1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
//! A signature verification cache.
//!
//! Signature verification is expensive. To mitigate this, Sequoia
//! includes a signature verification cache. This is keyed on the
//! hash of the signature's context: the signature MPIs, the computed
//! hash, and the key. Since this context is needed to use the cache,
//! it's hard to misuse the cache.
//!
//! The signature cache also supports dumping and restoring the cache
//! from disk (see [`SignatureVerificationCache::restore`] and
//! [`SignatureVerificationCache::dump`]). This is particularly
//! useful for one-shot programs, which don't have enough time to warm
//! the cache up.
//!
//! The cache file needs to be managed carefully. In particular, you
//! probably don't want to allow it to grow without bound. To help
//! manage the cache, the cache keeps track of whether an entry was
//! added ([`Entry::inserted`]), and whether it was accessed
//! ([`Entry::accessed`]).
use std::cmp;
use std::collections::BTreeMap;
use std::collections::btree_map;
use std::sync::OnceLock;
use std::sync::RwLock;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use crate::HashAlgorithm;
use crate::Result;
use crate::crypto::hash::Digest;
use crate::packet::Key;
use crate::packet::Signature;
use crate::packet::key;
const TRACE: bool = false;
/// The cache singleton.
static SIGNATURE_VERIFICATION_CACHE: SignatureVerificationCache
= SignatureVerificationCache::empty();
/// The hash algorithm that we use.
///
/// SHA-512 is faster than SHA-256 on 64-bit hardware.
const HASH_ALGO: HashAlgorithm = HashAlgorithm::SHA512;
/// We use SHA-512, which has 512 / 8 bytes = 64 bytes. We truncate
/// it to the first 256 bits, i.e. we do SHA-512-256. We're only
/// worried about second pre-image resistance, so this is enough even
/// when the signature uses SHA-512.
const HASH_BYTES_UNTRUNCATED: usize = 512 / 8;
const HASH_BYTES_TRUNCATED: usize = HASH_BYTES_UNTRUNCATED / 2;
// The value of a cache entry.
const VALUE_BYTES: usize = HASH_BYTES_TRUNCATED;
type Value = [u8; VALUE_BYTES];
const VALUE_NULL: Value = [0u8; VALUE_BYTES];
/// Information about a cache entry.
#[derive(Debug)]
pub struct Metadata {
/// Whether the entry was inserted.
///
/// Entries added by [`SignatureVerificationCache::restore`] have
/// this cleared. Entries added as a side effect of a signature
/// verification have this set.
inserted: bool,
/// Whether the entry is accessed.
///
/// An entry added by [`SignatureVerificationCache::restore`]
/// initially is not considered to have been accessed. This is
/// set when an entry is used by the signature verification code.
accessed: AtomicBool,
}
impl Clone for Metadata {
fn clone(&self) -> Metadata {
Self {
inserted: self.inserted,
accessed: AtomicBool::from(self.accessed.load(Ordering::Relaxed)),
}
}
}
impl Metadata {
/// Instantiate a value.
///
/// Entries added by [`SignatureVerificationCache::restore`] have
/// this cleared. Entries added as a side effect of a signature
/// verification have this set.
fn new(inserted: bool) -> Self {
Metadata {
inserted,
accessed: false.into(),
}
}
/// Whether the entry was inserted since the program started.
///
/// Entries added by [`SignatureVerificationCache::restore`] have
/// this cleared. Entries added as a side effect of a signature
/// verification have this set.
pub fn inserted(&self) -> bool {
self.inserted
}
/// Whether the entry was accessed.
///
/// An entry added by [`SignatureVerificationCache::restore`]
/// initially is not considered to have been accessed. This is
/// set when an entry is used by the signature verification code.
pub fn accessed(&self) -> bool {
self.accessed.load(Ordering::Relaxed)
}
}
/// An entry in the signature verification cache.
///
/// You can iterate over the cache using
/// [`SignatureVerificationCache::dump`].
///
/// Two entries are considered equal if their values are identical;
/// the metadata is ignored.
#[derive(Clone)]
pub struct Entry {
value: Value,
metadata: Metadata,
}
impl PartialOrd for Entry {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Entry {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.value.cmp(&other.value)
}
}
impl PartialEq for Entry {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == cmp::Ordering::Equal
}
}
impl Eq for Entry {}
impl Entry {
/// Computes the cache entry from the signature and its context.
pub(super) fn new(sig: &Signature,
computed_digest: &[u8],
key: &Key<key::PublicParts, key::UnspecifiedRole>)
-> Result<Self>
{
use crate::serialize::Marshal;
use crate::serialize::MarshalInto;
// Hash(Version || Signature MPIs Len || Signature MPIs || Hash Algorithm || Digest || Key MPIs)
//
// - Version: one byte, currently 0.
