1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
//! Symmetric-Key Encrypted Session Key Packets.
//!
//! SKESK packets hold symmetrically encrypted session keys. The
//! session key is needed to decrypt the actual ciphertext. See
//! [Section 5.3 of RFC 4880] for details.
//!
//! [Section 5.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.3
use std::ops::{Deref, DerefMut};
#[cfg(test)]
use quickcheck::{Arbitrary, Gen};
use crate::Result;
use crate::crypto::{self, S2K, Password, SessionKey};
use crate::crypto::aead::CipherOp;
use crate::Error;
use crate::types::{
AEADAlgorithm,
SymmetricAlgorithm,
};
use crate::packet::{self, SKESK};
use crate::Packet;
impl SKESK {
/// Derives the key inside this SKESK from `password`. Returns a
/// tuple of the symmetric cipher to use with the key and the key
/// itself.
pub fn decrypt(&self, password: &Password)
-> Result<(SymmetricAlgorithm, SessionKey)>
{
match self {
SKESK::V4(ref s) => s.decrypt(password),
SKESK::V5(ref s) => s.decrypt(password),
}
}
}
#[cfg(test)]
impl Arbitrary for SKESK {
fn arbitrary(g: &mut Gen) -> Self {
if bool::arbitrary(g) {
SKESK::V4(SKESK4::arbitrary(g))
} else {
SKESK::V5(SKESK5::arbitrary(g))
}
}
}
/// Holds an symmetrically encrypted session key version 4.
///
/// Holds an symmetrically encrypted session key. The session key is
/// needed to decrypt the actual ciphertext. See [Section 5.3 of RFC
/// 4880] for details.
///
/// [Section 5.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.3
#[derive(Clone, Debug)]
pub struct SKESK4 {
/// CTB header fields.
pub(crate) common: packet::Common,
/// Packet version. Must be 4 or 5.
///
/// This struct is also used by SKESK5, hence we have a version
/// field.
version: u8,
/// Symmetric algorithm used to encrypt the session key.
sym_algo: SymmetricAlgorithm,
/// Key derivation method for the symmetric key.
s2k: S2K,
/// The encrypted session key.
///
/// If we recognized the S2K object during parsing, we can
/// successfully parse the data into S2K and ciphertext. However,
/// if we do not recognize the S2K type, we do not know how large
/// its parameters are, so we cannot cleanly parse it, and have to
/// accept that the S2K's body bleeds into the rest of the data.
esk: std::result::Result<Option<Box<[u8]>>, // optional ciphertext.
Box<[u8]>>, // S2K body + maybe ciphertext.
}
assert_send_and_sync!(SKESK4);
// Because the S2K and ESK cannot be cleanly separated at parse time,
// we need to carefully compare and hash SKESK4 packets.
impl PartialEq for SKESK4 {
fn eq(&self, other: &SKESK4) -> bool {
self.version == other.version
&& self.sym_algo == other.sym_algo
// Treat S2K and ESK as opaque blob.
&& {
// XXX: This would be nicer without the allocations.
use crate::serialize::MarshalInto;
let mut a = self.s2k.to_vec().unwrap();
let mut b = other.s2k.to_vec().unwrap();
a.extend_from_slice(self.raw_esk());
b.extend_from_slice(other.raw_esk());
a == b
}
}
}
impl Eq for SKESK4 {}
impl std::hash::Hash for SKESK4 {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.version.hash(state);
self.sym_algo.hash(state);
// Treat S2K and ESK as opaque blob.
// XXX: This would be nicer without the allocations.
use crate::serialize::MarshalInto;
let mut a = self.s2k.to_vec().unwrap();
a.extend_from_slice(self.raw_esk());
a.hash(state);
}
}
impl SKESK4 {
/// Creates a new SKESK version 4 packet.
///
/// The given symmetric algorithm is the one used to encrypt the
/// session key.
pub fn new(esk_algo: SymmetricAlgorithm, s2k: S2K,
esk: Option<Box<[u8]>>) -> Result<SKESK4> {
Self::new_raw(esk_algo, s2k, Ok(esk.and_then(|esk| {
if esk.len() == 0 { None } else { Some(esk) }
})))
}
/// Creates a new SKESK version 4 packet.
