1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
//! Packet-related data types.
//!
//! OpenPGP data structures are [packet based]. This module defines
//! the corresponding data structures.
//!
//! Most users of this library will not need to generate these packets
//! themselves. Instead, the packets are instantiated as a side
//! effect of [parsing a message], or [creating a message]. The main
//! current exception are `Signature` packets. Working with
//! `Signature` packets is, however, simplified by using the
//! [`SignatureBuilder`].
//!
//! # Data Types
//!
//! Many OpenPGP packets include a version field. Versioning is used
//! to make it easier to change the standard. For instance, using
//! versioning, it is possible to remove a field from a packet without
//! introducing a new packet type, which would also require changing
//! [the grammar]. Versioning also enables a degree of forward
//! compatibility when a new version of a packet can be safely
//! ignored. For instance, there are currently two versions of the
//! [`Signature`] packet with completely different layouts: [v3] and
//! [v4]. An implementation that does not understand the latest
//! version of the packet can still parse and display a message using
//! them; it will just be unable to verify that signature.
//!
//! In Sequoia, packets that have a version field are represented by
//! `enum`s, and each supported version of the packet has a variant,
//! and a corresponding `struct`. This is the case even when only one
//! version of the packet is currently defined, as is the case with
//! the [`OnePassSig`] packet. The `enum`s implement forwarders for
//! common operations. As such, users of this library can often
//! ignore that there are multiple versions of a given packet.
//!
//! # Unknown Packets
//!
//! Sequoia gracefully handles unsupported packets by storing them as
//! [`Unknown`] packets. There are several types of unknown packets:
//!
//! - Packets that are known, but explicitly not supported.
//!
//! The two major examples are the [`SED`] packet type and v3
//! `Signature` packets, which have both been considered insecure
//! for well over a decade.
//!
//! Note: future versions of Sequoia may add limited support for
//! these packets to enable parsing archived messages.
//!
//! - Packets that are known about, but that use unsupported
//! options, e.g., a [`Compressed Data`] packet using an unknown or
//! unsupported algorithm.
//!
//! - Packets that are unknown, e.g., future or [private
//! extensions].
//!
//! When Sequoia [parses] a message containing these packets, it
//! doesn't fail. Instead, Sequoia stores them in the [`Unknown`]
//! data structure. This allows applications to not only continue to
//! process such messages (albeit with degraded performance), but to
//! losslessly reserialize the messages, should that be required.
//!
//! # Containers
//!
//! Packets can be divided into two categories: containers and
//! non-containers. A container is a packet that contains other
//! OpenPGP packets. For instance, by definition, a [`Compressed
//! Data`] packet contains an [OpenPGP Message]. It is possible to
//! iterate over a container's descendants using the
//! [`Container::descendants`] method. (Note: `Container`s [`Deref`]
//! to [`Container`].)
//!
//! # Packet Headers and Bodies
//!
//! Conceptually, packets have zero or more headers and an optional
//! body. The headers are small, and have a known upper bound. The
//! version field is, for instance, 4 bytes, and although
//! [`Signature`][] [`SubpacketArea`][] areas are variable in size,
//! they are limited to 64 KB. In contrast the body, can be unbounded
//! in size.
//!
//! To limit memory use, and enable streaming processing (i.e.,
//! ensuring that processing a message can be done using a fixed size
//! buffer), Sequoia does not require that a packet's body be present
//! in memory. For instance, the body of a literal data packet may be
//! streamed. And, at the end, a [`Literal`] packet is still
//! returned. This allows the caller to examine the message
//! structure, and the message headers in *in toto* even when
//! streaming. It is even possible to compare two streamed version of
//! a packet: Sequoia stores a hash of the body. See the [`Body`]
//! data structure for more details.
//!
//! # Equality
//!
//! There are several reasonable ways to define equality for
//! `Packet`s. Unfortunately, none of them are appropriate in all
//! situations. This makes choosing a general-purpose equality
//! function for [`Eq`] difficult.
//!
//! Consider defining `Eq` as the equivalence of two `Packet`s'
//! serialized forms. If an application naively deduplicates
//! signatures, then an attacker can potentially perform a denial of
//! service attack by causing the application to process many
//! cryptographically-valid `Signature`s by varying the content of one
//! cryptographically-valid `Signature`'s unhashed area. This attack
//! can be prevented by only comparing data that is protected by the
//! signature. But this means that naively deduplicating `Signature`
//! packets will return in "a random" variant being used. So, again,
//! an attacker could create variants of a cryptographically-valid
//! `Signature` to get the implementation to incorrectly drop a useful
//! one.
//!
//! These issues are also relevant when comparing [`Key`s]: should the
//! secret key material be compared? Usually we want to merge the
//! secret key material. But, again, if done naively, the incorrect
//! secret key material may be retained or dropped completely.
//!
//! Instead of trying to come up with a definition of equality that is
//! reasonable for all situations, we use a conservative definition:
//! two packets are considered equal if the serialized forms of their
//! packet bodies as defined by RFC 4880 are equal. That is, two
//! packets are considered equal if and only if their serialized forms
//! are equal modulo the OpenPGP framing ([`CTB`] and [length style],
//! potential [partial body encoding]). This definition will avoid
//! unintentionally dropping information when naively deduplicating
//! packets, but it will result in potential redundancies.
//!
//! For some packets, we provide additional variants of equality. For
//! instance, [`Key::public_cmp`] compares just the public parts of
//! two keys.
//!
//! [packet based]: https://tools.ietf.org/html/rfc4880#section-5
//! [the grammar]: https://tools.ietf.org/html/rfc4880#section-11
//! [v3]: https://tools.ietf.org/html/rfc4880#section-5.2.2
//! [v4]: https://tools.ietf.org/html/rfc4880#section-5.2.3
//! [parsing a message]: crate::parse
//! [creating a message]: crate::serialize::stream
//! [`SignatureBuilder`]: signature::SignatureBuilder
//! [`SED`]: https://tools.ietf.org/html/rfc4880#section-5.7
//! [private extensions]: https://tools.ietf.org/html/rfc4880#section-4.3
//! [`Compressed Data`]: CompressedData
//! [parses]: crate::parse
//! [OpenPGP Message]: https://tools.ietf.org/html/rfc4880#section-11.3
//! [`Container::descendants`]: Container::descendants()
//! [`Deref`]: std::ops::Deref
//! [`SubpacketArea`]: signature::subpacket::SubpacketArea
//! [`Eq`]: std::cmp::Eq
//! [`Key`s]: Key
//! [`CTB`]: header::CTB
//! [length style]: https://tools.ietf.org/html/rfc4880#section-4.2
//! [partial body encoding]: https://tools.ietf.org/html/rfc4880#section-4.2.2.4
//! [`Key::public_cmp`]: Key::public_cmp()
use std::fmt;
use std::hash::Hasher;
use std::ops::{Deref, DerefMut};
use std::slice;
use std::iter::IntoIterator;
#[cfg(test)]
use quickcheck::{Arbitrary, Gen};
use crate::Error;
use crate::Result;
#[macro_use]
mod container;
pub use container::Container;
pub use container::Body;
pub mod prelude;
use crate::crypto::{
KeyPair,
Password,
};
mod any;
pub use self::any::Any;
mod tag;
pub use self::tag::Tag;
pub mod header;
pub use self::header::Header;
mod unknown;
pub use self::unknown::Unknown;
pub mod signature;
pub mod one_pass_sig;
pub mod key;
use key::{
Key4,
SecretKeyMaterial
};
mod marker;
pub use self::marker::Marker;
mod trust;
pub use self::trust::Trust;
mod userid;
pub use self::userid::UserID;
pub mod user_attribute;
pub use self::user_attribute::UserAttribute;
mod literal;
pub use self::literal::Literal;
mod compressed_data;
pub use self::compressed_data::CompressedData;
pub mod seip;
pub mod skesk;
pub mod pkesk;
mod mdc;
pub use self::mdc::MDC;
pub mod aed;
/// Enumeration of packet types.
///
/// The different OpenPGP packets are detailed in [Section 5 of RFC 4880].
///
/// [Section 5 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5
///
/// The [`Unknown`] packet allows Sequoia to deal with packets that it
/// doesn't understand. It is basically a binary blob that includes
/// the packet's [tag]. See the [module-level documentation] for
/// details.
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// # A note on equality
///
/// We define equality on `Packet` as the equality of the serialized
/// form of their packet bodies as defined by RFC 4880. That is, two
/// packets are considered equal if and only if their serialized forms
/// are equal, modulo the OpenPGP framing ([`CTB`] and [length style],
/// potential [partial body encoding]).