// - Signature MPIs: 4 bytes, little endian
// - Signature MPIs: variable number of bytes, the signature's MPIs
// - Hash algorithm: one byte, the hash algorithm
// - Digest: HashAlgorithm::len() bytes, the digest's length
// - Key: variable number of bytes, the key's MPIs
let mut context = HASH_ALGO.context()?;
// Version.
context.update(&[ 0u8 ]);
// MPIs.
let mpis_len = sig.mpis.serialized_len();
context.update(&[
(mpis_len & 0xFF) as u8,
((mpis_len >> 8) & 0xFF) as u8,
((mpis_len >> 16) & 0xFF) as u8,
((mpis_len >> 24) & 0xFF) as u8,
]);
sig.mpis.export(&mut context)?;
// Hash algorithm.
context.update(&[
u8::from(sig.hash_algo())
]);
// Hash.
context.update(computed_digest);
// Keys.
key.mpis().export(&mut context)?;
let context_hash = context.into_digest()?;
let mut value = VALUE_NULL;
value.copy_from_slice(&context_hash[..VALUE_BYTES]);
Ok(Entry {
value,
metadata: Metadata::new(true),
})
}
/// Returns the cache entry's value.
///
/// This value is opaque and must not be interpreted.
///
/// You can write this value to disk, and restore it using
/// [`SignatureVerificationCache::restore`].
pub fn value(&self) -> &[u8] {
&self.value
}
/// Returns whether the entry is in the cache.
pub(super) fn present(&self) -> bool {
SIGNATURE_VERIFICATION_CACHE.present(&self.value)
}
/// Inserts the entry in the cache.
///
/// `verified` indicates whether the signature could be verified
/// (`true`), or not (`false`).
pub(super) fn insert(self, verified: bool) {
// We don't cache negative results.
if verified {
SIGNATURE_VERIFICATION_CACHE.insert(self.value);
}
}
/// Whether the entry was inserted since the program started.
///
/// Entries added by [`SignatureVerificationCache::restore`] have
/// this cleared. Entries added as a side effect of a signature
/// verification have this set.
pub fn inserted(&self) -> bool {
self.metadata.inserted
}
/// Whether the entry was accessed.
///
/// An entry added by [`SignatureVerificationCache::restore`]
/// initially is not considered to have been accessed. This is
/// set when an entry is used by the signature verification code.
pub fn accessed(&self) -> bool {
self.metadata.accessed.load(Ordering::Relaxed)
}
}
/// We split on the `BUCKETS_BITS` most significant bits of the value
/// to reduce locking contention.
const BUCKETS_BITS: usize = 4;
const BUCKETS: usize = 1 << BUCKETS_BITS;
const BUCKETS_SHIFT: usize = 8 - BUCKETS_BITS;
/// A signature verification cache.
pub struct SignatureVerificationCache {
/// A sorted list of entries. This is filled by
/// `SignatureVerificationCache::restore`, and is much faster than
/// filling the btrees.
list: OnceLock<Vec<Entry>>,
/// The buckets.
buckets: [
RwLock<BTreeMap<Value, Metadata>>;
BUCKETS
],
/// The number of cache hits.
hits: AtomicUsize,
/// The number of cache misses.
misses: AtomicUsize,
/// The number of entries that were restored (i.e., not inserted).
preloads: AtomicUsize,
/// The number of entries that were inserted (i.e., not restored).
insertions: AtomicUsize,
}
impl SignatureVerificationCache {
const fn empty() -> Self {
SignatureVerificationCache {
list: OnceLock::new(),
buckets: [
// 0
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
// 8
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
RwLock::new(BTreeMap::new()),
],
hits: AtomicUsize::new(0),
misses: AtomicUsize::new(0),
preloads: AtomicUsize::new(0),
insertions: AtomicUsize::new(0),
}
}
/// Returns the bucket that a cache entry goes into.
fn bucket(value: &[u8]) -> usize {
(value[0] >> BUCKETS_SHIFT) as usize
}
/// Returns whether the cache contains `value`.
fn present(&self, value: &[u8]) -> bool {
assert_eq!(value.len(), HASH_BYTES_TRUNCATED);
// First search in our restored list. It's sorted so we can
// use binary search.
