1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
//! Packet parsing infrastructure.
//!
//! OpenPGP defines a binary representation suitable for storing and
//! communicating OpenPGP data structures (see [Section 3 ff. of RFC
//! 4880]). Parsing is the process of interpreting the binary
//! representation.
//!
//! [Section 3 ff. of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-3
//!
//! An OpenPGP stream represents a sequence of packets. Some of the
//! packets contain other packets. These so called containers include
//! encrypted data packets (the SED and [SEIP] packets), and
//! [compressed data] packets. This structure results in a tree,
//! which is laid out in depth-first order.
//!
//! [SEIP]: crate::packet::SEIP
//! [compressed data]: crate::packet::CompressedData
//!
//! OpenPGP defines objects consisting of several packets with a
//! specific structure. These objects are [`Message`]s, [`Cert`]s and
//! sequences of [`Cert`]s ("keyrings"). Verifying the structure of
//! these objects is also an act of parsing.
//!
//! [`Message`]: super::Message
//! [`Cert`]: crate::cert::Cert
//!
//! This crate provides several interfaces to parse OpenPGP data.
//! They fall in roughly three categories:
//!
//! - First, most data structures in this crate implement the
//! [`Parse`] trait. It provides a uniform interface to parse data
//! from an [`io::Read`]er, a file identified by its [`Path`], or
//! simply a byte slice.
//!
//! - Second, there is a convenient interface to decrypt and/or
//! verify OpenPGP messages in a streaming fashion. Encrypted
//! and/or signed data is read using the [`Parse`] interface, and
//! decrypted and/or verified data can be read using [`io::Read`].
//!
//! - Finally, we expose the low-level [`PacketParser`], allowing
//! fine-grained control over the parsing.
//!
//! [`io::Read`]: std::io::Read
//! [`Path`]: std::path::Path
//!
//! The choice of interface depends on the specific use case. In many
//! circumstances, OpenPGP data can not be trusted until it has been
//! authenticated. Therefore, it has to be treated as attacker
//! controlled data, and it has to be treated with great care. See
//! the section [Security Considerations] below.
//!
//! [Security Considerations]: #security-considerations
//!
//! # Common Operations
//!
//! - *Decrypt a message*: Use a [streaming `Decryptor`].
//! - *Verify a message*: Use a [streaming `Verifier`].
//! - *Verify a detached signature*: Use a [`DetachedVerifier`].
//! - *Parse a [`Cert`]*: Use [`Cert`]'s [`Parse`] interface.
//! - *Parse a keyring*: Use [`CertParser`]'s [`Parse`] interface.
//! - *Parse an unstructured sequence of small packets from a trusted
//! source*: Use [`PacketPile`]s [`Parse`] interface (e.g.
//! [`PacketPile::from_file`]).
//! - *Parse an unstructured sequence of packets*: Use the
//! [`PacketPileParser`].
//! - *Parse an unstructured sequence of packets with full control
//! over the parser*: Use a [`PacketParser`].
//! - *Customize the parser behavior even more*: Use a
//! [`PacketParserBuilder`].
//!
//! [`CertParser`]: crate::cert::CertParser
//! [streaming `Decryptor`]: stream::Decryptor
//! [streaming `Verifier`]: stream::Verifier
//! [`DetachedVerifier`]: stream::DetachedVerifier
//! [`PacketPile`]: crate::PacketPile
//! [`PacketPile::from_file`]: super::PacketPile::from_file()
//!
//! # Data Structures and Interfaces
//!
//! This crate provides several interfaces for parsing OpenPGP
//! streams, ordered from the most convenient but least flexible to
//! the least convenient but most flexible:
//!
//! - The streaming [`Verifier`], [`DetachedVerifier`], and
//! [`Decryptor`] are the most convenient way to parse OpenPGP
//! messages.
//!
//! - The [`PacketPile::from_file`] (and related methods) is the
//! most convenient, but least flexible way to parse an arbitrary
//! sequence of OpenPGP packets. Whereas a [`PacketPileParser`]
//! allows the caller to determine how to handle individual
//! packets, the [`PacketPile::from_file`] parses the whole stream
//! at once and returns a [`PacketPile`].
//!
//! - The [`PacketPileParser`] abstraction builds on the
//! [`PacketParser`] abstraction and provides a similar interface.
//! However, after each iteration, the [`PacketPileParser`] adds the
//! packet to a [`PacketPile`], which is returned once the packets are
//! completely processed.
//!
//! This interface should only be used if the caller actually
//! wants a [`PacketPile`]; if the OpenPGP stream is parsed in place,
//! then using a [`PacketParser`] is better.
//!
//! This interface should only be used if the caller is certain
//! that the parsed stream will fit in memory.
//!
//! - The [`PacketParser`] abstraction produces one packet at a
//! time. What is done with those packets is completely up to the
//! caller.
//!
//! The behavior of the [`PacketParser`] can be configured using a
//! [`PacketParserBuilder`].
//!
//! [`Decryptor`]: stream::Decryptor
//! [`Verifier`]: stream::Verifier
//!
//! # ASCII armored data
//!
//! The [`PacketParser`] will by default automatically detect and
//! remove any ASCII armor encoding (see [Section 6 of RFC 4880]).
//! This automatism can be disabled and fine-tuned using
//! [`PacketParserBuilder::dearmor`].
//!
//! [Section 6 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-6
//! [`PacketParserBuilder::dearmor`]: PacketParserBuilder::dearmor()
//!
//! # Security Considerations
//!
//! In general, OpenPGP data must be considered attacker controlled
//! and thus treated with great care. Even though we use a
//! memory-safe language, there are several aspects to be aware of:
//!
//! - OpenPGP messages may be compressed. Therefore, one cannot
//! predict the uncompressed size of a message by looking at the
//! compressed representation. Operations that parse OpenPGP
//! streams and buffer the packet data (like using the
//! [`PacketPile`]'s [`Parse`] interface) are inherently unsafe and
//! must only be used on trusted data.
//!
//! - The authenticity of an OpenPGP message can only be checked once
//! it has been fully processed. Therefore, the plaintext must be
//! buffered and not be trusted until the whole message is
//! processed and signatures and/or ciphertext integrity are
//! verified. On the other hand, buffering an unbounded amount of
//! data is problematic and can lead to out-of-memory situations
//! resulting in denial of service. The streaming message
//! processing interfaces address this problem by buffering an
//! configurable amount of data before releasing any data to the
//! caller, and only revert to streaming unverified data if the
//! message exceeds the buffer. See [`DEFAULT_BUFFER_SIZE`] for
//! more information.
//!
//! - Not all parts of signed-then-encrypted OpenPGP messages are
//! authenticated. Notably, all packets outside the encryption
//! container (any [`PKESK`] and [`SKESK`] packets, as well as the
//! encryption container itself), the [`Literal`] packet's headers,
//! as well as parts of the [`Signature`] are not covered by the
//! signatures.
//!
//! - Ciphertext integrity is provided by the [`SEIP`] packet's
//! [`MDC`] mechanism, but the integrity can only be checked after
//! decrypting the whole container. Proper authenticated
//! encryption is provided by the [`AED`] container, but as of this
//! writing it is not standardized.
//!
//! [`DEFAULT_BUFFER_SIZE`]: stream::DEFAULT_BUFFER_SIZE
//! [`PKESK`]: crate::packet::PKESK
//! [`SKESK`]: crate::packet::PKESK
//! [`Literal`]: crate::packet::Literal
//! [`Signature`]: crate::packet::Signature
//! [`SEIP`]: crate::packet::SEIP
//! [`MDC`]: crate::packet::MDC
//! [`AED`]: crate::packet::AED
use std::io;
use std::io::prelude::*;
use std::convert::TryFrom;
use std::cmp;
use std::str;
use std::mem;
use std::fmt;
use std::path::Path;
use std::result::Result as StdResult;
use xxhash_rust::xxh3::Xxh3;
// Re-export buffered_reader.
//
// We use this in our API, and re-exporting it here makes it easy to
// use the correct version of the crate in downstream code without
// having to explicitly depend on it.
pub use buffered_reader;
use ::buffered_reader::*;
use crate::{
cert::CertValidator,
cert::CertValidity,
cert::KeyringValidator,
cert::KeyringValidity,
crypto::{aead, hash::Hash},
Result,
packet::header::{
CTB,
BodyLength,
PacketLengthType,
},
crypto::S2K,
Error,
packet::{
Container,
Header,
},
packet::signature::Signature3,
packet::signature::Signature4,
packet::prelude::*,
Packet,
Fingerprint,
KeyID,
crypto::SessionKey,
};
use crate::types::{
AEADAlgorithm,
CompressionAlgorithm,
Features,
HashAlgorithm,
KeyFlags,
KeyServerPreferences,
PublicKeyAlgorithm,
RevocationKey,
SignatureType,
SymmetricAlgorithm,
Timestamp,
};
use crate::crypto::{self, mpi::{PublicKey, MPI, ProtectedMPI}};
use crate::crypto::symmetric::{Decryptor, BufferedReaderDecryptor};
use crate::message;
use crate::message::MessageValidator;
mod partial_body;
use self::partial_body::BufferedReaderPartialBodyFilter;
use crate::packet::signature::subpacket::{
NotationData,
NotationDataFlags,
Subpacket,
SubpacketArea,
SubpacketLength,
SubpacketTag,
SubpacketValue,
};
use crate::serialize::MarshalInto;
mod packet_pile_parser;
pub use self::packet_pile_parser::PacketPileParser;
mod hashed_reader;
pub(crate) use self::hashed_reader::{
HashingMode,
HashedReader,
};
mod packet_parser_builder;
pub use self::packet_parser_builder::{Dearmor, PacketParserBuilder};
use packet_parser_builder::ARMOR_READER_LEVEL;
pub mod map;
mod mpis;
pub mod stream;
// Whether to trace execution by default (on stderr).
const TRACE : bool = false;
// How much junk the packet parser is willing to skip when recovering.