///
/// [`Unknown`]: crate::packet::Unknown
/// [tag]: https://tools.ietf.org/html/rfc4880#section-4.3
/// [module-level documentation]: crate::packet#unknown-packets
/// [`CTB`]: crate::packet::header::CTB
/// [length style]: https://tools.ietf.org/html/rfc4880#section-4.2
/// [partial body encoding]: https://tools.ietf.org/html/rfc4880#section-4.2.2.4
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum Packet {
/// Unknown packet.
Unknown(Unknown),
/// Signature packet.
Signature(Signature),
/// One pass signature packet.
OnePassSig(OnePassSig),
/// Public key packet.
PublicKey(key::PublicKey),
/// Public subkey packet.
PublicSubkey(key::PublicSubkey),
/// Public/Secret key pair.
SecretKey(key::SecretKey),
/// Public/Secret subkey pair.
SecretSubkey(key::SecretSubkey),
/// Marker packet.
Marker(Marker),
/// Trust packet.
Trust(Trust),
/// User ID packet.
UserID(UserID),
/// User attribute packet.
UserAttribute(UserAttribute),
/// Literal data packet.
Literal(Literal),
/// Compressed literal data packet.
CompressedData(CompressedData),
/// Public key encrypted data packet.
PKESK(PKESK),
/// Symmetric key encrypted data packet.
SKESK(SKESK),
/// Symmetric key encrypted, integrity protected data packet.
SEIP(SEIP),
/// Modification detection code packet.
#[deprecated]
MDC(MDC),
/// AEAD Encrypted Data Packet.
AED(AED),
}
assert_send_and_sync!(Packet);
macro_rules! impl_into_iterator {
($t:ty) => {
impl_into_iterator!($t where);
};
($t:ty where $( $w:ident: $c:path ),*) => {
/// Implement `IntoIterator` so that
/// `cert::insert_packets(sig)` just works.
impl<$($w),*> IntoIterator for $t
where $($w: $c ),*
{
type Item = $t;
type IntoIter = std::iter::Once<$t>;
fn into_iter(self) -> Self::IntoIter {
std::iter::once(self)
}
}
}
}
impl_into_iterator!(Packet);
impl_into_iterator!(Unknown);
impl_into_iterator!(Signature);
impl_into_iterator!(OnePassSig);
impl_into_iterator!(Marker);
impl_into_iterator!(Trust);
impl_into_iterator!(UserID);
impl_into_iterator!(UserAttribute);
impl_into_iterator!(Literal);
impl_into_iterator!(CompressedData);
impl_into_iterator!(PKESK);
impl_into_iterator!(SKESK);
impl_into_iterator!(SEIP);
impl_into_iterator!(MDC);
impl_into_iterator!(AED);
impl_into_iterator!(Key<P, R> where P: key::KeyParts, R: key::KeyRole);
// Make it easy to pass an iterator of Packets to something expecting
// an iterator of Into<Result<Packet>> (specifically,
// CertParser::into_iter).
impl From<Packet> for Result<Packet> {
fn from(p: Packet) -> Self {
Ok(p)
}
}
impl Packet {
/// Returns the `Packet's` corresponding OpenPGP tag.
///
/// Tags are explained in [Section 4.3 of RFC 4880].
///
/// [Section 4.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-4.3
pub fn tag(&self) -> Tag {
match self {
Packet::Unknown(ref packet) => packet.tag(),
Packet::Signature(_) => Tag::Signature,
Packet::OnePassSig(_) => Tag::OnePassSig,
Packet::PublicKey(_) => Tag::PublicKey,
Packet::PublicSubkey(_) => Tag::PublicSubkey,
Packet::SecretKey(_) => Tag::SecretKey,
Packet::SecretSubkey(_) => Tag::SecretSubkey,
Packet::Marker(_) => Tag::Marker,
Packet::Trust(_) => Tag::Trust,
Packet::UserID(_) => Tag::UserID,
Packet::UserAttribute(_) => Tag::UserAttribute,
Packet::Literal(_) => Tag::Literal,
Packet::CompressedData(_) => Tag::CompressedData,
Packet::PKESK(_) => Tag::PKESK,
Packet::SKESK(_) => Tag::SKESK,
Packet::SEIP(_) => Tag::SEIP,
#[allow(deprecated)]
Packet::MDC(_) => Tag::MDC,
Packet::AED(_) => Tag::AED,
}
}
/// Returns the parsed `Packet's` corresponding OpenPGP tag.
///
/// Returns the packets tag, but only if it was successfully
/// parsed into the corresponding packet type. If e.g. a
/// Signature Packet uses some unsupported methods, it is parsed
/// into an `Packet::Unknown`. `tag()` returns `Tag::Signature`,
/// whereas `kind()` returns `None`.
pub fn kind(&self) -> Option<Tag> {
match self {
Packet::Unknown(_) => None,
_ => Some(self.tag()),
}
}
/// Returns the `Packet's` version, if the packet is versioned and
/// recognized.
///
/// If the packet is not versioned, or we couldn't parse the
/// packet, this function returns `None`.
pub fn version(&self) -> Option<u8> {
match self {
Packet::Unknown(_) => None,
Packet::Signature(p) => Some(p.version()),
Packet::OnePassSig(p) => Some(p.version()),
Packet::PublicKey(p) => Some(p.version()),
Packet::PublicSubkey(p) => Some(p.version()),
Packet::SecretKey(p) => Some(p.version()),
Packet::SecretSubkey(p) => Some(p.version()),
Packet::Marker(_) => None,
Packet::Trust(_) => None,
Packet::UserID(_) => None,
Packet::UserAttribute(_) => None,
Packet::Literal(_) => None,
Packet::CompressedData(_) => None,
Packet::PKESK(p) => Some(p.version()),
Packet::SKESK(p) => Some(p.version()),
Packet::SEIP(p) => Some(p.version()),
#[allow(deprecated)]
Packet::MDC(_) => None,
Packet::AED(p) => Some(p.version()),
}
}
/// Hashes most everything into state.
///
/// This is an alternate implementation of [`Hash`], which does
/// not hash:
///
/// - The unhashed subpacket area of Signature packets.
/// - Secret key material.
///
/// [`Hash`]: std::hash::Hash
///
/// Unlike [`Signature::normalize`], this method ignores
/// authenticated packets in the unhashed subpacket area.
///
/// [`Signature::normalize`]: Signature::normalize()
pub fn normalized_hash<H>(&self, state: &mut H)
where H: Hasher
{
use std::hash::Hash;
match self {
Packet::Signature(sig) => sig.normalized_hash(state),
Packet::OnePassSig(x) => Hash::hash(&x, state),
Packet::PublicKey(k) => k.public_hash(state),
Packet::PublicSubkey(k) => k.public_hash(state),
Packet::SecretKey(k) => k.public_hash(state),
Packet::SecretSubkey(k) => k.public_hash(state),
Packet::Marker(x) => Hash::hash(&x, state),
Packet::Trust(x) => Hash::hash(&x, state),
Packet::UserID(x) => Hash::hash(&x, state),
Packet::UserAttribute(x) => Hash::hash(&x, state),
Packet::Literal(x) => Hash::hash(&x, state),
Packet::CompressedData(x) => Hash::hash(&x, state),
Packet::PKESK(x) => Hash::hash(&x, state),
Packet::SKESK(x) => Hash::hash(&x, state),
Packet::SEIP(x) => Hash::hash(&x, state),
#[allow(deprecated)]
Packet::MDC(x) => Hash::hash(&x, state),
Packet::AED(x) => Hash::hash(&x, state),
Packet::Unknown(x) => Hash::hash(&x, state),
}
}
}
// Allow transparent access of common fields.