///
/// The given symmetric algorithm is the one used to encrypt the
/// session key.
pub(crate) fn new_raw(esk_algo: SymmetricAlgorithm, s2k: S2K,
esk: std::result::Result<Option<Box<[u8]>>,
Box<[u8]>>)
-> Result<SKESK4> {
Ok(SKESK4{
common: Default::default(),
version: 4,
sym_algo: esk_algo,
s2k,
esk,
})
}
/// Creates a new SKESK4 packet with the given password.
///
/// This function takes two [`SymmetricAlgorithm`] arguments: The
/// first, `payload_algo`, is the algorithm used to encrypt the
/// message's payload (i.e. the one used in the [`SEIP`] or
/// [`AED`] packet), and the second, `esk_algo`, is used to
/// encrypt the session key. Usually, one should use the same
/// algorithm, but if they differ, the `esk_algo` should be at
/// least as strong as the `payload_algo` as not to weaken the
/// security of the payload encryption.
///
/// [`SymmetricAlgorithm`]: crate::types::SymmetricAlgorithm
/// [`SEIP`]: super::SEIP
/// [`AED`]: super::AED
pub fn with_password(payload_algo: SymmetricAlgorithm,
esk_algo: SymmetricAlgorithm,
s2k: S2K,
session_key: &SessionKey, password: &Password)
-> Result<SKESK4> {
if session_key.len() != payload_algo.key_size()? {
return Err(Error::InvalidArgument(format!(
"Invalid size of session key, got {} want {}",
session_key.len(), payload_algo.key_size()?)).into());
}
// Derive key and make a cipher.
let key = s2k.derive_key(password, esk_algo.key_size()?)?;
let block_size = esk_algo.block_size()?;
let iv = vec![0u8; block_size];
let mut cipher = esk_algo.make_encrypt_cfb(&key[..], iv)?;
// We need to prefix the cipher specifier to the session key.
let mut psk: SessionKey = vec![0; 1 + session_key.len()].into();
psk[0] = payload_algo.into();
psk[1..].copy_from_slice(session_key);
let mut esk = vec![0u8; psk.len()];
for (pt, ct) in psk[..].chunks(block_size)
.zip(esk.chunks_mut(block_size)) {
cipher.encrypt(ct, pt)?;
}
SKESK4::new(esk_algo, s2k, Some(esk.into()))
}
/// Gets the symmetric encryption algorithm.
pub fn symmetric_algo(&self) -> SymmetricAlgorithm {
self.sym_algo
}
/// Sets the symmetric encryption algorithm.
pub fn set_symmetric_algo(&mut self, algo: SymmetricAlgorithm) -> SymmetricAlgorithm {
::std::mem::replace(&mut self.sym_algo, algo)
}
/// Gets the key derivation method.
pub fn s2k(&self) -> &S2K {
&self.s2k
}
/// Sets the key derivation method.
pub fn set_s2k(&mut self, s2k: S2K) -> S2K {
::std::mem::replace(&mut self.s2k, s2k)
}
/// Gets the encrypted session key.
///
/// If the [`S2K`] mechanism is not supported by Sequoia, this
/// function will fail. Note that the information is not lost,
/// but stored in the packet. If the packet is serialized again,
/// it is written out.
///
/// [`S2K`]: super::super::crypto::S2K
pub fn esk(&self) -> Result<Option<&[u8]>> {
self.esk.as_ref()
.map(|esko| esko.as_ref().map(|esk| &esk[..]))
.map_err(|_| Error::MalformedPacket(
format!("Unknown S2K: {:?}", self.s2k)).into())
}
/// Returns the encrypted session key, possibly including the body
/// of the S2K object.
pub(crate) fn raw_esk(&self) -> &[u8] {
match self.esk.as_ref() {
Ok(Some(esk)) => &esk[..],
Ok(None) => &[][..],
Err(s2k_esk) => &s2k_esk[..],
}
}
/// Sets the encrypted session key.
pub fn set_esk(&mut self, esk: Option<Box<[u8]>>) -> Option<Box<[u8]>> {
::std::mem::replace(
&mut self.esk,
Ok(esk.and_then(|esk| {
if esk.len() == 0 { None } else { Some(esk) }
})))
.unwrap_or(None)
}
/// Derives the key inside this SKESK4 from `password`.