// This is an internal implementation detail and hence not exported.
pub(crate) const RECOVERY_THRESHOLD: usize = 32 * 1024;
/// Parsing of packets and related structures.
///
/// This is a uniform interface to parse packets, messages, keys, and
/// related data structures.
pub trait Parse<'a, T> {
/// Reads from the given buffered reader.
fn from_buffered_reader<R>(reader: R) -> Result<T>
where
R: BufferedReader<Cookie> + 'a,
{
// XXXv2: Make this function the mandatory one instead of
// Parse::from_reader.
// Currently, we express the default implementation over
// Self::from_reader, which is no worse than using from_reader
// directly.
Self::from_reader(reader)
}
/// Reads from the given reader.
fn from_reader<R: 'a + Read + Send + Sync>(reader: R) -> Result<T>;
/// Reads from the given file.
///
/// The default implementation just uses [`from_reader(..)`], but
/// implementations can provide their own specialized version.
///
/// [`from_reader(..)`]: Parse::from_reader
fn from_file<P: AsRef<Path>>(path: P) -> Result<T>
{
Self::from_reader(::std::fs::File::open(path)?)
}
/// Reads from the given slice.
///
/// The default implementation just uses [`from_reader(..)`], but
/// implementations can provide their own specialized version.
///
/// [`from_reader(..)`]: Parse::from_reader
fn from_bytes<D: AsRef<[u8]> + ?Sized + Send + Sync>(data: &'a D) -> Result<T> {
Self::from_reader(io::Cursor::new(data))
}
}
// Implement type::from_buffered_reader and the Parse trait in terms
// of type::from_buffered_reader for a particular packet type. If the
// generic from_buffered_reader implementation is inappropriate, then
// it can be overridden.
macro_rules! impl_parse_with_buffered_reader {
($typ: ident) => {
impl_parse_with_buffered_reader!(
$typ,
|br: Box<dyn BufferedReader<Cookie>>| -> Result<$typ> {
let parser = PacketHeaderParser::new_naked(br);
let mut pp = Self::parse(parser)?;
pp.buffer_unread_content()?;
match pp.next()? {
#[allow(deprecated)]
(Packet::$typ(o), PacketParserResult::EOF(_))
=> Ok(o),
(Packet::Unknown(u), PacketParserResult::EOF(_)) =>
Err(u.into_error()),
(p, PacketParserResult::EOF(_)) =>
Err(Error::InvalidOperation(
format!("Not a {} packet: {:?}", stringify!($typ),
p)).into()),
(_, PacketParserResult::Some(_)) =>
Err(Error::InvalidOperation(
"Excess data after packet".into()).into()),
}
});
};
// from_buffered_reader should be a closure that takes a
// BufferedReader and returns a Result<Self>.
($typ: ident, $from_buffered_reader: expr) => {
impl<'a> Parse<'a, $typ> for $typ {
fn from_buffered_reader<R>(reader: R) -> Result<Self>
where
R: BufferedReader<Cookie> + 'a,
{
Ok($from_buffered_reader(reader.into_boxed())?)
}
fn from_reader<R: 'a + Read + Send + Sync>(reader: R) -> Result<Self> {
let br = buffered_reader::Generic::with_cookie(
reader, None, Cookie::default());
Self::from_buffered_reader(br)
}
fn from_bytes<D: AsRef<[u8]> + ?Sized + Send + Sync>(data: &'a D) -> Result<Self> {
let br = buffered_reader::Memory::with_cookie(
data.as_ref(), Default::default());
Self::from_buffered_reader(br)
}
}
}
}
/// The default amount of acceptable nesting.
///
/// The default is `16`.
///
/// Typically, we expect a message to looking like:
///
/// ```text
/// [ encryption container: [ compression container: [ signature: [ literal data ]]]]
/// ```
///
/// So, this should be more than enough.
///
/// To change the maximum recursion depth, use
/// [`PacketParserBuilder::max_recursion_depth`].
///
/// [`PacketParserBuilder::max_recursion_depth`]: PacketParserBuilder::max_recursion_depth()
pub const DEFAULT_MAX_RECURSION_DEPTH : u8 = 16;
/// The default maximum size of non-container packets.
///
/// The default is `1 MiB`.
///
/// Packets that exceed this limit will be returned as
/// `Packet::Unknown`, with the error set to `Error::PacketTooLarge`.
///
/// This limit applies to any packet type that is *not* a container
/// packet, i.e. any packet that is not a literal data packet, a
/// compressed data packet, a symmetrically encrypted data packet, or
/// an AEAD encrypted data packet.
///
/// To change the maximum recursion depth, use
/// [`PacketParserBuilder::max_packet_size`].
///
/// [`PacketParserBuilder::max_packet_size`]: PacketParserBuilder::max_packet_size()
pub const DEFAULT_MAX_PACKET_SIZE: u32 = 1 << 20; // 1 MiB
// Used to parse an OpenPGP packet's header (note: in this case, the
// header means a Packet's fixed data, not the OpenPGP framing
// information, such as the CTB, and length information).
//
// This struct is not exposed to the user. Instead, when a header has
// been successfully parsed, a `PacketParser` is returned.
pub(crate) struct PacketHeaderParser<'a> {
// The reader stack wrapped in a buffered_reader::Dup so that if
// there is a parse error, we can abort and still return an
// Unknown packet.
reader: buffered_reader::Dup<Box<dyn BufferedReader<Cookie> + 'a>, Cookie>,
// The current packet's header.
header: Header,
header_bytes: Vec<u8>,
// This packet's path.
path: Vec<usize>,
// The `PacketParser`'s state.
state: PacketParserState,
/// A map of this packet.
map: Option<map::Map>,
}
/// Creates a local marco called php_try! that returns an Unknown
/// packet instead of an Error like try! on parsing-related errors.
/// (Errors like read errors are still returned as usual.)
///
/// If you want to fail like this in a non-try! context, use
/// php.fail("reason").
macro_rules! make_php_try {
($parser:expr) => {
macro_rules! php_try {
($e:expr) => {
match $e {
Ok(b) => {
Ok(b)
},
Err(e) => {
t!("parsing failed at {}:{}: {}", file!(), line!(), e);
let e = match e.downcast::<io::Error>() {
Ok(e) =>
if let io::ErrorKind::UnexpectedEof = e.kind() {
return $parser.error(e.into());
} else {
e.into()
},
Err(e) => e,
};
let e = match e.downcast::<Error>() {
Ok(e) => return $parser.error(e.into()),
Err(e) => e,
};
Err(e)
},
}?
};
}
};
}
impl std::fmt::Debug for PacketHeaderParser<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("PacketHeaderParser")
.field("header", &self.header)
.field("path", &self.path)
.field("reader", &self.reader)
.field("state", &self.state)
.field("map", &self.map)
.finish()
}
}
impl<'a> PacketHeaderParser<'a> {
// Returns a `PacketHeaderParser` to parse an OpenPGP packet.
// `inner` points to the start of the OpenPGP framing information,
// i.e., the CTB.
fn new(inner: Box<dyn BufferedReader<Cookie> + 'a>,
state: PacketParserState,
path: Vec<usize>, header: Header,
header_bytes: Vec<u8>) -> Self
{
assert!(!path.is_empty());
let cookie = Cookie {
level: inner.cookie_ref().level,
..Default::default()
};
let map = if state.settings.map {
Some(map::Map::new(header_bytes.clone()))
} else {
None
};
PacketHeaderParser {
reader: buffered_reader::Dup::with_cookie(inner, cookie),
header,
header_bytes,
path,
state,
map,
}
}
// Returns a `PacketHeaderParser` that parses a bare packet. That
// is, `inner` points to the start of the packet; the OpenPGP
// framing has already been processed, and `inner` already
// includes any required filters (e.g., a
// `BufferedReaderPartialBodyFilter`, etc.).
fn new_naked(inner: Box<dyn BufferedReader<Cookie> + 'a>) -> Self {
PacketHeaderParser::new(inner,
PacketParserState::new(Default::default()),
vec![ 0 ],
Header::new(CTB::new(Tag::Reserved),
BodyLength::Full(0)),
Vec::new())
}
// Consumes the bytes belonging to the packet's header (i.e., the
// number of bytes read) from the reader, and returns a
// `PacketParser` that can be returned to the user.