impl Deref for Packet {
type Target = Common;
fn deref(&self) -> &Self::Target {
match self {
Packet::Unknown(ref packet) => &packet.common,
Packet::Signature(ref packet) => &packet.common,
Packet::OnePassSig(ref packet) => &packet.common,
Packet::PublicKey(ref packet) => &packet.common,
Packet::PublicSubkey(ref packet) => &packet.common,
Packet::SecretKey(ref packet) => &packet.common,
Packet::SecretSubkey(ref packet) => &packet.common,
Packet::Marker(ref packet) => &packet.common,
Packet::Trust(ref packet) => &packet.common,
Packet::UserID(ref packet) => &packet.common,
Packet::UserAttribute(ref packet) => &packet.common,
Packet::Literal(ref packet) => &packet.common,
Packet::CompressedData(ref packet) => &packet.common,
Packet::PKESK(ref packet) => &packet.common,
Packet::SKESK(SKESK::V4(ref packet)) => &packet.common,
Packet::SKESK(SKESK::V5(ref packet)) => &packet.skesk4.common,
Packet::SEIP(ref packet) => &packet.common,
#[allow(deprecated)]
Packet::MDC(ref packet) => &packet.common,
Packet::AED(ref packet) => &packet.common,
}
}
}
impl DerefMut for Packet {
fn deref_mut(&mut self) -> &mut Common {
match self {
Packet::Unknown(ref mut packet) => &mut packet.common,
Packet::Signature(ref mut packet) => &mut packet.common,
Packet::OnePassSig(ref mut packet) => &mut packet.common,
Packet::PublicKey(ref mut packet) => &mut packet.common,
Packet::PublicSubkey(ref mut packet) => &mut packet.common,
Packet::SecretKey(ref mut packet) => &mut packet.common,
Packet::SecretSubkey(ref mut packet) => &mut packet.common,
Packet::Marker(ref mut packet) => &mut packet.common,
Packet::Trust(ref mut packet) => &mut packet.common,
Packet::UserID(ref mut packet) => &mut packet.common,
Packet::UserAttribute(ref mut packet) => &mut packet.common,
Packet::Literal(ref mut packet) => &mut packet.common,
Packet::CompressedData(ref mut packet) => &mut packet.common,
Packet::PKESK(ref mut packet) => &mut packet.common,
Packet::SKESK(SKESK::V4(ref mut packet)) => &mut packet.common,
Packet::SKESK(SKESK::V5(ref mut packet)) => &mut packet.skesk4.common,
Packet::SEIP(ref mut packet) => &mut packet.common,
#[allow(deprecated)]
Packet::MDC(ref mut packet) => &mut packet.common,
Packet::AED(ref mut packet) => &mut packet.common,
}
}
}
impl fmt::Debug for Packet {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fn debug_fmt(p: &Packet, f: &mut fmt::Formatter) -> fmt::Result {
use Packet::*;
match p {
Unknown(v) => write!(f, "Unknown({:?})", v),
Signature(v) => write!(f, "Signature({:?})", v),
OnePassSig(v) => write!(f, "OnePassSig({:?})", v),
PublicKey(v) => write!(f, "PublicKey({:?})", v),
PublicSubkey(v) => write!(f, "PublicSubkey({:?})", v),
SecretKey(v) => write!(f, "SecretKey({:?})", v),
SecretSubkey(v) => write!(f, "SecretSubkey({:?})", v),
Marker(v) => write!(f, "Marker({:?})", v),
Trust(v) => write!(f, "Trust({:?})", v),
UserID(v) => write!(f, "UserID({:?})", v),
UserAttribute(v) => write!(f, "UserAttribute({:?})", v),
Literal(v) => write!(f, "Literal({:?})", v),
CompressedData(v) => write!(f, "CompressedData({:?})", v),
PKESK(v) => write!(f, "PKESK({:?})", v),
SKESK(v) => write!(f, "SKESK({:?})", v),
SEIP(v) => write!(f, "SEIP({:?})", v),
#[allow(deprecated)]
MDC(v) => write!(f, "MDC({:?})", v),
AED(v) => write!(f, "AED({:?})", v),
}
}
fn try_armor_fmt(p: &Packet, f: &mut fmt::Formatter)
-> Result<fmt::Result> {
use crate::armor::{Writer, Kind};
use crate::serialize::Serialize;
let mut w = Writer::new(Vec::new(), Kind::File)?;
p.serialize(&mut w)?;
let buf = w.finalize()?;
Ok(f.write_str(std::str::from_utf8(&buf).expect("clean")))
}
if ! cfg!(test) {
debug_fmt(self, f)
} else {
try_armor_fmt(self, f).unwrap_or_else(|_| debug_fmt(self, f))
}
}
}
#[cfg(test)]
impl Arbitrary for Packet {
fn arbitrary(g: &mut Gen) -> Self {
use crate::arbitrary_helper::gen_arbitrary_from_range;
match gen_arbitrary_from_range(0..15, g) {
0 => Signature::arbitrary(g).into(),
1 => OnePassSig::arbitrary(g).into(),
2 => Key::<key::PublicParts, key::UnspecifiedRole>::arbitrary(g)
.role_into_primary().into(),
3 => Key::<key::PublicParts, key::UnspecifiedRole>::arbitrary(g)
.role_into_subordinate().into(),
4 => Key::<key::SecretParts, key::UnspecifiedRole>::arbitrary(g)
.role_into_primary().into(),
5 => Key::<key::SecretParts, key::UnspecifiedRole>::arbitrary(g)
.role_into_subordinate().into(),
6 => Marker::arbitrary(g).into(),
7 => Trust::arbitrary(g).into(),
8 => UserID::arbitrary(g).into(),
9 => UserAttribute::arbitrary(g).into(),
10 => Literal::arbitrary(g).into(),
11 => CompressedData::arbitrary(g).into(),
12 => PKESK::arbitrary(g).into(),
13 => SKESK::arbitrary(g).into(),
14 => loop {
let mut u = Unknown::new(
Tag::arbitrary(g), anyhow::anyhow!("Arbitrary::arbitrary"));
u.set_body(Arbitrary::arbitrary(g));
let u = Packet::Unknown(u);
// Check that we didn't accidentally make a valid
// packet.
use crate::parse::Parse;
use crate::serialize::SerializeInto;
if let Ok(Packet::Unknown(_)) = Packet::from_bytes(
&u.to_vec().unwrap())
{
break u;
}
// Try again!
},
_ => unreachable!(),
}
}
}
/// Fields used by multiple packet types.
#[derive(Default, Debug, Clone)]
pub struct Common {
// In the future, this structure will hold the parsed CTB, packet
// length, and lengths of chunks of partial body encoded packets.
// This will allow for bit-perfect roundtripping of parsed
// packets. Since we consider Packets to be equal if their
// serialized form is equal modulo CTB, packet length encoding,
// and chunk lengths, this structure has trivial implementations
// for PartialEq, Eq, PartialOrd, Ord, and Hash, so that we can
// derive PartialEq, Eq, PartialOrd, Ord, and Hash for most
// packets.
/// XXX: Prevents trivial matching on this structure. Remove once
/// this structure actually gains some fields.
dummy: std::marker::PhantomData<()>,
}
assert_send_and_sync!(Common);
impl Common {
/// Returns a default version of `Common`.
///
/// This is equivalent to using `Common::from`, but the function
/// is constant.
pub(crate) const fn new() -> Self {
Common {
dummy: std::marker::PhantomData
}
}
}
#[cfg(test)]
impl Arbitrary for Common {
fn arbitrary(_: &mut Gen) -> Self {
// XXX: Change if this gets interesting fields.
Common::default()
}
}
impl PartialEq for Common {
fn eq(&self, _: &Common) -> bool {
// Don't compare anything.
true
}
}
impl Eq for Common {}
impl PartialOrd for Common {
fn partial_cmp(&self, _: &Self) -> Option<std::cmp::Ordering> {
Some(std::cmp::Ordering::Equal)
}
}
impl Ord for Common {
fn cmp(&self, _: &Self) -> std::cmp::Ordering {
std::cmp::Ordering::Equal
}
}
impl std::hash::Hash for Common {
fn hash<H: std::hash::Hasher>(&self, _: &mut H) {
// Don't hash anything.
}
}
/// An iterator over the *contents* of a packet in depth-first order.
///
/// Given a [`Packet`], an `Iter` iterates over the `Packet` and any
/// `Packet`s that it contains. For non-container `Packet`s, this
/// just returns a reference to the `Packet` itself. For [container
/// `Packet`s] like [`CompressedData`], [`SEIP`], and [`AED`], this
/// walks the `Packet` hierarchy in depth-first order, and returns the
/// `Packet`s the first time they are visited. (Thus, the packet
/// itself is always returned first.)
///
/// This is returned by [`PacketPile::descendants`] and
/// [`Container::descendants`].
