})", p))
        } else {
            f.write_str("Password(<Encrypted>)")
        }
    }
}

impl Password {
    /// Maps the given function over the password.
    ///
    /// The password is stored encrypted in memory.  This function
    /// temporarily decrypts it for the given function to use.
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::crypto::Password;
    ///
    /// let p: Password = "hunter2".into();
    /// p.map(|p| assert_eq!(p.as_ref(), &b"hunter2"[..]));
    /// ```
    pub fn map<F, T>(&self, fun: F) -> T
        where F: FnMut(&mem::Protected) -> T
    {
        self.0.map(fun)
    }
}

/// Returns the value zero-padded to the given length.
///
/// Some encodings strip leading zero-bytes.  This function adds them
/// back, if necessary.  If the size exceeds `to`, an error is
/// returned.
pub(crate) fn pad(value: &[u8], to: usize) -> Result<Cow<[u8]>>
{
    match value.len().cmp(&to) {
        Ordering::Equal => Ok(Cow::Borrowed(value)),
        Ordering::Less => {
            let missing = to - value.len();
            let mut v = vec![0; to];
            v[missing..].copy_from_slice(value);
            Ok(Cow::Owned(v))
        }
        Ordering::Greater => {
            Err(Error::InvalidOperation(
                format!("Input value is longer than expected: {} > {}",
                        value.len(), to)).into())
        }
    }
}

/// Returns the value zero-padded to the given length.
///
/// Some encodings strip leading zero-bytes.  This function adds them
/// back, if necessary.  If the size exceeds `to`, the value is
/// returned as-is.
#[allow(dead_code)]
#[allow(clippy::unnecessary_lazy_evaluations)]
pub(crate) fn pad_at_least(value: &[u8], to: usize) -> Cow<[u8]>
{
    pad(value, to).unwrap_or(Cow::Borrowed(value))
}

/// Returns the value zero-padded or truncated to the given length.
///
/// Some encodings strip leading zero-bytes.  This function adds them
/// back, if necessary.  If the size exceeds `to`, the value is
/// silently truncated.
#[allow(dead_code)]
pub(crate) fn pad_truncating(value: &[u8], to: usize) -> Cow<[u8]>
{
    if value.len() == to {
        Cow::Borrowed(value)
    } else {
        let missing = to.saturating_sub(value.len());
        let limit = value.len().min(to);
        let mut v = vec![0; to];
        v[missing..].copy_from_slice(&value[..limit]);
        Cow::Owned(v)
    }
}

/// Compares two arbitrary-sized big-endian integers.
///
/// Note that the tempting `a < b` doesn't work: it computes the
/// lexicographical order, so that `[2] > [1, 2]`, whereas we want
/// `[2] < [1, 2]`.
pub(crate) fn raw_bigint_cmp(mut a: &[u8], mut b: &[u8]) -> Ordering {
    // First, trim leading zeros.
    while a.get(0) == Some(&0) {
        a = &a[1..];
    }

    while b.get(0) == Some(&0) {
        b = &b[1..];
    }

    // Then, compare their length.  Shorter integers are also smaller.
    a.len().cmp(&b.len())
        // Finally, if their length is equal, do a lexicographical
        // comparison.
        .then_with(|| a.cmp(b))
}

/// Given the secret prime values `p` and `q`, returns the pair of
/// primes so that the smaller one comes first.
///
/// Section 5.5.3 of RFC4880 demands that `p < q`.  This function can
/// be used to order `p` and `q` accordingly.
#[allow(dead_code)]
pub(crate) fn rsa_sort_raw_pq<'a>(p: &'a [u8], q: &'a [u8])
                                  -> (&'a [u8], &'a [u8])
{
    match raw_bigint_cmp(p, q) {
        Ordering::Less => (p, q),
        Ordering::Equal => (p, q),
        Ordering::Greater => (q, p),
    }
}