///
/// Returns a tuple of the symmetric cipher to use with the key
/// and the key itself.
pub fn decrypt(&self, password: &Password)
-> Result<(SymmetricAlgorithm, SessionKey)>
{
let key = self.s2k.derive_key(password, self.sym_algo.key_size()?)?;
if let Some(esk) = self.esk()? {
// Use the derived key to decrypt the ESK. Unlike SEP &
// SEIP we have to use plain CFB here.
let blk_sz = self.sym_algo.block_size()?;
let iv = vec![0u8; blk_sz];
let mut dec = self.sym_algo.make_decrypt_cfb(&key[..], iv)?;
let mut plain: SessionKey = vec![0u8; esk.len()].into();
let cipher = esk;
for (pl, ct)
in plain[..].chunks_mut(blk_sz).zip(cipher.chunks(blk_sz))
{
dec.decrypt(pl, ct)?;
}
// Get the algorithm from the front.
let sym = SymmetricAlgorithm::from(plain[0]);
Ok((sym, plain[1..].into()))
} else {
// No ESK, we return the derived key.
Ok((self.sym_algo, key))
}
}
}
impl From<SKESK4> for super::SKESK {
fn from(p: SKESK4) -> Self {
super::SKESK::V4(p)
}
}
impl From<SKESK4> for Packet {
fn from(s: SKESK4) -> Self {
Packet::SKESK(SKESK::V4(s))
}
}
#[cfg(test)]
impl Arbitrary for SKESK4 {
fn arbitrary(g: &mut Gen) -> Self {
SKESK4::new(SymmetricAlgorithm::arbitrary(g),
S2K::arbitrary(g),
Option::<Vec<u8>>::arbitrary(g).map(|v| v.into()))
.unwrap()
}
}
/// Holds an symmetrically encrypted session key version 5.
///
/// Holds an symmetrically encrypted session key. The session key is
/// needed to decrypt the actual ciphertext. See [Section 5.3 of RFC
/// 4880bis] for details.
///
/// [Section 5.3 of RFC 4880]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-05#section-5.3
///
/// This feature is [experimental](super::super#experimental-features).
#[derive(Clone, Debug)]
pub struct SKESK5 {
/// Common fields.
pub(crate) skesk4: SKESK4,
/// AEAD algorithm.
aead_algo: AEADAlgorithm,
/// Initialization vector for the AEAD algorithm.
///
/// If we recognized the S2K object during parsing, we can
/// successfully parse the data into S2K, AEAED IV, and
/// ciphertext. However, if we do not recognize the S2K type, we
/// do not know how large its parameters are, so we cannot cleanly
/// parse it, and have to accept that the S2K's body bleeds into
/// the rest of the data. In this case, the raw data is put into
/// the `esk` field, and `aead_iv` is set to `None`.
aead_iv: Option<Box<[u8]>>,
/// Digest for the AEAD algorithm.
aead_digest: Box<[u8]>,
}
assert_send_and_sync!(SKESK5);
// Because the S2K, IV, and ESK cannot be cleanly separated at parse
// time, we need to carefully compare and hash SKESK5 packets.
impl PartialEq for SKESK5 {
fn eq(&self, other: &SKESK5) -> bool {
self.skesk4.version == other.skesk4.version
&& self.skesk4.sym_algo == other.skesk4.sym_algo
&& self.aead_algo == other.aead_algo
&& self.aead_digest == other.aead_digest
// Treat S2K, IV, and ESK as opaque blob.
&& {
// XXX: This would be nicer without the allocations.
use crate::serialize::MarshalInto;
let mut a = self.skesk4.s2k.to_vec().unwrap();
let mut b = other.skesk4.s2k.to_vec().unwrap();
if let Ok(iv) = self.aead_iv() {
a.extend_from_slice(iv);
}
if let Ok(iv) = other.aead_iv() {
b.extend_from_slice(iv);
}
a.extend_from_slice(self.skesk4.raw_esk());
b.extend_from_slice(other.skesk4.raw_esk());
a == b
}
}
}
impl Eq for SKESK5 {}
impl std::hash::Hash for SKESK5 {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.skesk4.version.hash(state);
self.skesk4.sym_algo.hash(state);
self.aead_digest.hash(state);
// Treat S2K, IV, and ESK as opaque blob.