///
/// [container `Packet`s]: self#containers
/// [`PacketPile::descendants`]: super::PacketPile::descendants()
/// [`Container::descendants`]: Container::descendants()
pub struct Iter<'a> {
// An iterator over the current message's children.
children: slice::Iter<'a, Packet>,
// The current child (i.e., the last value returned by
// children.next()).
child: Option<&'a Packet>,
// The an iterator over the current child's children.
grandchildren: Option<Box<Iter<'a>>>,
// The depth of the last returned packet. This is used by the
// `paths` iter.
depth: usize,
}
assert_send_and_sync!(Iter<'_>);
impl<'a> Default for Iter<'a> {
fn default() -> Self {
Iter {
children: [].iter(),
child: None,
grandchildren: None,
depth: 0,
}
}
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a Packet;
fn next(&mut self) -> Option<Self::Item> {
// If we don't have a grandchild iterator (self.grandchildren
// is None), then we are just starting, and we need to get the
// next child.
if let Some(ref mut grandchildren) = self.grandchildren {
let grandchild = grandchildren.next();
// If the grandchild iterator is exhausted (grandchild is
// None), then we need the next child.
if grandchild.is_some() {
self.depth = grandchildren.depth + 1;
return grandchild;
}
}
// Get the next child and the iterator for its children.
self.child = self.children.next();
if let Some(child) = self.child {
self.grandchildren = child.descendants().map(Box::new);
}
// First return the child itself. Subsequent calls will
// return its grandchildren.
self.depth = 0;
self.child
}
}
impl<'a> Iter<'a> {
/// Extends an `Iter` to also return each packet's `pathspec`.
///
/// This is similar to `enumerate`, but instead of counting, this
/// returns each packet's `pathspec` in addition to a reference to
/// the packet.
///
/// See [`PacketPile::path_ref`] for an explanation of
/// `pathspec`s.
///
/// [`PacketPile::path_ref`]: super::PacketPile::path_ref
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::packet::prelude::*;
/// use openpgp::PacketPile;
///
/// # fn main() -> Result<()> {
/// # let message = {
/// # use openpgp::types::CompressionAlgorithm;
/// # use openpgp::packet;
/// # use openpgp::PacketPile;
/// # use openpgp::serialize::Serialize;
/// # use openpgp::parse::Parse;
/// # use openpgp::types::DataFormat;
/// #
/// # let mut lit = Literal::new(DataFormat::Text);
/// # lit.set_body(b"test".to_vec());
/// # let lit = Packet::from(lit);
/// #
/// # let mut cd = CompressedData::new(
/// # CompressionAlgorithm::Uncompressed);
/// # cd.set_body(packet::Body::Structured(vec![lit.clone()]));
/// # let cd = Packet::from(cd);
/// #
/// # // Make sure we created the message correctly: serialize,
/// # // parse it, and then check its form.
/// # let mut bytes = Vec::new();
/// # cd.serialize(&mut bytes)?;
/// #
/// # let pp = PacketPile::from_bytes(&bytes[..])?;
/// #
/// # assert_eq!(pp.descendants().count(), 2);
/// # assert_eq!(pp.path_ref(&[0]).unwrap().tag(),
/// # packet::Tag::CompressedData);
/// # assert_eq!(pp.path_ref(&[0, 0]), Some(&lit));
/// #
/// # cd
/// # };
/// #
/// let pp = PacketPile::from(message);
/// let tags: Vec<(Vec<usize>, Tag)> = pp.descendants().paths()
/// .map(|(path, packet)| (path, packet.into()))
/// .collect::<Vec<_>>();
/// assert_eq!(&tags,
/// &[
/// // Root.
/// ([0].to_vec(), Tag::CompressedData),
/// // Root's first child.
/// ([0, 0].to_vec(), Tag::Literal),
/// ]);
/// # Ok(()) }
/// ```
pub fn paths(self)
-> impl Iterator<Item = (Vec<usize>, &'a Packet)> + Send + Sync
{
PacketPathIter {
iter: self,
path: None,
}
}
}
/// Augments the packet returned by `Iter` with its `pathspec`.
///
/// Like [`Iter::enumerate`].
///
/// [`Iter::enumerate`]: std::iter::Iterator::enumerate()
struct PacketPathIter<'a> {
iter: Iter<'a>,
// The path to the most recently returned node relative to the
// start of the iterator.
path: Option<Vec<usize>>,
}
impl<'a> Iterator for PacketPathIter<'a> {
type Item = (Vec<usize>, &'a Packet);
fn next(&mut self) -> Option<Self::Item> {
if let Some(packet) = self.iter.next() {
if self.path.is_none() {
// Init.
let mut path = Vec::with_capacity(4);
path.push(0);
self.path = Some(path);
} else {
let mut path = self.path.take().unwrap();
let old_depth = path.len() - 1;
let depth = self.iter.depth;
if old_depth > depth {
// We popped.
path.truncate(depth + 1);
path[depth] += 1;
} else if old_depth == depth {
// Sibling.
path[old_depth] += 1;
} else if old_depth + 1 == depth {
// Recursion.
path.push(0);
}
self.path = Some(path);
}
Some((self.path.as_ref().unwrap().clone(), packet))
} else {
None
}
}
}
// Tests the `paths`() iter and `path_ref`().
#[test]
fn packet_path_iter() {
use crate::parse::Parse;
use crate::PacketPile;
fn paths<'a>(iter: impl Iterator<Item=&'a Packet>) -> Vec<Vec<usize>> {
let mut lpaths : Vec<Vec<usize>> = Vec::new();
for (i, packet) in iter.enumerate() {
let mut v = Vec::new();
v.push(i);
lpaths.push(v);
if let Some(container) = packet.container_ref() {
if let Some(c) = container.children() {
for mut path in paths(c).into_iter()
{
path.insert(0, i);
lpaths.push(path);
}
}
}
}
lpaths
}
for i in 1..5 {
let pile = PacketPile::from_bytes(
crate::tests::message(&format!("recursive-{}.gpg", i)[..])).unwrap();
let mut paths1 : Vec<Vec<usize>> = Vec::new();
for path in paths(pile.children()).iter() {
paths1.push(path.clone());
}
let mut paths2 : Vec<Vec<usize>> = Vec::new();
for (path, packet) in pile.descendants().paths() {
assert_eq!(Some(packet), pile.path_ref(&path[..]));
paths2.push(path);
}
if paths1 != paths2 {
eprintln!("PacketPile:");
pile.pretty_print();
eprintln!("Expected paths:");
for p in paths1 {
eprintln!(" {:?}", p);
}
eprintln!("Got paths:");
for p in paths2 {
eprintln!(" {:?}", p);
}
panic!("Something is broken. Don't panic.");
}
}
}
/// Holds a signature packet.
///
/// Signature packets are used to hold all kinds of signatures
/// including certifications, and signatures over documents. See
/// [Section 5.2 of RFC 4880] for details.
///
/// [Section 5.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.2
///
/// When signing a document, a `Signature` packet is typically created
/// indirectly by the [streaming `Signer`]. Similarly, a `Signature`
/// packet is created as a side effect of parsing a signed message
/// using the [`PacketParser`].
///
/// `Signature` packets are also used for [self signatures on Keys],
/// [self signatures on User IDs], [self signatures on User
/// Attributes], [certifications of User IDs], and [certifications of
/// User Attributes]. In these cases, you'll typically want to use
/// the [`SignatureBuilder`] to create the `Signature` packet. See
/// the linked documentation for details, and examples.
///
/// [streaming `Signer`]: crate::serialize::stream::Signer
/// [`PacketParser`]: crate::parse::PacketParser
/// [self signatures on Keys]: Key::bind()
/// [self signatures on User IDs]: UserID::bind()
/// [self signatures on User Attributes]: user_attribute::UserAttribute::bind()
/// [certifications of User IDs]: UserID::certify()
/// [certifications of User Attributes]: user_attribute::UserAttribute::certify()
/// [`SignatureBuilder`]: signature::SignatureBuilder
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// # A note on equality
///
/// Two `Signature` packets are considered equal if their serialized
/// form is equal. Notably this includes the unhashed subpacket area
/// and the order of subpackets and notations. This excludes the
/// computed digest and signature level, which are not serialized.
///
/// A consequence of considering packets in the unhashed subpacket
/// area is that an adversary can take a valid signature and create
/// many distinct but valid signatures by changing the unhashed
/// subpacket area. This has the potential of creating a denial of
/// service vector, if `Signature`s are naively deduplicated. To
/// protect against this, consider using [`Signature::normalized_eq`].
///
/// [`Signature::normalized_eq`]: Signature::normalized_eq()
///
/// # Examples
///
/// Add a User ID to an existing certificate:
///
/// ```
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let t1 = time::SystemTime::now();
/// let t2 = t1 + time::Duration::from_secs(1);
///
/// let (cert, _) = CertBuilder::new()
/// .set_creation_time(t1)
/// .add_userid("Alice <alice@example.org>")
/// .generate()?;
///
/// // Add a new User ID.