if let Some(list) = self.list.get() {
if let Ok(i) = list.binary_search_by(|e| e.value[..].cmp(value)) {
list[i].metadata.accessed.store(true, Ordering::Relaxed);
self.hits.fetch_add(1, Ordering::Relaxed);
return true;
}
}
// Fallback to searching the buckets.
let i = Self::bucket(value);
let entries = self.buckets[i].read().unwrap();
if let Some(metadata) = entries.get(value) {
metadata.accessed.store(true, Ordering::Relaxed);
self.hits.fetch_add(1, Ordering::Relaxed);
true
} else {
self.misses.fetch_add(1, Ordering::Relaxed);
false
}
}
/// Inserts a verified signature into the cache.
fn insert(&self, value: [u8; HASH_BYTES_TRUNCATED]) {
let i = Self::bucket(&value);
let mut entries = self.buckets[i].write().unwrap();
match entries.entry(value) {
btree_map::Entry::Vacant(e) => {
// The entry is new. Note it.
self.insertions.fetch_add(1, Ordering::Relaxed);
// Add the entry.
e.insert(Metadata::new(true));
}
btree_map::Entry::Occupied(_e) => {
// Nothing to do.
}
}
}
/// Returns the number of cache hits.
pub fn cache_hits() -> usize {
SIGNATURE_VERIFICATION_CACHE.hits.load(Ordering::Relaxed)
}
/// Returns the number of cache misses.
pub fn cache_misses() -> usize {
SIGNATURE_VERIFICATION_CACHE.misses.load(Ordering::Relaxed)
}
/// Returns the number of cache insertions.
///
/// This returns the number of times an entry was added to the
/// cache since the program started or the last time
/// [`SignatureVerificationCache::clear_insertions`] was called.
///
/// This does not include entries added via
/// [`SignatureVerificationCache::restore`].
pub fn insertions() -> usize {
SIGNATURE_VERIFICATION_CACHE.insertions.load(Ordering::Relaxed)
}
/// Resets the insertions counter.
pub fn clear_insertions() {
SIGNATURE_VERIFICATION_CACHE.insertions.store(0, Ordering::Relaxed);
}
/// Restores the signature verification cache.
///
/// This merges the entries into the existing signature cache.
///
/// The values are the values as returned by [`Entry::value`].
///
/// The iterator is `Send`, `Sync` and `'static`, because this
/// function may spawn a thread to avoid blocking the main thread.
///
/// When the restore is complete, `finished` is called.
pub fn restore<'a, F>(
entries: impl Iterator<Item=Vec<u8>> + Send + Sync + 'static,
finished: F)
where F: FnOnce() + Send + Sync + 'static
{
tracer!(TRACE, "SignatureVerificationCache::restore");
// Sanity check the constants here: this function is run O(1)
// times.
assert_eq!(HASH_ALGO.context().expect("have SHA-512").digest_size(),
HASH_BYTES_UNTRUNCATED);
assert!(HASH_BYTES_TRUNCATED <= HASH_BYTES_UNTRUNCATED);
// Must fit in a byte.
assert!(BUCKETS_BITS <= 8);
// Consistency check.
assert_eq!(BUCKETS, 1 << BUCKETS_BITS);
std::thread::spawn(move || {
let mut items: Vec<Entry> = Vec::with_capacity(32 * 1024);
let mut bad = 0;
let mut count = 0;
for entry in entries {
count += 1;
if entry.len() != VALUE_BYTES {
bad += 1;
continue;
}
let mut value = VALUE_NULL;
value.copy_from_slice(&entry[..VALUE_BYTES]);
items.push(Entry {
value,
metadata: Metadata::new(false),
});
}
if bad > 0 {
t!("Warning: {} of {} cache entries could not be read",
bad, count);
}
t!("Restored {} entries", count);
SIGNATURE_VERIFICATION_CACHE.preloads
.fetch_add(items.len(), Ordering::Relaxed);
items.sort();
// If this is the first restore, then we can store the
// signatures in the list.
if let Err(items) = SIGNATURE_VERIFICATION_CACHE.list.set(items) {
// Hmm, another restore. This is unusual, but okay.