//
// Only call this function if the packet's header has been
// completely and correctly parsed. If a failure occurs while
// parsing the header, use `fail()` instead.
fn ok(mut self, packet: Packet) -> Result<PacketParser<'a>> {
tracer!(TRACE, "PacketHeaderParser::ok",
self.reader.cookie_ref().level.unwrap_or(0));
let total_out = self.reader.total_out();
t!("total_out = {}", total_out);
if self.state.settings.map {
// Steal the body for the map.
self.reader.rewind();
let body = if self.state.settings.buffer_unread_content {
self.reader.steal_eof()?
} else {
self.reader.steal(total_out)?
};
t!("got {} bytes of body for the map", body.len());
if body.len() > total_out {
self.field("body", body.len() - total_out);
}
self.map.as_mut().unwrap().finalize(body);
}
// This is a buffered_reader::Dup, so this always has an
// inner.
let mut reader = Box::new(self.reader).into_inner().unwrap();
if total_out > 0 {
// We know the data has been read, so this cannot fail.
reader.data_consume_hard(total_out).unwrap();
}
Ok(PacketParser {
header: self.header,
packet,
path: self.path,
last_path: vec![],
reader,
content_was_read: false,
processed: true,
finished: false,
map: self.map,
body_hash: Some(Container::make_body_hash()),
state: self.state,
})
}
// Something went wrong while parsing the packet's header. Aborts
// and returns an Unknown packet instead.
fn fail(self, reason: &'static str) -> Result<PacketParser<'a>> {
self.error(Error::MalformedPacket(reason.into()).into())
}
fn error(mut self, error: anyhow::Error) -> Result<PacketParser<'a>> {
// Rewind the dup reader, so that the caller has a chance to
// buffer the whole body of the unknown packet.
self.reader.rewind();
Unknown::parse(self, error)
}
fn field(&mut self, name: &'static str, size: usize) {
if let Some(ref mut map) = self.map {
map.add(name, size)
}
}
fn parse_u8(&mut self, name: &'static str) -> Result<u8> {
let r = self.reader.data_consume_hard(1)?[0];
self.field(name, 1);
Ok(r)
}
fn parse_be_u16(&mut self, name: &'static str) -> Result<u16> {
let r = self.reader.read_be_u16()?;
self.field(name, 2);
Ok(r)
}
fn parse_be_u32(&mut self, name: &'static str) -> Result<u32> {
let r = self.reader.read_be_u32()?;
self.field(name, 4);
Ok(r)
}
fn parse_bool(&mut self, name: &'static str) -> Result<bool> {
let v = self.reader.data_consume_hard(1)?[0];
self.field(name, 1);
match v {
0 => Ok(false),
1 => Ok(true),
n => Err(Error::MalformedPacket(
format!("Invalid value for bool: {}", n)).into()),
}
}
fn parse_bytes(&mut self, name: &'static str, amount: usize)
-> Result<Vec<u8>> {
let r = self.reader.steal(amount)?;
self.field(name, amount);
Ok(r)
}
fn parse_bytes_eof(&mut self, name: &'static str) -> Result<Vec<u8>> {
let r = self.reader.steal_eof()?;
self.field(name, r.len());
Ok(r)
}
fn recursion_depth(&self) -> isize {
self.path.len() as isize - 1
}
}
/// What the hash in the Cookie is for.
#[derive(Copy, Clone, PartialEq, Debug)]
#[allow(clippy::upper_case_acronyms)]
pub(crate) enum HashesFor {
Nothing,
MDC,
Signature,
CleartextSignature,
}
/// Controls whether or not a hashed reader hashes data.
#[derive(Copy, Clone, PartialEq, Debug)]
enum Hashing {
/// Hashing is enabled.
Enabled,
/// Hashing is enabled for notarized signatures.
Notarized,
/// Hashing is disabled.
Disabled,
}
/// Private state used by the `PacketParser`.
///
/// This is not intended to be used. It is possible to explicitly
/// create `Cookie` instances using its `Default` implementation for
/// low-level interfacing with parsing code.
#[derive(Debug)]
pub struct Cookie {
// `BufferedReader`s managed by a `PacketParser` have
// `Some(level)`; an external `BufferedReader` (i.e., the
// underlying `BufferedReader`) has no level.
//
// Before parsing a top-level packet, we may push a
// `buffered_reader::Limitor` in front of the external
// `BufferedReader`. Such `BufferedReader`s are assigned a level
// of 0.
//
// When a top-level packet (i.e., a packet with a recursion depth
// of 0) reads from the `BufferedReader` stack, the top
// `BufferedReader` will have a level of at most 0.
//
// If the top-level packet is a container, say, a `CompressedData`
// packet, then it pushes a decompression filter with a level of 0
// onto the `BufferedReader` stack, and it recursively invokes the
// parser.
//
// When the parser encounters the `CompressedData`'s first child,
// say, a `Literal` packet, it pushes a `buffered_reader::Limitor` on
// the `BufferedReader` stack with a level of 1. Then, a
// `PacketParser` for the `Literal` data packet is created with a
// recursion depth of 1.
//
// There are several things to note:
//
// - When a `PacketParser` with a recursion depth of N reads
// from the `BufferedReader` stack, the top `BufferedReader`'s
// level is (at most) N.
//
// - Because we sometimes don't need to push a limitor
// (specifically, when the length is indeterminate), the
// `BufferedReader` at the top of the stack may have a level
// less than the current `PacketParser`'s recursion depth.
//
// - When a packet at depth N is a container that filters the
// data, it pushes a `BufferedReader` at level N onto the
// `BufferedReader` stack.
//
// - When we finish parsing a packet at depth N, we pop all
// `BufferedReader`s from the `BufferedReader` stack that are
// at level N. The intuition is: the `BufferedReaders` at
// level N are associated with the packet at depth N.
//
// - If a OnePassSig packet occurs at the top level, then we
// need to push a HashedReader above the current level. The
// top level is level 0, thus we push the HashedReader at
// level -1.
level: Option<isize>,
hashes_for: HashesFor,
hashing: Hashing,
/// Keeps track of whether the last one pass signature packet had
/// the last flag set.
saw_last: bool,
sig_groups: Vec<SignatureGroup>,
/// Keep track of the maximal size of sig_groups to compute
/// signature levels.
sig_groups_max_len: usize,
/// Stashed bytes that need to be hashed.
///
/// When checking nested signatures, we need to hash the framing.
/// However, at the time we know that we want to hash it, it has
/// already been consumed. Deferring the consumption of headers
/// failed due to complications with the partial body decoder
/// eagerly consuming data. I (Justus) decided that doing the
/// right thing is not worth the trouble, at least for now. Also,
/// hash stash sounds funny.
hash_stash: Option<Vec<u8>>,
/// Whether this `BufferedReader` is actually an interior EOF in a
/// container.
///
/// This is used by the SEIP parser to prevent a child packet from
/// accidentally swallowing the trailing MDC packet. This can
/// happen when there is a compressed data packet with an
/// indeterminate body length encoding. In this case, due to
/// buffering, the decompressor consumes data beyond the end of
/// the compressed data.
///
/// When set, buffered_reader_stack_pop will return early when it
/// encounters a fake EOF at the level it is popping to.
fake_eof: bool,
/// Indicates that this is the top-level armor reader that is
/// doing a transformation of a message using the cleartext
/// signature framework into a signed message.
csf_transformation: bool,
}
assert_send_and_sync!(Cookie);
/// Contains hashes for consecutive one pass signature packets ending
/// in one with the last flag set.
#[derive(Default)]
pub(crate) struct SignatureGroup {
/// Counts the number of one pass signature packets this group is
/// for. Once this drops to zero, we pop the group from the
/// stack.
ops_count: usize,
/// The hash contexts.
pub(crate) hashes: Vec<HashingMode<Box<dyn crypto::hash::Digest>>>,
}
impl fmt::Debug for SignatureGroup {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let algos = self.hashes.iter().map(|mode| mode.map(|ctx| ctx.algo()))
.collect::<Vec<_>>();
f.debug_struct("Cookie")
.field("ops_count", &self.ops_count)
.field("hashes", &algos)
.finish()
}
}
impl SignatureGroup {
/// Clears the signature group.
fn clear(&mut self) {
self.ops_count = 0;
self.hashes.clear();
}
}
impl Default for Cookie {
fn default() -> Self {
Cookie {
level: None,
hashing: Hashing::Enabled,
hashes_for: HashesFor::Nothing,
saw_last: false,
sig_groups: vec![Default::default()],
sig_groups_max_len: 1,
hash_stash: None,
fake_eof: false,
csf_transformation: false,
}
}
}
impl Cookie {
fn new(level: isize) -> Cookie {
Cookie {
level: Some(level),
hashing: Hashing::Enabled,
hashes_for: HashesFor::Nothing,
saw_last: false,
sig_groups: vec![Default::default()],
sig_groups_max_len: 1,
hash_stash: None,
fake_eof: false,
csf_transformation: false,
}
}
/// Returns a reference to the topmost signature group.
pub(crate) fn sig_group(&self) -> &SignatureGroup {
assert!(!self.sig_groups.is_empty());
&self.sig_groups[self.sig_groups.len() - 1]
}
/// Returns a mutable reference to the topmost signature group.
pub(crate) fn sig_group_mut(&mut self) -> &mut SignatureGroup {
assert!(!self.sig_groups.is_empty());
let len = self.sig_groups.len();
&mut self.sig_groups[len - 1]
}
/// Returns the level of the currently parsed signature.
fn signature_level(&self) -> usize {
// The signature with the deepest "nesting" is closest to the
// data, and hence level 0.
self.sig_groups_max_len - self.sig_groups.len()
}
/// Tests whether the topmost signature group is no longer used.
fn sig_group_unused(&self) -> bool {
assert!(!self.sig_groups.is_empty());
self.sig_groups[self.sig_groups.len() - 1].ops_count == 0
}
/// Pushes a new signature group to the stack.
fn sig_group_push(&mut self) {
self.sig_groups.push(Default::default());
self.sig_groups_max_len += 1;
}
/// Pops a signature group from the stack.
fn sig_group_pop(&mut self) {
if self.sig_groups.len() == 1 {
// Don't pop the last one, just clear it.
self.sig_groups[0].clear();
self.hashes_for = HashesFor::Nothing;
} else {
self.sig_groups.pop();
}
}
}
impl Cookie {
// Enables or disables signature hashers (HashesFor::Signature) at
// level `level`.