/// let mut signer = cert
/// .primary_key().key().clone().parts_into_secret()?.into_keypair()?;
///
/// // Use the existing User ID's signature as a template. This ensures that
/// // we use the same
/// let userid = UserID::from("Alice <alice@other.com>");
/// let template: signature::SignatureBuilder
/// = cert.with_policy(p, t1)?.primary_userid().unwrap()
/// .binding_signature().clone().into();
/// let sig = template.clone()
/// .set_signature_creation_time(t2)?;
/// let sig = userid.bind(&mut signer, &cert, sig)?;
///
/// let cert = cert.insert_packets(vec![Packet::from(userid), sig.into()])?;
/// # assert_eq!(cert.with_policy(p, t2)?.userids().count(), 2);
/// # Ok(()) }
/// ```
#[non_exhaustive]
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Debug)]
pub enum Signature {
/// Signature packet version 3.
V3(self::signature::Signature3),
/// Signature packet version 4.
V4(self::signature::Signature4),
}
assert_send_and_sync!(Signature);
impl Signature {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
Signature::V3(_) => 3,
Signature::V4(_) => 4,
}
}
}
impl From<Signature> for Packet {
fn from(s: Signature) -> Self {
Packet::Signature(s)
}
}
// Trivial forwarder for singleton enum.
impl Deref for Signature {
type Target = signature::Signature4;
fn deref(&self) -> &Self::Target {
match self {
Signature::V3(sig) => &sig.intern,
Signature::V4(sig) => sig,
}
}
}
// Trivial forwarder for singleton enum.
impl DerefMut for Signature {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Signature::V3(ref mut sig) => &mut sig.intern,
Signature::V4(ref mut sig) => sig,
}
}
}
/// Holds a one-pass signature packet.
///
/// See [Section 5.4 of RFC 4880] for details.
///
/// A `OnePassSig` packet is not normally instantiated directly. In
/// most cases, you'll create one as a side-effect of signing a
/// message using the [streaming serializer], or parsing a signed
/// message using the [`PacketParser`].
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// [Section 5.4 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.4
/// [`PacketParser`]: crate::parse::PacketParser
/// [streaming serializer]: crate::serialize::stream
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
pub enum OnePassSig {
/// OnePassSig packet version 3.
V3(self::one_pass_sig::OnePassSig3),
}
assert_send_and_sync!(OnePassSig);
impl OnePassSig {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
OnePassSig::V3(_) => 3,
}
}
}
impl From<OnePassSig> for Packet {
fn from(s: OnePassSig) -> Self {
Packet::OnePassSig(s)
}
}
impl<'a> std::convert::TryFrom<&'a Signature> for OnePassSig {
type Error = anyhow::Error;
fn try_from(s: &'a Signature) -> Result<Self> {
match s.version() {
4 => one_pass_sig::OnePassSig3::try_from(s).map(Into::into),
n => Err(Error::InvalidOperation(
format!("Unsupported signature version {}", n)).into()),
}
}
}
// Trivial forwarder for singleton enum.
impl Deref for OnePassSig {
type Target = one_pass_sig::OnePassSig3;
fn deref(&self) -> &Self::Target {
match self {
OnePassSig::V3(ops) => ops,
}
}
}
// Trivial forwarder for singleton enum.
impl DerefMut for OnePassSig {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
OnePassSig::V3(ref mut ops) => ops,
}
}
}
/// Holds an asymmetrically encrypted session key.
///
/// The session key is used to decrypt the actual ciphertext, which is
/// typically stored in a [SEIP] or [AED] packet. See [Section 5.1 of
/// RFC 4880] for details.
///
/// A PKESK packet is not normally instantiated directly. In most
/// cases, you'll create one as a side-effect of encrypting a message
/// using the [streaming serializer], or parsing an encrypted message
/// using the [`PacketParser`].
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// [Section 5.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.1
/// [streaming serializer]: crate::serialize::stream
/// [`PacketParser`]: crate::parse::PacketParser
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
pub enum PKESK {
/// PKESK packet version 3.
V3(self::pkesk::PKESK3),
}
assert_send_and_sync!(PKESK);
impl PKESK {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
PKESK::V3(_) => 3,
}
}
}
impl From<PKESK> for Packet {
fn from(p: PKESK) -> Self {
Packet::PKESK(p)
}
}
// Trivial forwarder for singleton enum.
impl Deref for PKESK {
type Target = self::pkesk::PKESK3;
fn deref(&self) -> &Self::Target {
match self {
PKESK::V3(ref p) => p,
}
}
}
// Trivial forwarder for singleton enum.
impl DerefMut for PKESK {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
PKESK::V3(ref mut p) => p,
}
}
}
/// Holds a symmetrically encrypted session key.
///
/// The session key is used to decrypt the actual ciphertext, which is
/// typically stored in a [SEIP] or [AED] packet. See [Section 5.3 of
/// RFC 4880] for details.
///
/// An SKESK packet is not normally instantiated directly. In most
/// cases, you'll create one as a side-effect of encrypting a message
/// using the [streaming serializer], or parsing an encrypted message
/// using the [`PacketParser`].
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// [Section 5.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.3
/// [streaming serializer]: crate::serialize::stream
/// [`PacketParser`]: crate::parse::PacketParser
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
pub enum SKESK {
/// SKESK packet version 4.
V4(self::skesk::SKESK4),
/// SKESK packet version 5.
///
/// This feature is [experimental](super#experimental-features).
V5(self::skesk::SKESK5),
}
assert_send_and_sync!(SKESK);
impl SKESK {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
SKESK::V4(_) => 4,
SKESK::V5(_) => 5,
}
}
}
impl From<SKESK> for Packet {
fn from(p: SKESK) -> Self {
Packet::SKESK(p)
}
}
/// Holds a public key, public subkey, private key or private subkey packet.
///
/// The different `Key` packets are described in [Section 5.5 of RFC 4880].
///
/// [Section 5.5 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.5
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// # Key Variants
///
/// There are four different types of keys in OpenPGP: [public keys],
/// [secret keys], [public subkeys], and [secret subkeys]. Although
/// the semantics of each type of key are slightly different, the
/// underlying representation is identical (even a public key and a
/// secret key are the same: the public key variant just contains 0
/// bits of secret key material).
///
/// In Sequoia, we use a single type, `Key`, for all four variants.
/// To improve type safety, we use marker traits rather than an `enum`
/// to distinguish them. Specifically, we `Key` is generic over two
/// type variables, `P` and `R`.
///
/// `P` and `R` take marker traits, which describe how any secret key
/// material should be treated, and the key's role (primary or
/// subordinate). The markers also determine the `Key`'s behavior and
/// the exposed functionality. `P` can be [`key::PublicParts`],
/// [`key::SecretParts`], or [`key::UnspecifiedParts`]. And, `R` can
/// be [`key::PrimaryRole`], [`key::SubordinateRole`], or
/// [`key::UnspecifiedRole`].
///
/// If `P` is `key::PublicParts`, any secret key material that is
/// present is ignored. For instance, when serializing a key with
/// this marker, any secret key material will be skipped. This is
/// illutrated in the following example. If `P` is
/// `key::SecretParts`, then the key definitely contains secret key
/// material (although it is not guaranteed that the secret key
/// material is valid), and methods that require secret key material
/// are available.
///
/// Unlike `P`, `R` does not say anything about the `Key`'s content.
/// But, a key's role does influence's the key's semantics. For
/// instance, some of a primary key's meta-data is located on the
/// primary User ID whereas a subordinate key's meta-data is located
/// on its binding signature.
///
/// The unspecified variants [`key::UnspecifiedParts`] and
/// [`key::UnspecifiedRole`] exist to simplify type erasure, which is
/// needed to mix different types of keys in a single collection. For
/// instance, [`Cert::keys`] returns an iterator over the keys in a
/// certificate. Since the keys have different roles (a primary key
/// and zero or more subkeys), but the `Iterator` has to be over a
/// single, fixed type, the returned keys use the
/// `key::UnspecifiedRole` marker.
///
/// [public keys]: https://tools.ietf.org/html/rfc4880#section-5.5.1.1
/// [secret keys]: https://tools.ietf.org/html/rfc4880#section-5.5.1.3
/// [public subkeys]: https://tools.ietf.org/html/rfc4880#section-5.5.1.2
/// [secret subkeys]: https://tools.ietf.org/html/rfc4880#section-5.5.1.4
/// [`Cert::keys`]: super::Cert::keys()
///
/// ## Examples
///
/// Serializing a public key with secret key material drops the secret
/// key material:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use sequoia_openpgp::parse::Parse;
/// use openpgp::serialize::Serialize;
///
/// # fn main() -> openpgp::Result<()> {
/// // Generate a new certificate. It has secret key material.
