1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//! PublicKey-Encrypted Session Key packets.
//!
//! The session key is needed to decrypt the actual ciphertext.  See
//! [Section 5.1 of RFC 4880] for details.
//!
//!   [Section 5.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.1

#[cfg(test)]
use quickcheck::{Arbitrary, Gen};

use crate::Error;
use crate::packet::key;
use crate::packet::Key;
use crate::KeyID;
use crate::crypto::Decryptor;
use crate::crypto::mpi::Ciphertext;
use crate::Packet;
use crate::PublicKeyAlgorithm;
use crate::Result;
use crate::SymmetricAlgorithm;
use crate::crypto::SessionKey;
use crate::packet;

/// Holds an asymmetrically encrypted session key.
///
/// The session key is needed to decrypt the actual ciphertext.  See
/// [Section 5.1 of RFC 4880] for details.
///
///   [Section 5.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.1
// IMPORTANT: If you add fields to this struct, you need to explicitly
// IMPORTANT: implement PartialEq, Eq, and Hash.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct PKESK3 {
    /// CTB header fields.
    pub(crate) common: packet::Common,
    /// Key ID of the key this is encrypted to.
    recipient: KeyID,
    /// Public key algorithm used to encrypt the session key.
    pk_algo: PublicKeyAlgorithm,
    /// The encrypted session key.
    esk: Ciphertext,
}

assert_send_and_sync!(PKESK3);

impl PKESK3 {
    /// Creates a new PKESK3 packet.
    pub fn new(recipient: KeyID, pk_algo: PublicKeyAlgorithm,
               encrypted_session_key: Ciphertext)
               -> Result<PKESK3> {
        Ok(PKESK3 {
            common: Default::default(),
            recipient,
            pk_algo,
            esk: encrypted_session_key,
        })
    }

    /// Creates a new PKESK3 packet for the given recipient.
    ///
    /// The given symmetric algorithm must match the algorithm that is
    /// used to encrypt the payload.
    pub fn for_recipient<P, R>(algo: SymmetricAlgorithm,
                               session_key: &SessionKey,
                               recipient: &Key<P, R>)
        -> Result<PKESK3>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        // We need to prefix the cipher specifier to the session key,
        // and a two-octet checksum.
        let mut psk = Vec::with_capacity(1 + session_key.len() + 2);
        psk.push(algo.into());
        psk.extend_from_slice(session_key);

        // Compute the sum modulo 65536, i.e. as u16.
        let checksum = session_key
            .iter()
            .cloned()
            .map(u16::from)
            .fold(0u16, u16::wrapping_add);

        psk.extend_from_slice(&checksum.to_be_bytes());

        let psk: SessionKey = psk.into();
        let esk = recipient.encrypt(&psk)?;
        Ok(PKESK3{
            common: Default::default(),
            recipient: recipient.keyid(),
            pk_algo: recipient.pk_algo(),
            esk,
        })
    }

    /// Gets the recipient.
    pub fn recipient(&self) -> &KeyID {
        &self.recipient
    }

    /// Sets the recipient.
    pub fn set_recipient(&mut self, recipient: KeyID) -> KeyID {
        ::std::mem::replace(&mut self.recipient, recipient)
    }

    /// Gets the public key algorithm.
    pub fn pk_algo(&self) -> PublicKeyAlgorithm {
        self.pk_algo
    }

    /// Sets the public key algorithm.
    pub fn set_pk_algo(&mut self, algo: PublicKeyAlgorithm) -> PublicKeyAlgorithm {
        ::std::mem::replace(&mut self.pk_algo, algo)
    }

    /// Gets the encrypted session key.
    pub fn esk(&self) -> &Ciphertext {
        &self.esk
    }

    /// Sets the encrypted session key.
    pub fn set_esk(&mut self, esk: Ciphertext) -> Ciphertext {
        ::std::mem::replace(&mut self.esk, esk)
    }