//
// Thus to disable the hashing of a level 3 literal packet's
// meta-data, we disable hashing at level 2.
fn hashing(reader: &mut dyn BufferedReader<Cookie>,
how: Hashing, level: isize) {
let mut reader : Option<&mut dyn BufferedReader<Cookie>>
= Some(reader);
while let Some(r) = reader {
{
let cookie = r.cookie_mut();
if let Some(br_level) = cookie.level {
if br_level < level {
break;
}
if br_level == level
&& (cookie.hashes_for == HashesFor::Signature
|| cookie.hashes_for == HashesFor::CleartextSignature)
{
cookie.hashing = how;
}
} else {
break;
}
}
reader = r.get_mut();
}
}
/// Signals that we are processing a message using the Cleartext
/// Signature Framework.
///
/// This is used by the armor reader to signal that it has
/// encountered such a message and is transforming it into an
/// inline signed message.
pub(crate) fn set_processing_csf_message(&mut self) {
tracer!(TRACE, "set_processing_csf_message", self.level.unwrap_or(0));
t!("Enabling CSF Transformation mode");
self.csf_transformation = true;
}
/// Checks if we are processing a signed message using the
/// Cleartext Signature Framework.
fn processing_csf_message(reader: &dyn BufferedReader<Cookie>)
-> bool {
let mut reader: Option<&dyn BufferedReader<Cookie>>
= Some(reader);
while let Some(r) = reader {
if r.cookie_ref().level == Some(ARMOR_READER_LEVEL) {
return r.cookie_ref().csf_transformation;
} else {
reader = r.get_ref();
}
}
false
}
}
// Pops readers from a buffered reader stack at the specified level.
fn buffered_reader_stack_pop<'a>(
mut reader: Box<dyn BufferedReader<Cookie> + 'a>, depth: isize)
-> Result<(bool, Box<dyn BufferedReader<Cookie> + 'a>)>
{
tracer!(TRACE, "buffered_reader_stack_pop", depth);
t!("(reader level: {:?}, pop through: {})",
reader.cookie_ref().level, depth);
while let Some(level) = reader.cookie_ref().level {
assert!(level <= depth // Peel off exactly one level.
|| depth < 0); // Except for the topmost filters.
if level >= depth {
let fake_eof = reader.cookie_ref().fake_eof;
t!("top reader at level {:?} (fake eof: {}), pop through: {}",
reader.cookie_ref().level, fake_eof, depth);
t!("popping level {:?} reader, reader: {:?}",
reader.cookie_ref().level,
reader);
if reader.eof() && ! reader.consummated() {
return Err(Error::MalformedPacket("Truncated packet".into())
.into());
}
reader.drop_eof()?;
reader = reader.into_inner().unwrap();
if level == depth && fake_eof {
t!("Popped a fake EOF reader at level {}, stopping.", depth);
return Ok((true, reader));
}
t!("now at level {:?} reader: {:?}",
reader.cookie_ref().level, reader);
} else {
break;
}
}
Ok((false, reader))
}
// A `PacketParser`'s settings.
#[derive(Clone, Debug)]
struct PacketParserSettings {
// The maximum allowed recursion depth.
//
// There is absolutely no reason that this should be more than
// 255. (GnuPG defaults to 32.) Moreover, if it is too large,
// then a read from the reader pipeline could blow the stack.
max_recursion_depth: u8,
// The maximum size of non-container packets.
//
// Packets that exceed this limit will be returned as
// `Packet::Unknown`, with the error set to
// `Error::PacketTooLarge`.
//
// This limit applies to any packet type that is *not* a
// container packet, i.e. any packet that is not a literal data
// packet, a compressed data packet, a symmetrically encrypted
// data packet, or an AEAD encrypted data packet.
max_packet_size: u32,
// Whether a packet's contents should be buffered or dropped when
// the next packet is retrieved.
buffer_unread_content: bool,
// Whether or not to create a map.
map: bool,
// Whether to implicitly start hashing upon parsing OnePassSig
// packets.
automatic_hashing: bool,
}
// The default `PacketParser` settings.
impl Default for PacketParserSettings {
fn default() -> Self {
PacketParserSettings {
max_recursion_depth: DEFAULT_MAX_RECURSION_DEPTH,
max_packet_size: DEFAULT_MAX_PACKET_SIZE,
buffer_unread_content: false,
map: false,
automatic_hashing: true,
}
}
}
impl S2K {
/// Reads an S2K from `php`.
fn parse_v4(php: &mut PacketHeaderParser<'_>)
-> Result<Self> {
Self::parse_common(php, None)
}
/// Reads an S2K from `php` with optional explicit S2K length.
fn parse_common(php: &mut PacketHeaderParser<'_>,
s2k_len: Option<u8>)
-> Result<Self>
{
if s2k_len == Some(0) {
return Err(Error::MalformedPacket(
"Invalid size for S2K object: 0 octets".into()).into());
}
let check_size = |expected| {
if let Some(got) = s2k_len {
if got != expected {
return Err(Error::MalformedPacket(format!(
"Invalid size for S2K object: {} octets, expected {}",
got, expected)));
}
}
Ok(())
};
let s2k = php.parse_u8("s2k_type")?;
#[allow(deprecated)]
let ret = match s2k {
0 => {
check_size(2)?;
S2K::Simple {
hash: HashAlgorithm::from(php.parse_u8("s2k_hash_algo")?),
}
},
1 => {
check_size(10)?;
S2K::Salted {
hash: HashAlgorithm::from(php.parse_u8("s2k_hash_algo")?),
salt: Self::read_salt(php)?,
}
},
3 => {
check_size(11)?;
S2K::Iterated {
hash: HashAlgorithm::from(php.parse_u8("s2k_hash_algo")?),
salt: Self::read_salt(php)?,
hash_bytes: S2K::decode_count(php.parse_u8("s2k_count")?),
}
},
100..=110 => S2K::Private {
tag: s2k,
parameters: if let Some(l) = s2k_len {
Some(
php.parse_bytes("parameters", l as usize - 1 /* Tag */)?
.into())
} else {
None
},
},
u => S2K::Unknown {
tag: u,
parameters: if let Some(l) = s2k_len {
Some(
php.parse_bytes("parameters", l as usize - 1 /* Tag */)?
.into())
} else {
None
},
},
};
Ok(ret)
}
fn read_salt(php: &mut PacketHeaderParser<'_>) -> Result<[u8; 8]> {
let mut b = [0u8; 8];
b.copy_from_slice(&php.parse_bytes("s2k_salt", 8)?);
Ok(b)
}
}
impl_parse_with_buffered_reader!(
S2K,
|bio: Box<dyn BufferedReader<Cookie>>| -> Result<Self> {
let mut parser = PacketHeaderParser::new_naked(bio.into_boxed());
Self::parse_v4(&mut parser)
});
impl Header {
pub(crate) fn parse<R: BufferedReader<C>, C: fmt::Debug + Send + Sync> (bio: &mut R)
-> Result<Header>
{
let ctb = CTB::try_from(bio.data_consume_hard(1)?[0])?;
let length = match ctb {
CTB::New(_) => BodyLength::parse_new_format(bio)?,
CTB::Old(ref ctb) =>
BodyLength::parse_old_format(bio, ctb.length_type())?,
};
Ok(Header::new(ctb, length))
}
}
impl_parse_with_buffered_reader!(
Header,
|mut reader| -> Result<Self> {
Header::parse(&mut reader)
});
impl BodyLength {
/// Decodes a new format body length as described in [Section
/// 4.2.2 of RFC 4880].
///
/// [Section 4.2.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-4.2.2
pub(crate) fn parse_new_format<T: BufferedReader<C>, C: fmt::Debug + Send + Sync> (bio: &mut T)
-> io::Result<BodyLength>
{
let octet1 : u8 = bio.data_consume_hard(1)?[0];
match octet1 {
0..=191 => // One octet.
Ok(BodyLength::Full(octet1 as u32)),
192..=223 => { // Two octets length.
let octet2 = bio.data_consume_hard(1)?[0];
Ok(BodyLength::Full(((octet1 as u32 - 192) << 8)
+ octet2 as u32 + 192))
},
224..=254 => // Partial body length.