/// let (cert, _) = CertBuilder::new()
/// .generate()?;
///
/// let pk = cert.primary_key().key();
/// assert!(pk.has_secret());
///
/// // Serializing a `Key<key::PublicParts, _>` drops the secret key
/// // material.
/// let mut bytes = Vec::new();
/// Packet::from(pk.clone()).serialize(&mut bytes);
/// let p : Packet = Packet::from_bytes(&bytes)?;
///
/// if let Packet::PublicKey(key) = p {
/// assert!(! key.has_secret());
/// } else {
/// unreachable!();
/// }
/// # Ok(())
/// # }
/// ```
///
/// # Conversions
///
/// Sometimes it is necessary to change a marker. For instance, to
/// help prevent a user from inadvertently leaking secret key
/// material, the [`Cert`] data structure never returns keys with the
/// [`key::SecretParts`] marker. This means, to use any secret key
/// material, e.g., when creating a [`Signer`], the user needs to
/// explicitly opt-in by changing the marker using
/// [`Key::parts_into_secret`] or [`Key::parts_as_secret`].
///
/// For `P`, the conversion functions are: [`Key::parts_into_public`],
/// [`Key::parts_as_public`], [`Key::parts_into_secret`],
/// [`Key::parts_as_secret`], [`Key::parts_into_unspecified`], and
/// [`Key::parts_as_unspecified`]. With the exception of converting
/// `P` to `key::SecretParts`, these functions are infallible.
/// Converting `P` to `key::SecretParts` may fail if the key doesn't
/// have any secret key material. (Note: although the secret key
/// material is required, it not checked for validity.)
///
/// For `R`, the conversion functions are [`Key::role_into_primary`],
/// [`Key::role_as_primary`], [`Key::role_into_subordinate`],
/// [`Key::role_as_subordinate`], [`Key::role_into_unspecified`], and
/// [`Key::role_as_unspecified`].
///
/// It is also possible to use `From`.
///
/// [`Signer`]: super::crypto::Signer
/// [`Key::parts_as_secret`]: Key::parts_as_secret()
/// [`Key::parts_into_public`]: Key::parts_into_public()
/// [`Key::parts_as_public`]: Key::parts_as_public()
/// [`Key::parts_into_secret`]: Key::parts_into_secret()
/// [`Key::parts_as_secret`]: Key::parts_as_secret()
/// [`Key::parts_into_unspecified`]: Key::parts_into_unspecified()
/// [`Key::parts_as_unspecified`]: Key::parts_as_unspecified()
/// [`Key::role_into_primary`]: Key::role_into_primary()
/// [`Key::role_as_primary`]: Key::role_as_primary()
/// [`Key::role_into_subordinate`]: Key::role_into_subordinate()
/// [`Key::role_as_subordinate`]: Key::role_as_subordinate()
/// [`Key::role_into_unspecified`]: Key::role_into_unspecified()
/// [`Key::role_as_unspecified`]: Key::role_as_unspecified()
///
/// ## Examples
///
/// Changing a marker:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
///
/// # fn main() -> openpgp::Result<()> {
/// // Generate a new certificate. It has secret key material.
/// let (cert, _) = CertBuilder::new()
/// .generate()?;
///
/// let pk: &Key<key::PublicParts, key::PrimaryRole>
/// = cert.primary_key().key();
/// // `has_secret`s is one of the few methods that ignores the
/// // parts type.
/// assert!(pk.has_secret());
///
/// // Treat it like a secret key. This only works if `pk` really
/// // has secret key material (which it does in this case, see above).
/// let sk = pk.parts_as_secret()?;
/// assert!(sk.has_secret());
///
/// // And back.
/// let pk = sk.parts_as_public();
/// // Yes, the secret key material is still there.
/// assert!(pk.has_secret());
/// # Ok(())
/// # }
/// ```
///
/// The [`Cert`] data structure only returns public keys. To work
/// with any secret key material, the `Key` first needs to be
/// converted to a secret key. This is necessary, for instance, when
/// creating a [`Signer`]:
///
/// [`Cert`]: super::Cert
///
/// ```rust
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::crypto::KeyPair;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// let the_past = time::SystemTime::now() - time::Duration::from_secs(1);
/// let (cert, _) = CertBuilder::new()
/// .set_creation_time(the_past)
/// .generate()?;
///
/// // Set the certificate to expire now. To do this, we need
/// // to create a new self-signature, and sign it using a
/// // certification-capable key. The primary key is always
/// // certification capable.
/// let mut keypair = cert.primary_key()
/// .key().clone().parts_into_secret()?.into_keypair()?;
/// let sigs = cert.set_expiration_time(p, None, &mut keypair,
/// Some(time::SystemTime::now()))?;
///
/// let cert = cert.insert_packets(sigs)?;
/// // It's expired now.
/// assert!(cert.with_policy(p, None)?.alive().is_err());
/// # Ok(())
/// # }
/// ```
///
/// # Key Generation
///
/// `Key` is a wrapper around [the different key formats].
/// (Currently, Sequoia only supports version 4 keys, however, future
/// versions may add limited support for version 3 keys to facilitate
/// working with achieved messages, and RFC 4880bis includes [a
/// proposal for a new key format].) As such, it doesn't provide a
/// mechanism to generate keys or import existing key material.
/// Instead, use the format-specific functions (e.g.,
/// [`Key4::generate_ecc`]) and then convert the result into a `Key`
/// packet, as the following example demonstrates.
///
/// [the different key formats]: https://tools.ietf.org/html/rfc4880#section-5.5.2
/// [a proposal for a new key format]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.5.2
/// [`Key4::generate_ecc`]: key::Key4::generate_ecc()
///
///
/// ## Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::packet::prelude::*;
/// use openpgp::types::Curve;
///
/// # fn main() -> openpgp::Result<()> {
/// let key: Key<key::SecretParts, key::PrimaryRole>
/// = Key::from(Key4::generate_ecc(true, Curve::Ed25519)?);
/// # Ok(())
/// # }
/// ```
///
/// # Password Protection
///
/// OpenPGP provides a mechanism to [password protect keys]. If a key
/// is password protected, you need to decrypt the password using
/// [`Key::decrypt_secret`] before using its secret key material
/// (e.g., to decrypt a message, or to generate a signature).
///
/// [password protect keys]: https://tools.ietf.org/html/rfc4880#section-3.7
/// [`Key::decrypt_secret`]: Key::decrypt_secret()
///
/// # A note on equality
///
/// The implementation of `Eq` for `Key` compares the serialized form
/// of `Key`s. Comparing or serializing values of `Key<PublicParts,
/// _>` ignore secret key material, whereas the secret key material is
/// considered and serialized for `Key<SecretParts, _>`, and for
/// `Key<UnspecifiedParts, _>` if present. To explicitly exclude the
/// secret key material from the comparison, use [`Key::public_cmp`]
/// or [`Key::public_eq`].
///
/// When merging in secret key material from untrusted sources, you
/// need to be very careful: secret key material is not
/// cryptographically protected by the key's self signature. Thus, an
/// attacker can provide a valid key with a valid self signature, but
/// invalid secret key material. If naively merged, this could
/// overwrite valid secret key material, and thereby render the key
/// useless. Unfortunately, the only way to find out that the secret
/// key material is bad is to actually try using it. But, because the
/// secret key material is usually encrypted, this can't always be
/// done automatically.
///
/// [`Key::public_cmp`]: Key::public_cmp()
/// [`Key::public_eq`]: Key::public_eq()
///
/// Compare:
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::packet::key::*;
///
/// # fn main() -> openpgp::Result<()> {
/// // Generate a new certificate. It has secret key material.
/// let (cert, _) = CertBuilder::new()
/// .generate()?;
///
/// let sk: &Key<PublicParts, _> = cert.primary_key().key();
/// assert!(sk.has_secret());
///
/// // Strip the secret key material.
/// let cert = cert.clone().strip_secret_key_material();
/// let pk: &Key<PublicParts, _> = cert.primary_key().key();
/// assert!(! pk.has_secret());
///
/// // Eq on Key<PublicParts, _> compares only the public bits, so it
/// // considers pk and sk to be equal.
/// assert_eq!(pk, sk);
///
/// // Convert to Key<UnspecifiedParts, _>.