// XXX: This would be nicer without the allocations.
use crate::serialize::MarshalInto;
let mut a = self.skesk4.s2k.to_vec().unwrap();
if let Some(iv) = self.aead_iv.as_ref() {
a.extend_from_slice(iv);
}
a.extend_from_slice(self.skesk4.raw_esk());
a.hash(state);
}
}
impl Deref for SKESK5 {
type Target = SKESK4;
fn deref(&self) -> &Self::Target {
&self.skesk4
}
}
impl DerefMut for SKESK5 {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.skesk4
}
}
impl SKESK5 {
/// Creates a new SKESK version 5 packet.
///
/// The given symmetric algorithm is the one used to encrypt the
/// session key.
pub fn new(esk_algo: SymmetricAlgorithm, esk_aead: AEADAlgorithm,
s2k: S2K, iv: Box<[u8]>, esk: Box<[u8]>, digest: Box<[u8]>)
-> Result<Self> {
Self::new_raw(esk_algo, esk_aead, s2k, Ok((iv, esk)), digest)
}
/// Creates a new SKESK version 5 packet.
///
/// The given symmetric algorithm is the one used to encrypt the
/// session key.
pub(crate) fn new_raw(esk_algo: SymmetricAlgorithm, esk_aead: AEADAlgorithm,
s2k: S2K,
iv_esk: std::result::Result<(Box<[u8]>, Box<[u8]>),
Box<[u8]>>,
digest: Box<[u8]>)
-> Result<Self> {
let (iv, esk) = match iv_esk {
Ok((iv, esk)) => (Some(iv), Ok(Some(esk))),
Err(raw) => (None, Err(raw)),
};
Ok(SKESK5{
skesk4: SKESK4{
common: Default::default(),
version: 5,
sym_algo: esk_algo,
s2k,
esk,
},
aead_algo: esk_aead,
aead_iv: iv,
aead_digest: digest,
})
}
/// Creates a new SKESK version 5 packet with the given password.
///
/// This function takes two [`SymmetricAlgorithm`] arguments: The
/// first, `payload_algo`, is the algorithm used to encrypt the
/// message's payload (i.e. the one used in the [`SEIP`] or
/// [`AED`] packet), and the second, `esk_algo`, is used to
/// encrypt the session key. Usually, one should use the same
/// algorithm, but if they differ, the `esk_algo` should be at
/// least as strong as the `payload_algo` as not to weaken the
/// security of the payload encryption.
///
/// [`SymmetricAlgorithm`]: crate::types::SymmetricAlgorithm
/// [`SEIP`]: super::SEIP
/// [`AED`]: super::AED
pub fn with_password(payload_algo: SymmetricAlgorithm,
esk_algo: SymmetricAlgorithm,
esk_aead: AEADAlgorithm, s2k: S2K,
session_key: &SessionKey, password: &Password)
-> Result<Self> {
if session_key.len() != payload_algo.key_size()? {
return Err(Error::InvalidArgument(format!(
"Invalid size of session key, got {} want {}",
session_key.len(), payload_algo.key_size()?)).into());
}
// Derive key and make a cipher.
let key = s2k.derive_key(password, esk_algo.key_size()?)?;
let mut iv = vec![0u8; esk_aead.nonce_size()?];
crypto::random(&mut iv);
let aad = [0xc3, 5, esk_algo.into(), esk_aead.into()];
let mut ctx = esk_aead.context(esk_algo, &key, &aad, &iv,
CipherOp::Encrypt)?;
// Encrypt the session key with the KEK.
let mut esk_digest =
vec![0u8; session_key.len() + esk_aead.digest_size()?];
ctx.encrypt_seal(&mut esk_digest, session_key)?;
let digest = esk_digest[session_key.len()..].to_vec();
let esk = {
crate::vec_truncate(&mut esk_digest, session_key.len());
esk_digest
};
SKESK5::new(esk_algo, esk_aead, s2k, iv.into_boxed_slice(), esk.into(),
digest.into_boxed_slice())
}
/// Derives the key inside this `SKESK5` from `password`.