Ok(BodyLength::Partial(1 << (octet1 & 0x1F))),
255 => // Five octets.
Ok(BodyLength::Full(bio.read_be_u32()?)),
}
}
/// Decodes an old format body length as described in [Section
/// 4.2.1 of RFC 4880].
///
/// [Section 4.2.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-4.2.1
pub(crate) fn parse_old_format<T: BufferedReader<C>, C: fmt::Debug + Send + Sync>
(bio: &mut T, length_type: PacketLengthType)
-> Result<BodyLength>
{
match length_type {
PacketLengthType::OneOctet =>
Ok(BodyLength::Full(bio.data_consume_hard(1)?[0] as u32)),
PacketLengthType::TwoOctets =>
Ok(BodyLength::Full(bio.read_be_u16()? as u32)),
PacketLengthType::FourOctets =>
Ok(BodyLength::Full(bio.read_be_u32()? as u32)),
PacketLengthType::Indeterminate =>
Ok(BodyLength::Indeterminate),
}
}
}
#[test]
fn body_length_new_format() {
fn test(input: &[u8], expected_result: BodyLength) {
assert_eq!(
BodyLength::parse_new_format(
&mut buffered_reader::Memory::new(input)).unwrap(),
expected_result);
}
// Examples from Section 4.2.3 of RFC4880.
// Example #1.
test(&[0x64][..], BodyLength::Full(100));
// Example #2.
test(&[0xC5, 0xFB][..], BodyLength::Full(1723));
// Example #3.
test(&[0xFF, 0x00, 0x01, 0x86, 0xA0][..], BodyLength::Full(100000));
// Example #4.
test(&[0xEF][..], BodyLength::Partial(32768));
test(&[0xE1][..], BodyLength::Partial(2));
test(&[0xF0][..], BodyLength::Partial(65536));
test(&[0xC5, 0xDD][..], BodyLength::Full(1693));
}
#[test]
fn body_length_old_format() {
fn test(input: &[u8], plt: PacketLengthType,
expected_result: BodyLength, expected_rest: &[u8]) {
let mut bio = buffered_reader::Memory::new(input);
assert_eq!(BodyLength::parse_old_format(&mut bio, plt).unwrap(),
expected_result);
let rest = bio.data_eof();
assert_eq!(rest.unwrap(), expected_rest);
}
test(&[1], PacketLengthType::OneOctet, BodyLength::Full(1), &b""[..]);
test(&[1, 2], PacketLengthType::TwoOctets,
BodyLength::Full((1 << 8) + 2), &b""[..]);
test(&[1, 2, 3, 4], PacketLengthType::FourOctets,
BodyLength::Full((1 << 24) + (2 << 16) + (3 << 8) + 4), &b""[..]);
test(&[1, 2, 3, 4, 5, 6], PacketLengthType::FourOctets,
BodyLength::Full((1 << 24) + (2 << 16) + (3 << 8) + 4), &[5, 6][..]);
test(&[1, 2, 3, 4], PacketLengthType::Indeterminate,
BodyLength::Indeterminate, &[1, 2, 3, 4][..]);
}
impl Unknown {
/// Parses the body of any packet and returns an Unknown.
fn parse(php: PacketHeaderParser, error: anyhow::Error)
-> Result<PacketParser>
{
let tag = php.header.ctb().tag();
php.ok(Packet::Unknown(Unknown::new(tag, error)))
}
}
// Read the next packet as an unknown packet.
//
// The `reader` must point to the packet's header, i.e., the CTB.
// This buffers the packet's contents.
//
// Note: we only need this function for testing purposes in a
// different module.
#[cfg(test)]
pub(crate) fn to_unknown_packet<R: Read + Send + Sync>(reader: R) -> Result<Unknown>
{
let mut reader = buffered_reader::Generic::with_cookie(
reader, None, Cookie::default());
let header = Header::parse(&mut reader)?;
let reader : Box<dyn BufferedReader<Cookie>>
= match header.length() {
&BodyLength::Full(len) =>
Box::new(buffered_reader::Limitor::with_cookie(
reader, len as u64, Cookie::default())),
&BodyLength::Partial(len) =>
Box::new(BufferedReaderPartialBodyFilter::with_cookie(
reader, len, true, Cookie::default())),
_ => Box::new(reader),
};
let parser = PacketHeaderParser::new(
reader, PacketParserState::new(Default::default()), vec![ 0 ], header, Vec::new());
let mut pp =
Unknown::parse(parser,
anyhow::anyhow!("explicit conversion to unknown"))?;
pp.buffer_unread_content()?;
pp.finish()?;
if let Packet::Unknown(packet) = pp.packet {
Ok(packet)
} else {
panic!("Internal inconsistency.");
}
}
impl Signature {
// Parses a signature packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
let indent = php.recursion_depth();
tracer!(TRACE, "Signature::parse", indent);
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
match version {
3 => Signature3::parse(php),
4 => Signature4::parse(php),
_ => {
t!("Ignoring version {} packet.", version);
php.fail("unknown version")
},
}
}
/// Returns whether the data appears to be a signature (no promises).
fn plausible<C, T>(bio: &mut buffered_reader::Dup<T, C>, header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
Signature4::plausible(bio, header)
}
/// When parsing an inline-signed message, attaches the digest to
/// the signature.
fn parse_finish(indent: isize, mut pp: PacketParser,
typ: SignatureType, hash_algo: HashAlgorithm)
-> Result<PacketParser>
{
tracer!(TRACE, "Signature::parse_finish", indent);
let sig: &Signature = pp.packet.downcast_ref()
.ok_or_else(
|| Error::InvalidOperation(
format!("Called Signature::parse_finish on a {:?}",
pp.packet)))?;
// If we are not parsing an inline-signed message, we are
// done.
if sig.typ() != SignatureType::Binary
&& sig.typ() != SignatureType::Text
{
return Ok(pp);
}
let need_hash = HashingMode::for_signature(hash_algo, typ);
t!("Need a {:?}", need_hash);
if TRACE {
pp.reader.dump(&mut std::io::stderr())?;
}
// Locate the corresponding HashedReader and extract the
// computed hash.
let mut computed_digest = None;
{
let recursion_depth = pp.recursion_depth();
// We know that the top reader is not a HashedReader (it's
// a buffered_reader::Dup). So, start with it's child.
let mut r = (&mut pp.reader).get_mut();
while let Some(tmp) = r {
{
let cookie = tmp.cookie_mut();
assert!(cookie.level.unwrap_or(-1)
<= recursion_depth);
// The HashedReader has to be at level
// 'recursion_depth - 1'.
if cookie.level.is_none()
|| cookie.level.unwrap() < recursion_depth - 1 {
t!("Abandoning search for suitable \
hashed reader at {:?}.", cookie.level);
break
}
if cookie.hashes_for == HashesFor::Signature {
// When verifying cleartext signed messages,
// we may have more signatures than
// one-pass-signature packets, but are
// guaranteed to only have one signature
// group.
//
// Only decrement the count when hashing for
// signatures, not when hashing for cleartext
// signatures.
cookie.sig_group_mut().ops_count -= 1;
}
if cookie.hashes_for == HashesFor::Signature
|| cookie.hashes_for == HashesFor::CleartextSignature
{
if let Some(hash) =
cookie.sig_group().hashes.iter().find_map(
|mode|
if mode.map(|ctx| ctx.algo()) == need_hash {
Some(mode.as_ref())
} else {
None
})
{
t!("found a {:?} HashedReader", need_hash);
computed_digest = Some((cookie.signature_level(),
hash.clone()));
}
if cookie.sig_group_unused() {
cookie.sig_group_pop();
}
break;
}
}
r = tmp.get_mut();
}
}
if let Some((level, mut hash)) = computed_digest {
if let Packet::Signature(ref mut sig) = pp.packet {
sig.hash(&mut hash);
let mut digest = vec![0u8; hash.digest_size()];
let _ = hash.digest(&mut digest);
sig.set_computed_digest(Some(digest));
sig.set_level(level);
} else {
unreachable!()
}
}
Ok(pp)
}
}
impl Signature4 {
// Parses a signature packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
let indent = php.recursion_depth();
tracer!(TRACE, "Signature4::parse", indent);
make_php_try!(php);
let typ = php_try!(php.parse_u8("type"));
let pk_algo: PublicKeyAlgorithm = php_try!(php.parse_u8("pk_algo")).into();
let hash_algo: HashAlgorithm =
php_try!(php.parse_u8("hash_algo")).into();
let hashed_area_len = php_try!(php.parse_be_u16("hashed_area_len"));
let hashed_area
= php_try!(SubpacketArea::parse(&mut php,
hashed_area_len as usize,
hash_algo));
let unhashed_area_len = php_try!(php.parse_be_u16("unhashed_area_len"));
let unhashed_area
= php_try!(SubpacketArea::parse(&mut php,
unhashed_area_len as usize,
hash_algo));
let digest_prefix1 = php_try!(php.parse_u8("digest_prefix1"));
let digest_prefix2 = php_try!(php.parse_u8("digest_prefix2"));
if ! pk_algo.for_signing() {
return php.fail("not a signature algorithm");
}
let mpis = php_try!(
crypto::mpi::Signature::_parse(pk_algo, &mut php));
let typ = typ.into();
let pp = php.ok(Packet::Signature(Signature4::new(
typ, pk_algo, hash_algo,
hashed_area,
unhashed_area,
[digest_prefix1, digest_prefix2],
mpis).into()))?;
Signature::parse_finish(indent, pp, typ, hash_algo)
}
/// Returns whether the data appears to be a signature (no promises).