/// let sk: &Key<UnspecifiedParts, _> = sk.parts_as_unspecified();
/// let pk: &Key<UnspecifiedParts, _> = pk.parts_as_unspecified();
///
/// // Eq on Key<UnspecifiedParts, _> compares both the public and the
/// // secret bits, so it considers pk and sk to be different.
/// assert_ne!(pk, sk);
///
/// // In any case, Key::public_eq only compares the public bits,
/// // so it considers them to be equal.
/// assert!(Key::public_eq(pk, sk));
/// # Ok(())
/// # }
/// ```
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Debug)]
pub enum Key<P: key::KeyParts, R: key::KeyRole> {
/// A version 4 `Key` packet.
V4(Key4<P, R>),
}
assert_send_and_sync!(Key<P, R> where P: key::KeyParts, R: key::KeyRole);
// derive(Clone) doesn't work as expected with generic type parameters
// that don't implement clone: it adds a trait bound on Clone to P and
// R in the Clone implementation. Happily, we don't need P or R to
// implement Clone: they are just marker traits, which we can clone
// manually.
//
// See: https://github.com/rust-lang/rust/issues/26925
impl<P, R> Clone for Key<P, R>
where P: key::KeyParts, R: key::KeyRole
{
fn clone(&self) -> Self {
match self {
Key::V4(key) => Key::V4(key.clone()),
}
}
}
impl<P: key::KeyParts, R: key::KeyRole> fmt::Display for Key<P, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Key::V4(k) => k.fmt(f),
}
}
}
impl<P: key::KeyParts, R: key::KeyRole> Key<P, R> {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
Key::V4(_) => 4,
}
}
/// Compares the public bits of two keys.
///
/// This returns `Ordering::Equal` if the public MPIs, version,
/// creation time and algorithm of the two `Key`s match. This
/// does not consider the packet's encoding, packet's tag or the
/// secret key material.
pub fn public_cmp<PB, RB>(&self, b: &Key<PB, RB>) -> std::cmp::Ordering
where PB: key::KeyParts,
RB: key::KeyRole,
{
match (self, b) {
(Key::V4(a), Key::V4(b)) => a.public_cmp(b),
}
}
/// This method tests for self and other values to be equal modulo
/// the secret key material.
///
/// This returns true if the public MPIs, creation time and
/// algorithm of the two `Key`s match. This does not consider
/// the packet's encoding, packet's tag or the secret key
/// material.
pub fn public_eq<PB, RB>(&self, b: &Key<PB, RB>) -> bool
where PB: key::KeyParts,
RB: key::KeyRole,
{
self.public_cmp(b) == std::cmp::Ordering::Equal
}
}
impl From<Key<key::PublicParts, key::PrimaryRole>> for Packet {
/// Convert the `Key` struct to a `Packet`.
fn from(k: Key<key::PublicParts, key::PrimaryRole>) -> Self {
Packet::PublicKey(k)
}
}
impl From<Key<key::PublicParts, key::SubordinateRole>> for Packet {
/// Convert the `Key` struct to a `Packet`.
fn from(k: Key<key::PublicParts, key::SubordinateRole>) -> Self {
Packet::PublicSubkey(k)
}
}
impl From<Key<key::SecretParts, key::PrimaryRole>> for Packet {
/// Convert the `Key` struct to a `Packet`.
fn from(k: Key<key::SecretParts, key::PrimaryRole>) -> Self {
Packet::SecretKey(k)
}
}
impl From<Key<key::SecretParts, key::SubordinateRole>> for Packet {
/// Convert the `Key` struct to a `Packet`.
fn from(k: Key<key::SecretParts, key::SubordinateRole>) -> Self {
Packet::SecretSubkey(k)
}
}
impl<R: key::KeyRole> Key<key::SecretParts, R> {
/// Creates a new key pair from a `Key` with an unencrypted
/// secret key.
///
/// If the `Key` is password protected, you first need to decrypt
/// it using [`Key::decrypt_secret`].
///
/// [`Key::decrypt_secret`]: Key::decrypt_secret()
///
/// # Errors
///
/// Fails if the secret key is encrypted.
///
/// # Examples
///
/// Revoke a certificate by signing a new revocation certificate:
///
/// ```rust
/// use std::time;
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::crypto::KeyPair;
/// use openpgp::types::ReasonForRevocation;
///
/// # fn main() -> Result<()> {
/// // Generate a certificate.
/// let (cert, _) =
/// CertBuilder::general_purpose(None,
/// Some("Alice Lovelace <alice@example.org>"))
/// .generate()?;
///
/// // Use the secret key material to sign a revocation certificate.
/// let mut keypair = cert.primary_key()
/// .key().clone().parts_into_secret()?
/// .into_keypair()?;
/// let rev = cert.revoke(&mut keypair,
/// ReasonForRevocation::KeyCompromised,
/// b"It was the maid :/")?;
/// # Ok(())
/// # }
/// ```
pub fn into_keypair(self) -> Result<KeyPair> {
match self {
Key::V4(k) => k.into_keypair(),
}
}
/// Decrypts the secret key material.
///
/// In OpenPGP, secret key material can be [protected with a
/// password]. The password is usually hardened using a [KDF].
///
/// [protected with a password]: https://tools.ietf.org/html/rfc4880#section-5.5.3
/// [KDF]: https://tools.ietf.org/html/rfc4880#section-3.7
///
/// This function takes ownership of the `Key`, decrypts the
/// secret key material using the password, and returns a new key
/// whose secret key material is not password protected.
///
/// If the secret key material is not password protected or if the
/// password is wrong, this function returns an error.
///
/// # Examples
///
/// Sign a new revocation certificate using a password-protected
/// key:
///
/// ```rust
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::types::ReasonForRevocation;
///
/// # fn main() -> Result<()> {
/// // Generate a certificate whose secret key material is
/// // password protected.
/// let (cert, _) =
/// CertBuilder::general_purpose(None,
/// Some("Alice Lovelace <alice@example.org>"))
/// .set_password(Some("1234".into()))
/// .generate()?;
///
/// // Use the secret key material to sign a revocation certificate.
/// let key = cert.primary_key().key().clone().parts_into_secret()?;
///
/// // We can't turn it into a keypair without decrypting it.
/// assert!(key.clone().into_keypair().is_err());
///
/// // And, we need to use the right password.
/// assert!(key.clone()
/// .decrypt_secret(&"correct horse battery staple".into())
/// .is_err());
///
/// // Let's do it right:
/// let mut keypair = key.decrypt_secret(&"1234".into())?.into_keypair()?;
/// let rev = cert.revoke(&mut keypair,
/// ReasonForRevocation::KeyCompromised,
/// b"It was the maid :/")?;
/// # Ok(())
/// # }
/// ```
pub fn decrypt_secret(self, password: &Password) -> Result<Self>
{
match self {
Key::V4(k) => Ok(Key::V4(k.decrypt_secret(password)?)),
}
}
/// Encrypts the secret key material.
///
/// In OpenPGP, secret key material can be [protected with a
/// password]. The password is usually hardened using a [KDF].
///
/// [protected with a password]: https://tools.ietf.org/html/rfc4880#section-5.5.3
/// [KDF]: https://tools.ietf.org/html/rfc4880#section-3.7
///
/// This function takes ownership of the `Key`, encrypts the
/// secret key material using the password, and returns a new key
/// whose secret key material is protected with the password.
///
/// If the secret key material is already password protected, this
/// function returns an error.
///
/// # Examples
///
/// This example demonstrates how to encrypt the secret key
/// material of every key in a certificate. Decryption can be
/// done the same way with [`Key::decrypt_secret`].
///
/// ```rust
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::Packet;
///
/// # fn main() -> Result<()> {
/// // Generate a certificate whose secret key material is
/// // not password protected.
/// let (cert, _) =
/// CertBuilder::general_purpose(None,
/// Some("Alice Lovelace <alice@example.org>"))
/// .generate()?;
///
/// // Encrypt every key.
/// let mut encrypted_keys: Vec<Packet> = Vec::new();
/// for ka in cert.keys().secret() {
/// assert!(ka.has_unencrypted_secret());
///
/// // Encrypt the key's secret key material.
/// let key = ka.key().clone().encrypt_secret(&"1234".into())?;
/// assert!(! key.has_unencrypted_secret());
///
/// // We cannot merge it right now, because `cert` is borrowed.
/// encrypted_keys.push(if ka.primary() {
/// key.role_into_primary().into()
/// } else {
/// key.role_into_subordinate().into()
/// });
/// }
///
/// // Merge the keys into the certificate. Note: `Cert::insert_packets`
/// // prefers added versions of keys. So, the encrypted version
/// // will override the decrypted version.