    /// Decrypts the encrypted session key.
    ///
    /// If the symmetric algorithm used to encrypt the message is
    /// known in advance, it should be given as argument.  This allows
    /// us to reduce the side-channel leakage of the decryption
    /// operation for RSA.
    ///
    /// Returns the session key and symmetric algorithm used to
    /// encrypt the following payload.
    ///
    /// Returns `None` on errors.  This prevents leaking information
    /// to an attacker, which could lead to compromise of secret key
    /// material with certain algorithms (RSA).  See [Section 14 of
    /// RFC 4880].
    ///
    ///   [Section 14 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-14
    pub fn decrypt(&self, decryptor: &mut dyn Decryptor,
                   sym_algo_hint: Option<SymmetricAlgorithm>)
        -> Option<(SymmetricAlgorithm, SessionKey)>
    {
        self.decrypt_insecure(decryptor, sym_algo_hint).ok()
    }

    fn decrypt_insecure(&self, decryptor: &mut dyn Decryptor,
                        sym_algo_hint: Option<SymmetricAlgorithm>)
        -> Result<(SymmetricAlgorithm, SessionKey)>
    {
        let plaintext_len = if let Some(s) = sym_algo_hint {
            Some(1 /* cipher octet */ + s.key_size()? + 2 /* chksum */)
        } else {
            None
        };
        let plain = decryptor.decrypt(&self.esk, plaintext_len)?;
        let key_rgn = 1..plain.len().saturating_sub(2);
        let sym_algo: SymmetricAlgorithm = plain[0].into();
        let mut key: SessionKey = vec![0u8; sym_algo.key_size()?].into();

        if key_rgn.len() != sym_algo.key_size()? {
            return Err(Error::MalformedPacket(
                format!("session key has the wrong size (got: {}, expected: {})",
                        key_rgn.len(), sym_algo.key_size()?)).into())
        }

        key.copy_from_slice(&plain[key_rgn]);

        let our_checksum
            = key.iter().map(|&x| x as usize).sum::<usize>() & 0xffff;
        let their_checksum = (plain[plain.len() - 2] as usize) << 8
            | (plain[plain.len() - 1] as usize);

        if their_checksum == our_checksum {
            Ok((sym_algo, key))
        } else {
            Err(Error::MalformedPacket("key checksum wrong".to_string())
                .into())
        }
    }
}

impl From<PKESK3> for super::PKESK {
    fn from(p: PKESK3) -> Self {
        super::PKESK::V3(p)
    }
}

impl From<PKESK3> for Packet {
    fn from(p: PKESK3) -> Self {
        Packet::PKESK(p.into())
    }
}

#[cfg(test)]
impl Arbitrary for super::PKESK {
    fn arbitrary(g: &mut Gen) -> Self {
        PKESK3::arbitrary(g).into()
    }
}

#[cfg(test)]
impl Arbitrary for PKESK3 {
    fn arbitrary(g: &mut Gen) -> Self {
        let (ciphertext, pk_algo) = loop {
            let ciphertext = Ciphertext::arbitrary(g);
            if let Some(pk_algo) = ciphertext.pk_algo() {
                break (ciphertext, pk_algo);
            }
        };

        PKESK3::new(KeyID::arbitrary(g), pk_algo, ciphertext).unwrap()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Cert;
    use crate::PacketPile;
    use crate::packet::*;
    use crate::parse::Parse;
    use crate::serialize::MarshalInto;
    use crate::types::Curve;

    quickcheck! {
        fn roundtrip(p: PKESK3) -> bool {
            let q = PKESK3::from_bytes(&p.to_vec().unwrap()).unwrap();
            assert_eq!(p, q);
            true
        }
    }

    #[test]
    fn decrypt_rsa() {
        if ! PublicKeyAlgorithm::RSAEncryptSign.is_supported() {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let cert = Cert::from_bytes(
            crate::tests::key("testy-private.pgp")).unwrap();
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-testy.gpg")).unwrap();
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret().unwrap().into_keypair().unwrap();

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None).unwrap();
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
    }