fn plausible<C, T>(bio: &mut buffered_reader::Dup<T, C>, header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
// The absolute minimum size for the header is 11 bytes (this
// doesn't include the signature MPIs).
if let BodyLength::Full(len) = header.length() {
if *len < 11 {
// Much too short.
return Err(
Error::MalformedPacket("Packet too short".into()).into());
}
} else {
return Err(
Error::MalformedPacket(
format!("Unexpected body length encoding: {:?}",
header.length())).into());
}
// Make sure we have a minimum header.
let data = bio.data(11)?;
if data.len() < 11 {
return Err(
Error::MalformedPacket("Short read".into()).into());
}
// Assume unknown == bad.
let version = data[0];
let typ : SignatureType = data[1].into();
let pk_algo : PublicKeyAlgorithm = data[2].into();
let hash_algo : HashAlgorithm = data[3].into();
if version == 4
&& !matches!(typ, SignatureType::Unknown(_))
&& !matches!(pk_algo, PublicKeyAlgorithm::Unknown(_))
&& !matches!(hash_algo, HashAlgorithm::Unknown(_))
{
Ok(())
} else {
Err(Error::MalformedPacket("Invalid or unsupported data".into())
.into())
}
}
}
impl Signature3 {
// Parses a v3 signature packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
let indent = php.recursion_depth();
tracer!(TRACE, "Signature3::parse", indent);
make_php_try!(php);
let len = php_try!(php.parse_u8("hashed length"));
if len != 5 {
return php.fail("invalid length \
(a v3 sig has 5 bytes of hashed data)");
}
let typ = php_try!(php.parse_u8("type"));
let creation_time: Timestamp
= php_try!(php.parse_be_u32("creation_time")).into();
let issuer: KeyID
= KeyID::from_bytes(&php_try!(php.parse_bytes("issuer", 8))[..]);
let pk_algo: PublicKeyAlgorithm
= php_try!(php.parse_u8("pk_algo")).into();
let hash_algo: HashAlgorithm =
php_try!(php.parse_u8("hash_algo")).into();
let digest_prefix1 = php_try!(php.parse_u8("digest_prefix1"));
let digest_prefix2 = php_try!(php.parse_u8("digest_prefix2"));
if ! pk_algo.for_signing() {
return php.fail("not a signature algorithm");
}
let mpis = php_try!(
crypto::mpi::Signature::_parse(pk_algo, &mut php));
let typ = typ.into();
let pp = php.ok(Packet::Signature(Signature3::new(
typ, creation_time, issuer, pk_algo, hash_algo,
[digest_prefix1, digest_prefix2],
mpis).into()))?;
Signature::parse_finish(indent, pp, typ, hash_algo)
}
}
impl_parse_with_buffered_reader!(Signature);
#[test]
fn signature_parser_test () {
use crate::serialize::MarshalInto;
let data = crate::tests::message("sig.gpg");
{
let pp = PacketParser::from_bytes(data).unwrap().unwrap();
assert_eq!(pp.header.length(), &BodyLength::Full(307));
if let Packet::Signature(ref p) = pp.packet {
assert_eq!(p.version(), 4);
assert_eq!(p.typ(), SignatureType::Binary);
assert_eq!(p.pk_algo(), PublicKeyAlgorithm::RSAEncryptSign);
assert_eq!(p.hash_algo(), HashAlgorithm::SHA512);
assert_eq!(p.hashed_area().iter().count(), 2);
assert_eq!(p.unhashed_area().iter().count(), 1);
assert_eq!(p.digest_prefix(), &[0x65u8, 0x74]);
assert_eq!(p.mpis().serialized_len(), 258);
} else {
panic!("Wrong packet!");
}
}
}
impl SubpacketArea {
// Parses a subpacket area.
fn parse(php: &mut PacketHeaderParser,
mut limit: usize,
hash_algo: HashAlgorithm)
-> Result<Self>
{
let indent = php.recursion_depth();
tracer!(TRACE, "SubpacketArea::parse", indent);
let mut packets = Vec::new();
while limit > 0 {
let r = Subpacket::parse(php, limit, hash_algo);
t!("Subpacket::parse(_, {}, {:?}) => {:?}",
limit, hash_algo, r);
let p = r?;
assert!(limit >= p.length.len() + p.length.serialized_len());
limit -= p.length.len() + p.length.serialized_len();
packets.push(p);
}
assert!(limit == 0);
Self::new(packets)
}
}
impl Subpacket {
// Parses a raw subpacket.
fn parse(php: &mut PacketHeaderParser,
limit: usize,
hash_algo: HashAlgorithm)
-> Result<Self>
{
let length = SubpacketLength::parse(&mut php.reader)?;
php.field("subpacket length", length.serialized_len());
let len = length.len() as usize;
if limit < length.serialized_len() + len {
return Err(Error::MalformedPacket(
"Subpacket extends beyond the end of the subpacket area".into())
.into());
}
if len == 0 {
return Err(Error::MalformedPacket("Zero-length subpacket".into())
.into());
}
let tag = php.parse_u8("subpacket tag")?;
let len = len - 1;
// Remember our position in the reader to check subpacket boundaries.
let total_out_before = php.reader.total_out();
// The critical bit is the high bit. Extract it.
let critical = tag & (1 << 7) != 0;
// Then clear it from the type and convert it.
let tag: SubpacketTag = (tag & !(1 << 7)).into();
#[allow(deprecated)]
let value = match tag {
SubpacketTag::SignatureCreationTime =>
SubpacketValue::SignatureCreationTime(
php.parse_be_u32("sig creation time")?.into()),
SubpacketTag::SignatureExpirationTime =>
SubpacketValue::SignatureExpirationTime(
php.parse_be_u32("sig expiry time")?.into()),
SubpacketTag::ExportableCertification =>
SubpacketValue::ExportableCertification(
php.parse_bool("exportable")?),
SubpacketTag::TrustSignature =>
SubpacketValue::TrustSignature {
level: php.parse_u8("trust level")?,
trust: php.parse_u8("trust value")?,
},
SubpacketTag::RegularExpression => {
let mut v = php.parse_bytes("regular expr", len)?;
if v.is_empty() || v[v.len() - 1] != 0 {
return Err(Error::MalformedPacket(
"Regular expression not 0-terminated".into())
.into());
}
v.pop();
SubpacketValue::RegularExpression(v)
},
SubpacketTag::Revocable =>
SubpacketValue::Revocable(php.parse_bool("revocable")?),
SubpacketTag::KeyExpirationTime =>
SubpacketValue::KeyExpirationTime(
php.parse_be_u32("key expiry time")?.into()),
SubpacketTag::PreferredSymmetricAlgorithms =>
SubpacketValue::PreferredSymmetricAlgorithms(
php.parse_bytes("pref sym algos", len)?
.iter().map(|o| (*o).into()).collect()),
SubpacketTag::RevocationKey => {
// 1 octet of class, 1 octet of pk algorithm, 20 bytes
// for a v4 fingerprint and 32 bytes for a v5
// fingerprint.
if len < 22 {
return Err(Error::MalformedPacket(
"Short revocation key subpacket".into())
.into());
}
let class = php.parse_u8("class")?;
let pk_algo = php.parse_u8("pk algo")?.into();
let fp = Fingerprint::from_bytes(
&php.parse_bytes("fingerprint", len - 2)?);
SubpacketValue::RevocationKey(
RevocationKey::from_bits(pk_algo, fp, class)?)
},
SubpacketTag::Issuer =>
SubpacketValue::Issuer(
KeyID::from_bytes(&php.parse_bytes("issuer", len)?)),
SubpacketTag::NotationData => {
let flags = php.parse_bytes("flags", 4)?;
let name_len = php.parse_be_u16("name len")? as usize;
let value_len = php.parse_be_u16("value len")? as usize;
if len != 8 + name_len + value_len {
return Err(Error::MalformedPacket(
format!("Malformed notation data subpacket: \
expected {} bytes, got {}",
8 + name_len + value_len,
len)).into());
}
SubpacketValue::NotationData(
NotationData::new(
std::str::from_utf8(
&php.parse_bytes("notation name", name_len)?)
.map_err(|e| anyhow::Error::from(
Error::MalformedPacket(
format!("Malformed notation name: {}", e)))
)?,
&php.parse_bytes("notation value", value_len)?,
Some(NotationDataFlags::new(&flags)?)))
},
SubpacketTag::PreferredHashAlgorithms =>
SubpacketValue::PreferredHashAlgorithms(
php.parse_bytes("pref hash algos", len)?
.iter().map(|o| (*o).into()).collect()),
SubpacketTag::PreferredCompressionAlgorithms =>
SubpacketValue::PreferredCompressionAlgorithms(
php.parse_bytes("pref compression algos", len)?