// We add the signatures to the buckets, as we can't
// change the list: it is behind a OnceLock.
let mut bucket_i = 0;
let mut bucket = SIGNATURE_VERIFICATION_CACHE
.buckets[bucket_i].write().unwrap();
for item in items.into_iter() {
let i = Self::bucket(&item.value);
if i != bucket_i {
// Items should be sorted so we should move
// from one bucket to the next.
assert!(i > bucket_i);
bucket = SIGNATURE_VERIFICATION_CACHE
.buckets[i].write().unwrap();
bucket_i = i;
}
bucket.insert(item.value, item.metadata);
}
}
finished();
});
}
/// Dumps the contents of the cache.
///
/// This clones the cache to avoid holding locks too long.
///
/// The values returned by [`Entry::value`] may be written to a
/// file, and restored using
/// [`SignatureVerificationCache::restore`].
///
/// Before saving them, you may want to check if there were any
/// insertions using [`SignatureVerificationCache::insertions`].
///
/// Also, you may want to prune the entries to avoid having the
/// cache grow without bound.
pub fn dump<'a>() -> impl IntoIterator<Item=Entry> {
tracer!(TRACE, "SignatureVerificationCache::dump");
if TRACE {
let preloads = SIGNATURE_VERIFICATION_CACHE
.preloads.load(Ordering::Relaxed);
let insertions = SIGNATURE_VERIFICATION_CACHE
.insertions.load(Ordering::Relaxed);
t!("{} entries: {} restored, {} inserted",
preloads + insertions,
preloads, insertions);
let hits = SIGNATURE_VERIFICATION_CACHE
.hits.load(Ordering::Relaxed);
let misses = SIGNATURE_VERIFICATION_CACHE
.misses.load(Ordering::Relaxed);
let lookups = hits + misses;
if lookups > 0 {
t!("{} cache lookups, {} hits ({}%), {} misses ({}%)",
lookups,
hits, (100 * hits) / lookups,
misses, (100 * misses) / lookups);
} else {
t!("0 cache lookups");
}
}
DumpIter {
bucket: 0,
iter: None,
list: SIGNATURE_VERIFICATION_CACHE.list.get()
.map(|list| list.clone())
.unwrap_or(Vec::new()),
}
}
}
/// Iterates over all entries in the cache.
///
/// Note: to reduce lock contention, this may return individual entries
/// added after it was instantiated.
struct DumpIter {
iter: Option<std::vec::IntoIter<Entry>>,
// The next bucket to dump. Once we get to `BUCKETS`, we dump
// `list`.
bucket: usize,
// If we verify an entry before the cache is restored, the entry
// could end in both SignatureVerificationCache.list and a bucket.
// Avoid dumping an entry twice.
list: Vec<Entry>,
}
impl Iterator for DumpIter {
type Item = Entry;
fn next(&mut self) -> Option<Self::Item> {
tracer!(TRACE, "DumpIter::next");
loop {
if let Some(ref mut iter) = self.iter {
if let Some(item) = iter.next() {
return Some(item);
}
}
if self.bucket == BUCKETS {
if self.list.is_empty() {
return None;
}
let list = std::mem::take(&mut self.list);
t!("Dumping {} restored entries", list.len());
self.iter = Some(list.into_iter());
} else {
let bucket = &SIGNATURE_VERIFICATION_CACHE.buckets[self.bucket];
self.bucket += 1;
let bucket = bucket.read().unwrap();
t!("Dumping {} entries from bucket {}",
bucket.len(), self.bucket - 1);
self.iter = Some(
bucket.iter()
.filter_map(|(v, m)| {
// If the entry is also in list, then we
// don't want to return it twice.
if let Ok(_) = self.list.binary_search_by(|e| {
e.value[..].cmp(v)
})
{
// This is a dupe. Skip it.
None
} else {
Some(Entry {
value: v.clone(),
metadata: m.clone(),
})
}
})
.collect::<Vec<_>>()
.into_iter())
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn bucket() {
// Assert that all the buckets have the same number of items.
let mut bucket = 0;
let mut bucket_count = vec![0; BUCKETS];
for i in 0..=u8::MAX {
let mut value = VALUE_NULL;
value[0] = i;
let b = SignatureVerificationCache::bucket(&value);
if b != bucket {
// Different bucket. Since we are using the most
// significant bits, it must be the next bucket.
assert_eq!(b, bucket + 1);
bucket = bucket + 1;
}
bucket_count[b] += 1;
}
for (i, c) in bucket_count.iter().enumerate() {
eprintln!("{}: {}", i, c);
}
assert!(bucket_count.iter().all(|c| *c == bucket_count[0]));
assert_eq!(bucket_count.iter().map(|c| *c as usize).sum::<usize>(),
u8::MAX as usize + 1);
}
}