/// let cert = cert.insert_packets(encrypted_keys)?;
///
/// // Now the every key's secret key material is encrypted. We'll
/// // demonstrate this using the primary key:
/// let key = cert.primary_key().key().parts_as_secret()?;
/// assert!(! key.has_unencrypted_secret());
///
/// // We can't turn it into a keypair without decrypting it.
/// assert!(key.clone().into_keypair().is_err());
///
/// // And, we need to use the right password.
/// assert!(key.clone()
/// .decrypt_secret(&"correct horse battery staple".into())
/// .is_err());
///
/// // Let's do it right:
/// let mut keypair = key.clone()
/// .decrypt_secret(&"1234".into())?.into_keypair()?;
/// # Ok(())
/// # }
/// ```
pub fn encrypt_secret(self, password: &Password) -> Result<Self>
{
match self {
Key::V4(k) => Ok(Key::V4(k.encrypt_secret(password)?)),
}
}
}
impl<R: key::KeyRole> Key4<key::SecretParts, R> {
/// Creates a new key pair from a secret `Key` with an unencrypted
/// secret key.
///
/// # Errors
///
/// Fails if the secret key is encrypted. You can use
/// [`Key::decrypt_secret`] to decrypt a key.
pub fn into_keypair(self) -> Result<KeyPair> {
let (key, secret) = self.take_secret();
let secret = match secret {
SecretKeyMaterial::Unencrypted(secret) => secret,
SecretKeyMaterial::Encrypted(_) =>
return Err(Error::InvalidArgument(
"secret key material is encrypted".into()).into()),
};
KeyPair::new(key.role_into_unspecified().into(), secret)
}
}
macro_rules! impl_common_secret_functions {
($t: path) => {
/// Secret key handling.
impl<R: key::KeyRole> Key<$t, R> {
/// Takes the key packet's `SecretKeyMaterial`, if any.
pub fn take_secret(self)
-> (Key<key::PublicParts, R>,
Option<key::SecretKeyMaterial>)
{
match self {
Key::V4(k) => {
let (k, s) = k.take_secret();
(k.into(), s)
},
}
}
/// Adds `SecretKeyMaterial` to the packet, returning the old if
/// any.
pub fn add_secret(self, secret: key::SecretKeyMaterial)
-> (Key<key::SecretParts, R>,
Option<key::SecretKeyMaterial>)
{
match self {
Key::V4(k) => {
let (k, s) = k.add_secret(secret);
(k.into(), s)
},
}
}
/// Takes the key packet's `SecretKeyMaterial`, if any.
pub fn steal_secret(&mut self) -> Option<key::SecretKeyMaterial>
{
match self {
Key::V4(k) => k.steal_secret(),
}
}
}
}
}
impl_common_secret_functions!(key::PublicParts);
impl_common_secret_functions!(key::UnspecifiedParts);
/// Secret key handling.
impl<R: key::KeyRole> Key<key::SecretParts, R> {
/// Takes the key packet's `SecretKeyMaterial`.
pub fn take_secret(self)
-> (Key<key::PublicParts, R>, key::SecretKeyMaterial)
{
match self {
Key::V4(k) => {
let (k, s) = k.take_secret();
(k.into(), s)
},
}
}
/// Adds `SecretKeyMaterial` to the packet, returning the old.
pub fn add_secret(self, secret: key::SecretKeyMaterial)
-> (Key<key::SecretParts, R>, key::SecretKeyMaterial)
{
match self {
Key::V4(k) => {
let (k, s) = k.add_secret(secret);
(k.into(), s)
},
}
}
}
// Trivial forwarder for singleton enum.
impl<P: key::KeyParts, R: key::KeyRole> Deref for Key<P, R> {
type Target = Key4<P, R>;
fn deref(&self) -> &Self::Target {
match self {
Key::V4(ref p) => p,
}
}
}
// Trivial forwarder for singleton enum.
impl<P: key::KeyParts, R: key::KeyRole> DerefMut for Key<P, R> {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Key::V4(ref mut p) => p,
}
}
}
/// Holds a SEIP packet.
///
/// A SEIP packet holds encrypted data. The data contains additional
/// OpenPGP packets. See [Section 5.13 of RFC 4880] for details.
///
/// A SEIP packet is not normally instantiated directly. In most
/// cases, you'll create one as a side-effect of encrypting a message
/// using the [streaming serializer], or parsing an encrypted message
/// using the [`PacketParser`].
///
/// [Section 5.13 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.13
/// [streaming serializer]: crate::serialize::stream
/// [`PacketParser`]: crate::parse::PacketParser
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
pub enum SEIP {
/// SEIP packet version 1.
V1(self::seip::SEIP1),
}
assert_send_and_sync!(SEIP);
impl SEIP {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
SEIP::V1(_) => 1,
}
}
}
impl From<SEIP> for Packet {
fn from(p: SEIP) -> Self {
Packet::SEIP(p)
}
}
// Trivial forwarder for singleton enum.
impl Deref for SEIP {
type Target = self::seip::SEIP1;
fn deref(&self) -> &Self::Target {
match self {
SEIP::V1(ref p) => p,
}
}
}
// Trivial forwarder for singleton enum.
impl DerefMut for SEIP {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
SEIP::V1(ref mut p) => p,
}
}
}
/// Holds an AEAD encrypted data packet.
///
/// An AEAD packet holds encrypted data. It is contains additional
/// OpenPGP packets. See [Section 5.16 of RFC 4880bis] for details.
///
/// [Section 5.16 of RFC 4880bis]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-05#section-5.16
///
/// Note: This enum cannot be exhaustively matched to allow future
/// extensions.
///
/// An AEAD packet is not normally instantiated directly. In most
/// cases, you'll create one as a side-effect of encrypting a message
/// using the [streaming serializer], or parsing an encrypted message
/// using the [`PacketParser`].
///
/// [streaming serializer]: crate::serialize::stream
/// [`PacketParser`]: crate::parse::PacketParser
///
/// This feature is [experimental](super#experimental-features).
#[non_exhaustive]
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
pub enum AED {
/// AED packet version 1.
V1(self::aed::AED1),
}
assert_send_and_sync!(AED);
impl AED {
/// Gets the version.
pub fn version(&self) -> u8 {
match self {
AED::V1(_) => 1,
}
}
}
impl From<AED> for Packet {
fn from(p: AED) -> Self {
Packet::AED(p)
}
}
// Trivial forwarder for singleton enum.
impl Deref for AED {
type Target = self::aed::AED1;
fn deref(&self) -> &Self::Target {
match self {
AED::V1(ref p) => p,
}
}
}
// Trivial forwarder for singleton enum.
impl DerefMut for AED {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
AED::V1(ref mut p) => p,
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::serialize::SerializeInto;
use crate::parse::Parse;
quickcheck! {
fn roundtrip(p: Packet) -> bool {
let buf = p.to_vec().expect("Failed to serialize packet");
let q = Packet::from_bytes(&buf).unwrap();
assert_eq!(p, q);
true
}
}
quickcheck! {
/// Given a packet and a position, induces a bit flip in the
/// serialized form, then checks that PartialEq detects that.
/// Recall that for packets, PartialEq is defined using the
/// serialized form.
fn mutate_eq_discriminates(p: Packet, i: usize) -> bool {
if p.tag() == Tag::CompressedData {
// Mutating compressed data streams is not that
// trivial, because there are bits we can flip without
// changing the decompressed data.
return true;
}
let mut buf = p.to_vec().unwrap();
let bit =
// Avoid first two bytes so that we don't change the
// type and reduce the chance of changing the length.
i.saturating_add(16)
% (buf.len() * 8);
buf[bit / 8] ^= 1 << (bit % 8);
match Packet::from_bytes(&buf) {
Ok(q) => p != q,
Err(_) => true, // Packet failed to parse.
}
}
}
/// Problem on systems with 32-bit time_t.
#[test]
fn issue_802() -> Result<()> {
let pp = crate::PacketPile::from_bytes(b"-----BEGIN PGP ARMORED FILE-----
xiEE/////xIJKyQDAwIIAQENAFYp8M2JngCfc04tIwMBCuU=
-----END PGP ARMORED FILE-----
")?;
let p = pp.path_ref(&[0]).unwrap();
let buf = p.to_vec().expect("Failed to serialize packet");
let q = Packet::from_bytes(&buf).unwrap();
assert_eq!(p, &q);
Ok(())
}
}