.iter().map(|o| (*o).into()).collect()),
SubpacketTag::KeyServerPreferences =>
SubpacketValue::KeyServerPreferences(
KeyServerPreferences::new(
&php.parse_bytes("key server pref", len)?
)),
SubpacketTag::PreferredKeyServer =>
SubpacketValue::PreferredKeyServer(
php.parse_bytes("pref key server", len)?),
SubpacketTag::PrimaryUserID =>
SubpacketValue::PrimaryUserID(
php.parse_bool("primary user id")?),
SubpacketTag::PolicyURI =>
SubpacketValue::PolicyURI(php.parse_bytes("policy URI", len)?),
SubpacketTag::KeyFlags =>
SubpacketValue::KeyFlags(KeyFlags::new(
&php.parse_bytes("key flags", len)?)),
SubpacketTag::SignersUserID =>
SubpacketValue::SignersUserID(
php.parse_bytes("signers user id", len)?),
SubpacketTag::ReasonForRevocation => {
if len == 0 {
return Err(Error::MalformedPacket(
"Short reason for revocation subpacket".into()).into());
}
SubpacketValue::ReasonForRevocation {
code: php.parse_u8("revocation reason")?.into(),
reason: php.parse_bytes("human-readable", len - 1)?,
}
},
SubpacketTag::Features =>
SubpacketValue::Features(Features::new(
&php.parse_bytes("features", len)?)),
SubpacketTag::SignatureTarget => {
if len < 2 {
return Err(Error::MalformedPacket(
"Short reason for revocation subpacket".into()).into());
}
SubpacketValue::SignatureTarget {
pk_algo: php.parse_u8("pk algo")?.into(),
hash_algo: php.parse_u8("hash algo")?.into(),
digest: php.parse_bytes("digest", len - 2)?,
}
},
SubpacketTag::EmbeddedSignature =>
SubpacketValue::EmbeddedSignature(
Signature::from_bytes(
&php.parse_bytes("embedded sig", len)?)?),
SubpacketTag::IssuerFingerprint => {
if len == 0 {
return Err(Error::MalformedPacket(
"Short issuer fingerprint subpacket".into()).into());
}
let version = php.parse_u8("version")?;
if let Some(expect_len) = match version {
4 => Some(1 + 20),
5 => Some(1 + 32),
_ => None,
} {
if len != expect_len {
return Err(Error::MalformedPacket(
format!("Malformed issuer fingerprint subpacket: \
expected {} bytes, got {}",
expect_len, len)).into());
}
}
let bytes = php.parse_bytes("issuer fp", len - 1)?;
SubpacketValue::IssuerFingerprint(
Fingerprint::from_bytes(&bytes))
},
SubpacketTag::PreferredAEADAlgorithms =>
SubpacketValue::PreferredAEADAlgorithms(
php.parse_bytes("pref aead algos", len)?
.iter().map(|o| (*o).into()).collect()),
SubpacketTag::IntendedRecipient => {
if len == 0 {
return Err(Error::MalformedPacket(
"Short intended recipient subpacket".into()).into());
}
let version = php.parse_u8("version")?;
if let Some(expect_len) = match version {
4 => Some(1 + 20),
5 => Some(1 + 32),
_ => None,
} {
if len != expect_len {
return Err(Error::MalformedPacket(
format!("Malformed intended recipient subpacket: \
expected {} bytes, got {}",
expect_len, len)).into());
}
}
let bytes = php.parse_bytes("intended rcpt", len - 1)?;
SubpacketValue::IntendedRecipient(
Fingerprint::from_bytes(&bytes))
},
SubpacketTag::AttestedCertifications => {
// If we don't know the hash algorithm, put all digest
// into one bucket. That way, at least it will
// roundtrip. It will never verify, because we don't
// know the hash.
let digest_size =
hash_algo.context().map(|c| c.digest_size())
.unwrap_or(len);
if digest_size == 0 {
// Empty body with unknown hash algorithm.
SubpacketValue::AttestedCertifications(
Vec::with_capacity(0))
} else {
if len % digest_size != 0 {
return Err(Error::BadSignature(
"Wrong number of bytes in certification subpacket"
.into()).into());
}
let bytes = php.parse_bytes("attested crts", len)?;
SubpacketValue::AttestedCertifications(
bytes.chunks(digest_size).map(Into::into).collect())
}
},
SubpacketTag::Reserved(_)
| SubpacketTag::PlaceholderForBackwardCompatibility
| SubpacketTag::Private(_)
| SubpacketTag::Unknown(_) =>
SubpacketValue::Unknown {
tag,
body: php.parse_bytes("unknown subpacket", len)?,
},
};
let total_out = php.reader.total_out();
if total_out_before + len != total_out {
return Err(Error::MalformedPacket(
format!("Malformed subpacket: \
body length is {} bytes, but read {}",
len, total_out - total_out_before)).into());
}
Ok(Subpacket::with_length(
length,
value,
critical,
))
}
}
impl SubpacketLength {
/// Parses a subpacket length.
fn parse<R: BufferedReader<C>, C: fmt::Debug + Send + Sync>(bio: &mut R) -> Result<Self> {
let octet1 = bio.data_consume_hard(1)?[0];
if octet1 < 192 {
// One octet.
Ok(Self::new(
octet1 as u32,
// Unambiguous.
None))
} else if (192..255).contains(&octet1) {
// Two octets length.
let octet2 = bio.data_consume_hard(1)?[0];
let len = ((octet1 as u32 - 192) << 8) + octet2 as u32 + 192;
Ok(Self::new(
len,
if Self::len_optimal_encoding(len) == 2 {
None
} else {
Some(vec![octet1, octet2])
}))
} else {
// Five octets.
assert_eq!(octet1, 255);
let len = bio.read_be_u32()?;
Ok(Self::new(
len,
if Self::len_optimal_encoding(len) == 5 {
None
} else {
let mut out = Vec::with_capacity(5);
out.push(octet1);
out.extend_from_slice(&len.to_be_bytes());
Some(out)
}))
}
}
}
#[cfg(test)]
quickcheck! {
fn length_roundtrip(l: u32) -> bool {
use crate::serialize::Marshal;
let length = SubpacketLength::from(l);
let mut encoded = Vec::new();
length.serialize(&mut encoded).unwrap();
assert_eq!(encoded.len(), length.serialized_len());
let mut reader = buffered_reader::Memory::new(&encoded);
SubpacketLength::parse(&mut reader).unwrap().len() == l as usize
}
}
impl OnePassSig {
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
let indent = php.recursion_depth();
tracer!(TRACE, "OnePassSig", indent);
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
match version {
3 => OnePassSig3::parse(php),
_ => {
t!("Ignoring version {} packet", version);
// Unknown version. Return an unknown packet.
php.fail("unknown version")
},
}
}
}
impl_parse_with_buffered_reader!(OnePassSig);
impl OnePassSig3 {
#[allow(clippy::blocks_in_if_conditions)]
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
let indent = php.recursion_depth();
tracer!(TRACE, "OnePassSig3", indent);
make_php_try!(php);
let typ = php_try!(php.parse_u8("type"));
let hash_algo = php_try!(php.parse_u8("hash_algo"));
let pk_algo = php_try!(php.parse_u8("pk_algo"));
let mut issuer = [0u8; 8];
issuer.copy_from_slice(&php_try!(php.parse_bytes("issuer", 8)));
let last = php_try!(php.parse_u8("last"));
let hash_algo = hash_algo.into();
let typ = typ.into();
let mut sig = OnePassSig3::new(typ);
sig.set_hash_algo(hash_algo);
sig.set_pk_algo(pk_algo.into());
sig.set_issuer(KeyID::from_bytes(&issuer));
sig.set_last_raw(last);
let need_hash = HashingMode::for_signature(hash_algo, typ);
let recursion_depth = php.recursion_depth();
// Check if we are processing a cleartext signed message.
let want_hashes_for = if Cookie::processing_csf_message(&php.reader) {
HashesFor::CleartextSignature
} else {
HashesFor::Signature
};
// Walk up the reader chain to see if there is already a
// hashed reader on level recursion_depth - 1.
let done = {
let mut done = false;
let mut reader : Option<&mut dyn BufferedReader<Cookie>>
= Some(&mut php.reader);
while let Some(r) = reader {
{
let cookie = r.cookie_mut();
if let Some(br_level) = cookie.level {
if br_level < recursion_depth - 1 {
break;
}
if br_level == recursion_depth - 1
&& cookie.hashes_for == want_hashes_for {
// We found a suitable hashed reader.
if cookie.saw_last {
cookie.sig_group_push();
cookie.saw_last = false;
cookie.hash_stash =
Some(php.header_bytes.clone());
}
// Make sure that it uses the required
// hash algorithm.
if php.state.settings.automatic_hashing
&& ! cookie.sig_group().hashes.iter()
.any(|mode| {
mode.map(|ctx| ctx.algo()) == need_hash
})
{
if let Ok(ctx) = hash_algo.context() {
cookie.sig_group_mut().hashes.push(
HashingMode::for_signature(Box::new(ctx), typ)
);
}
}
// Account for this OPS packet.
cookie.sig_group_mut().ops_count += 1;
// Keep track of the last flag.
cookie.saw_last = last > 0;
// We're done.
done = true;
break;
}
} else {
break;
}
}
reader = r.get_mut();
}
done
};
// Commit here after potentially pushing a signature group.
let mut pp = php.ok(Packet::OnePassSig(sig.into()))?;
if done {
return Ok(pp);
}
// We create an empty hashed reader even if we don't support
// the hash algorithm so that we have something to match
// against when we get to the Signature packet. Or, automatic
// hashing may be disabled, and we want to be able to enable
// it explicitly.
let mut algos = Vec::new();
if pp.state.settings.automatic_hashing && hash_algo.is_supported() {
algos.push(need_hash);
}
// We can't push the HashedReader on the BufferedReader stack:
// when we finish processing this OnePassSig packet, it will
// be popped. Instead, we need to insert it at the next
// higher level. Unfortunately, this isn't possible. But,
// since we're done reading the current packet, we can pop the
// readers associated with it, and then push the HashedReader.