///
/// Returns a tuple containing a placeholder symmetric cipher and
/// the key itself. `SKESK5` packets do not contain the symmetric
/// cipher algorithm and instead rely on the `AED` packet that
/// contains it.
// XXX: This function should return Result<SessionKey>, but then
// SKESK::decrypt must return an
// Result<(Option<SymmetricAlgorithm>, _)> and
// DecryptionHelper::decrypt and PacketParser::decrypt must be
// adapted as well.
pub fn decrypt(&self, password: &Password)
-> Result<(SymmetricAlgorithm, SessionKey)> {
let key = self.s2k().derive_key(password,
self.symmetric_algo().key_size()?)?;
if let Some(esk) = self.esk()? {
// Use the derived key to decrypt the ESK.
let aad = [0xc3, 5 /* Version. */, self.symmetric_algo().into(),
self.aead_algo.into()];
let mut cipher = self.aead_algo.context(
self.symmetric_algo(), &key, &aad, self.aead_iv()?,
CipherOp::Decrypt)?;
let mut plain: SessionKey = vec![0; esk.len()].into();
let mut chunk =
Vec::with_capacity(esk.len() + self.aead_digest.len());
chunk.extend_from_slice(esk);
chunk.extend_from_slice(&self.aead_digest);
cipher.decrypt_verify(&mut plain, &chunk)?;
Ok((SymmetricAlgorithm::Unencrypted, plain))
} else {
Err(Error::MalformedPacket(
"No encrypted session key in v5 SKESK packet".into())
.into())
}
}
/// Gets the AEAD algorithm.
pub fn aead_algo(&self) -> AEADAlgorithm {
self.aead_algo
}
/// Sets the AEAD algorithm.
pub fn set_aead_algo(&mut self, algo: AEADAlgorithm) -> AEADAlgorithm {
::std::mem::replace(&mut self.aead_algo, algo)
}
/// Gets the AEAD initialization vector.
///
/// If the [`S2K`] mechanism is not supported by Sequoia, this
/// function will fail. Note that the information is not lost,
/// but stored in the packet. If the packet is serialized again,
/// it is written out.
///
/// [`S2K`]: super::super::crypto::S2K
pub fn aead_iv(&self) -> Result<&[u8]> {
self.aead_iv.as_ref()
.map(|iv| &iv[..])
.ok_or_else(|| Error::MalformedPacket(
format!("Unknown S2K: {:?}", self.s2k)).into())
}
/// Sets the AEAD initialization vector.
pub fn set_aead_iv(&mut self, iv: Box<[u8]>) -> Option<Box<[u8]>> {
::std::mem::replace(&mut self.aead_iv, Some(iv))
}
/// Gets the AEAD digest.
pub fn aead_digest(&self) -> &[u8] {
&self.aead_digest
}
/// Sets the AEAD digest.
pub fn set_aead_digest(&mut self, digest: Box<[u8]>) -> Box<[u8]> {
::std::mem::replace(&mut self.aead_digest, digest)
}
}
impl From<SKESK5> for super::SKESK {
fn from(p: SKESK5) -> Self {
super::SKESK::V5(p)
}
}
impl From<SKESK5> for Packet {
fn from(s: SKESK5) -> Self {
Packet::SKESK(SKESK::V5(s))
}
}
#[cfg(test)]
impl Arbitrary for SKESK5 {
fn arbitrary(g: &mut Gen) -> Self {
let algo = AEADAlgorithm::const_default();
let mut iv = vec![0u8; algo.nonce_size().unwrap()];
for b in iv.iter_mut() {
*b = u8::arbitrary(g);
}
let mut digest = vec![0u8; algo.digest_size().unwrap()];
for b in digest.iter_mut() {
*b = u8::arbitrary(g);
}
SKESK5::new(SymmetricAlgorithm::arbitrary(g),
algo,
S2K::arbitrary(g),
iv.into_boxed_slice(),
Vec::<u8>::arbitrary(g).into(),
digest.into_boxed_slice())
.unwrap()
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::PacketPile;
use crate::parse::Parse;
use crate::serialize::{Marshal, MarshalInto};
quickcheck! {
fn roundtrip(p: SKESK) -> bool {
let q = SKESK::from_bytes(&p.to_vec().unwrap()).unwrap();
assert_eq!(p, q);
true
}
}
#[test]
fn sample_skesk5_packet() {
// This sample packet is from RFC4880bis-05, section A.3.