    #[test]
    fn decrypt_ecdh_cv25519() {
        if ! (PublicKeyAlgorithm::EdDSA.is_supported()
              && Curve::Ed25519.is_supported()
              && PublicKeyAlgorithm::ECDH.is_supported()
              && Curve::Cv25519.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let cert = Cert::from_bytes(
            crate::tests::key("testy-new-private.pgp")).unwrap();
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-testy-new.pgp")).unwrap();
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret().unwrap().into_keypair().unwrap();

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None).unwrap();
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
    }

    #[test]
    fn decrypt_ecdh_nistp256() {
        if ! (PublicKeyAlgorithm::ECDSA.is_supported()
              && PublicKeyAlgorithm::ECDH.is_supported()
              && Curve::NistP256.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let cert = Cert::from_bytes(
            crate::tests::key("testy-nistp256-private.pgp")).unwrap();
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-testy-nistp256.pgp")).unwrap();
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret().unwrap().into_keypair().unwrap();

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None)
            .expect("ECDH decryption using P-256 key should work");
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
    }

    #[test]
    fn decrypt_ecdh_nistp384() {
        if ! (PublicKeyAlgorithm::ECDSA.is_supported()
              && PublicKeyAlgorithm::ECDH.is_supported()
              && Curve::NistP384.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let cert = Cert::from_bytes(
            crate::tests::key("testy-nistp384-private.pgp")).unwrap();
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-testy-nistp384.pgp")).unwrap();
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret().unwrap().into_keypair().unwrap();

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None)
            .expect("ECDH decryption using P-384 key should work");
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
    }

    #[test]
    fn decrypt_elgamal() -> Result<()> {
        if ! (PublicKeyAlgorithm::DSA.is_supported()
              && PublicKeyAlgorithm::ElGamalEncrypt.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return Ok(());
        }

        let cert = Cert::from_bytes(
            crate::tests::key("dsa2048-elgamal3072-private.pgp"))?;
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-dsa2048-elgamal3072.pgp"))?;
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret()?.into_keypair()?;

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None).unwrap();
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
        Ok(())
    }

    #[test]
    fn decrypt_ecdh_nistp521() {
        if ! (PublicKeyAlgorithm::ECDSA.is_supported()
              && PublicKeyAlgorithm::ECDH.is_supported()
              && Curve::NistP521.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let cert = Cert::from_bytes(
            crate::tests::key("testy-nistp521-private.pgp")).unwrap();
        let pile = PacketPile::from_bytes(
            crate::tests::message("encrypted-to-testy-nistp521.pgp")).unwrap();
        let mut keypair =
            cert.subkeys().next().unwrap()
            .key().clone().parts_into_secret().unwrap().into_keypair().unwrap();

        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();

        let plain = pkesk.decrypt(&mut keypair, None)
            .expect("ECDH decryption using P-521 key should work");
        let plain_ =
            pkesk.decrypt(&mut keypair, Some(SymmetricAlgorithm::AES256))
            .unwrap();
        assert_eq!(plain, plain_);

        eprintln!("plain: {:?}", plain);
    }


    #[test]
    fn decrypt_with_short_cv25519_secret_key() {
        if ! (PublicKeyAlgorithm::ECDH.is_supported()
              && Curve::Cv25519.is_supported()) {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        use super::PKESK3;
        use crate::crypto::SessionKey;
        use crate::{HashAlgorithm, SymmetricAlgorithm};
        use crate::packet::key::{Key4, UnspecifiedRole};

        // 20 byte sec key
        let mut secret_key = [
            0x0,0x0,
            0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,
            0x1,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2,
            0x1,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x0,0x0
        ];
        // Ensure that the key is at least somewhat valid, according to the
        // generation procedure specified in "Responsibilities of the user":
        // https://cr.yp.to/ecdh/curve25519-20060209.pdf#page=5
        // Only perform the bit-twiddling on the last byte. This is done so that
        // we can still have somewhat defined multiplication while still testing
        // the "short" key logic.
        // secret_key[0] &= 0xf8;
        secret_key[31] &= 0x7f;
        secret_key[31] |= 0x40;

        let key: Key<_, UnspecifiedRole> = Key4::import_secret_cv25519(
            &secret_key,
            HashAlgorithm::SHA256,
            SymmetricAlgorithm::AES256,
            None,
        ).unwrap().into();

        let sess_key = SessionKey::new(32);
        let pkesk = PKESK3::for_recipient(SymmetricAlgorithm::AES256, &sess_key,
                                          &key).unwrap();
        let mut keypair = key.into_keypair().unwrap();
        pkesk.decrypt(&mut keypair, None).unwrap();
    }

    /// Insufficient validation of RSA ciphertexts crash Nettle.
    ///
    /// See CVE-2021-3580.
    #[test]
    fn cve_2021_3580_ciphertext_too_long() -> Result<()> {
        if ! PublicKeyAlgorithm::RSAEncryptSign.is_supported() {
            eprintln!("Skipping test, algorithm is not supported.");
            return Ok(());
        }

        // Get (any) 2k RSA key.
        let cert = Cert::from_bytes(
            crate::tests::key("testy-private.pgp"))?;
        let mut keypair = cert.primary_key().key().clone()
            .parts_into_secret()?.into_keypair()?;

        let pile = PacketPile::from_bytes(b"-----BEGIN PGP ARMORED FILE-----

wcDNAwAAAAAAAAAAAQwGI5SkpcRMjkiOKx332kxv+2Xh4y1QTefPilKOPOlHYFa0
rnnLaQVEACKJNQ38YuCFUvtpK4IN2grjlj71IP24+KDp3ZuVWnVTS6JcyE10Y9iq
uGvKdS0C17XCze2LD4ouVOrUZHGXpeDT47w6DsHb/0UE85h56wpk2CzO1XFQzHxX
HR2DDLqqeFVzTv0peYiQfLHl7kWXijTNEqmYhFCzxuICXzuClAAJM+fVIRfcm2tm
2R4AxOQGv9DlWfZwbkpKfj/uuo0CAe21n4NT+NzdVgPlff/hna3yGgPe1B+vjq4e
jfxHg+pvo/HTLkV+c2HAGbM1bCb/5TedGd1nAMSAIOu/J/WQp/l3HtEv63HaVPZJ
JInJ6L/KyPwjm/ieZx5EWOLJgFRWGCrBGnb8T81lkFey7uZR5Xiq+9KoUhHQFw8N
joc0YUVyhUBVFf4B0zVZRUfqZyJtJ07Sl5xppI12U1HQCTjn7Fp8BHMPKuBotYzv
1Q4f00k6Txctw+LDRM17/w==
=VtwB
-----END PGP ARMORED FILE-----
")?;
        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();
        // Boom goes the assertion.
        let _ = pkesk.decrypt(&mut keypair, None);

        Ok(())
    }

    /// Insufficient validation of RSA ciphertexts crash Nettle.
    ///
    /// See CVE-2021-3580.
    #[test]
    fn cve_2021_3580_zero_ciphertext() -> Result<()> {
        if ! PublicKeyAlgorithm::RSAEncryptSign.is_supported() {
            eprintln!("Skipping test, algorithm is not supported.");
            return Ok(());
        }

        // Get (any) 2k RSA key.
        let cert = Cert::from_bytes(
            crate::tests::key("testy-private.pgp"))?;
        let mut keypair = cert.primary_key().key().clone()
            .parts_into_secret()?.into_keypair()?;

        let pile = PacketPile::from_bytes(b"-----BEGIN PGP ARMORED FILE-----

wQwDAAAAAAAAAAABAAA=
=H/1T
-----END PGP ARMORED FILE-----
")?;
        let pkesk: &PKESK =
            pile.descendants().next().unwrap().downcast_ref().unwrap();
        // Boom goes the memory safety.
        let _ = pkesk.decrypt(&mut keypair, None);

        Ok(())
    }
}