let password: Password = String::from("password").into();
let raw = [
// Packet header:
0xc3, 0x3e,
// Version, algorithms, S2K fields:
0x05, 0x07, 0x01, 0x03, 0x08, 0xcd, 0x5a, 0x9f,
0x70, 0xfb, 0xe0, 0xbc, 0x65, 0x90,
// AEAD IV:
0xbc, 0x66, 0x9e, 0x34, 0xe5, 0x00, 0xdc, 0xae,
0xdc, 0x5b, 0x32, 0xaa, 0x2d, 0xab, 0x02, 0x35,
// AEAD encrypted CEK:
0x9d, 0xee, 0x19, 0xd0, 0x7c, 0x34, 0x46, 0xc4,
0x31, 0x2a, 0x34, 0xae, 0x19, 0x67, 0xa2, 0xfb,
// Authentication tag:
0x7e, 0x92, 0x8e, 0xa5, 0xb4, 0xfa, 0x80, 0x12,
0xbd, 0x45, 0x6d, 0x17, 0x38, 0xc6, 0x3c, 0x36,
];
let packets: Vec<Packet> =
PacketPile::from_bytes(&raw[..]).unwrap().into_children().collect();
assert_eq!(packets.len(), 1);
if let Packet::SKESK(SKESK::V5(ref s)) = packets[0] {
assert_eq!(&s.s2k().derive_key(
&password, s.symmetric_algo().key_size().unwrap()).unwrap()[..],
&[0xb2, 0x55, 0x69, 0xb9, 0x54, 0x32, 0x45, 0x66,
0x45, 0x27, 0xc4, 0x97, 0x6e, 0x7a, 0x5d, 0x6e][..]);
if AEADAlgorithm::EAX.is_supported() {
assert_eq!(&s.decrypt(&password).unwrap().1[..],
&[0x86, 0xf1, 0xef, 0xb8, 0x69, 0x52, 0x32, 0x9f,
0x24, 0xac, 0xd3, 0xbf, 0xd0, 0xe5, 0x34, 0x6d][..]);
}
} else {
panic!("bad packet");
}
let mut serialized = Vec::new();
packets[0].serialize(&mut serialized).unwrap();
assert_eq!(&raw[..], &serialized[..]);
}
/// Tests various S2K methods, with and without encrypted session
/// key.
#[test]
fn skesk4_s2k_variants() -> Result<()> {
use std::io::Read;
use crate::{
Cert,
Fingerprint,
packet::{SKESK, PKESK},
parse::stream::*,
};
struct H();
impl VerificationHelper for H {
fn get_certs(&mut self, _ids: &[crate::KeyHandle])
-> Result<Vec<Cert>> {
Ok(Vec::new())
}
fn check(&mut self, _m: MessageStructure)
-> Result<()> {
Ok(())
}
}
impl DecryptionHelper for H {
fn decrypt<D>(&mut self, _: &[PKESK], skesks: &[SKESK],
_: Option<SymmetricAlgorithm>,
mut decrypt: D) -> Result<Option<Fingerprint>>
where D: FnMut(SymmetricAlgorithm, &SessionKey) -> bool
{
assert_eq!(skesks.len(), 1);
let (cipher, sk) = skesks[0].decrypt(&"password".into())?;
assert_eq!(cipher, SymmetricAlgorithm::AES256);
let r = decrypt(cipher, &sk);
assert!(r);
Ok(None)
}
}
let p = &crate::policy::StandardPolicy::new();
for variant in &["simple", "salted", "iterated.min", "iterated.max"] {
for esk in &["", ".esk"] {
let name = format!("s2k/{}{}.pgp", variant, esk);
eprintln!("{}", name);
let mut verifier = DecryptorBuilder::from_bytes(
crate::tests::message(&name))?
.with_policy(p, None, H())?;
let mut b = Vec::new();
verifier.read_to_end(&mut b)?;
assert_eq!(&b, b"Hello World :)");
}
}
Ok(())
}
}