// This is a bit of a layering violation, but I (Neal) can't
// think of a more elegant solution.
assert!(pp.reader.cookie_ref().level <= Some(recursion_depth));
let (fake_eof, reader)
= buffered_reader_stack_pop(Box::new(pp.take_reader()),
recursion_depth)?;
// We only pop the buffered readers for the OPS, and we
// (currently) never use a fake eof for OPS packets.
assert!(! fake_eof);
let mut reader = HashedReader::new(
reader, want_hashes_for, algos)?;
reader.cookie_mut().level = Some(recursion_depth - 1);
// Account for this OPS packet.
reader.cookie_mut().sig_group_mut().ops_count += 1;
// Keep track of the last flag.
reader.cookie_mut().saw_last = last > 0;
t!("Pushed a hashed reader, level {:?}", reader.cookie_mut().level);
// We add an empty limitor on top of the hashed reader,
// because when we are done processing a packet,
// PacketParser::finish discards any unread data from the top
// reader. Since the top reader is the HashedReader, this
// discards any following packets. To prevent this, we push a
// Limitor on the reader stack.
let mut reader = buffered_reader::Limitor::with_cookie(
reader, 0, Cookie::default());
reader.cookie_mut().level = Some(recursion_depth);
pp.reader = Box::new(reader);
Ok(pp)
}
}
impl PacketParser<'_> {
/// Starts hashing for the current [`OnePassSig`] packet.
///
/// If automatic hashing is disabled using
/// [`PacketParserBuilder::automatic_hashing`], then hashing can
/// be explicitly enabled while parsing a [`OnePassSig`] packet.
///
/// If this function is called on a packet other than a
/// [`OnePassSig`] packet, it returns [`Error::InvalidOperation`].
///
/// [`Error::InvalidOperation`]: crate::Error::InvalidOperation
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::{Cert, Packet};
/// # use openpgp::parse::{Parse, PacketParserResult, PacketParserBuilder};
/// // Parse a signed message, verify using the signer's key.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/signed-1-eddsa-ed25519.pgp");
/// # let cert: Cert = // ...
/// # Cert::from_bytes(include_bytes!("../tests/data/keys/emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
/// let signer = // ...
/// # cert.primary_key().key();
/// let mut good = false;
/// let mut ppr = PacketParserBuilder::from_bytes(message_data)?
/// .automatic_hashing(false)
/// .build()?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// if let Packet::OnePassSig(_) = &pp.packet {
/// pp.start_hashing()?;
/// }
/// if let Packet::Signature(sig) = &mut pp.packet {
/// good |= sig.verify(signer).is_ok();
/// }
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// assert!(good);
/// # Ok(()) }
/// ```
pub fn start_hashing(&mut self) -> Result<()> {
let ops: &OnePassSig = self.packet.downcast_ref()
.ok_or_else(|| Error::InvalidOperation(
"Must only be invoked on one-pass-signature packets".into())
)?;
let hash_algo = ops.hash_algo();
let typ = ops.typ();
let need_hash = HashingMode::for_signature(hash_algo, typ);
let recursion_depth = self.recursion_depth();
let want_hashes_for = if Cookie::processing_csf_message(&self.reader) {
HashesFor::CleartextSignature
} else {
HashesFor::Signature
};
// Walk up the reader chain to find the hashed reader on level
// recursion_depth - 1.
let mut reader : Option<&mut dyn BufferedReader<Cookie>>
= Some(&mut self.reader);
while let Some(r) = reader {
{
let cookie = r.cookie_mut();
if let Some(br_level) = cookie.level {
if br_level < recursion_depth - 1 {
break;
}
if br_level == recursion_depth - 1
&& cookie.hashes_for == want_hashes_for {
// We found a suitable hashed reader.
// Make sure that it uses the required
// hash algorithm.
if ! cookie.sig_group().hashes.iter()
.any(|mode| {
mode.map(|ctx| ctx.algo()) == need_hash
})
{
cookie.sig_group_mut().hashes.push(
HashingMode::for_signature(
Box::new(hash_algo.context()?), typ));
}
break;
}
} else {
break;
}
}
reader = r.get_mut();
}
Ok(())
}
}
#[test]
fn one_pass_sig_parser_test () {
use crate::SignatureType;
use crate::PublicKeyAlgorithm;
// This test assumes that the first packet is a OnePassSig packet.
let data = crate::tests::message("signed-1.gpg");
let mut pp = PacketParser::from_bytes(data).unwrap().unwrap();
let p = pp.finish().unwrap();
// eprintln!("packet: {:?}", p);
if let &Packet::OnePassSig(ref p) = p {
assert_eq!(p.version(), 3);
assert_eq!(p.typ(), SignatureType::Binary);
assert_eq!(p.hash_algo(), HashAlgorithm::SHA512);
assert_eq!(p.pk_algo(), PublicKeyAlgorithm::RSAEncryptSign);
assert_eq!(format!("{:X}", p.issuer()), "7223B56678E02528");
assert_eq!(p.last_raw(), 1);
} else {
panic!("Wrong packet!");
}
}
impl_parse_with_buffered_reader!(
OnePassSig3,
|reader| -> Result<Self> {
OnePassSig::from_reader(reader).map(|p| match p {
OnePassSig::V3(p) => p,
// XXX: Once we have a second variant.
//
// p => Err(Error::InvalidOperation(
// format!("Not a OnePassSig::V3 packet: {:?}", p)).into()),
})
});
#[test]
fn one_pass_sig_test () {
struct Test<'a> {
filename: &'a str,
digest_prefix: Vec<[u8; 2]>,
}
let tests = [
Test {
filename: "signed-1.gpg",
digest_prefix: vec![ [ 0x83, 0xF5 ] ],
},
Test {
filename: "signed-2-partial-body.gpg",
digest_prefix: vec![ [ 0x2F, 0xBE ] ],
},
Test {
filename: "signed-3-partial-body-multiple-sigs.gpg",
digest_prefix: vec![ [ 0x29, 0x64 ], [ 0xff, 0x7d ] ],
},
];
for test in tests.iter() {
eprintln!("Trying {}...", test.filename);
let mut ppr = PacketParserBuilder::from_bytes(
crate::tests::message(test.filename))
.expect(&format!("Reading {}", test.filename)[..])
.build().unwrap();
let mut one_pass_sigs = 0;
let mut sigs = 0;
while let PacketParserResult::Some(pp) = ppr {
if let Packet::OnePassSig(_) = pp.packet {
one_pass_sigs += 1;
} else if let Packet::Signature(ref sig) = pp.packet {
eprintln!(" {}:\n prefix: expected: {}, in sig: {}",
test.filename,
crate::fmt::to_hex(&test.digest_prefix[sigs][..], false),
crate::fmt::to_hex(sig.digest_prefix(), false));
eprintln!(" computed hash: {}",
crate::fmt::to_hex(sig.computed_digest().unwrap(),
false));
assert_eq!(&test.digest_prefix[sigs], sig.digest_prefix());
assert_eq!(&test.digest_prefix[sigs][..],
&sig.computed_digest().unwrap()[..2]);
sigs += 1;
} else if one_pass_sigs > 0 {
assert_eq!(one_pass_sigs, test.digest_prefix.len(),
"Number of OnePassSig packets does not match \
number of expected OnePassSig packets.");
}
ppr = pp.recurse().expect("Parsing message").1;
}
assert_eq!(one_pass_sigs, sigs,
"Number of OnePassSig packets does not match \
number of signature packets.");
eprintln!("done.");
}
}
// Key::parse doesn't actually use the Key type parameters. So, we
// can just set them to anything. This avoids the caller having to
// set them to something.
impl Key<key::UnspecifiedParts, key::UnspecifiedRole>
{
/// Parses the body of a public key, public subkey, secret key or
/// secret subkey packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "Key::parse", php.recursion_depth());
make_php_try!(php);
let tag = php.header.ctb().tag();
assert!(tag == Tag::Reserved
|| tag == Tag::PublicKey
|| tag == Tag::PublicSubkey
|| tag == Tag::SecretKey
|| tag == Tag::SecretSubkey);
let version = php_try!(php.parse_u8("version"));
match version {
4 => Key4::parse(php),
_ => php.fail("unknown version"),
}
}
/// Returns whether the data appears to be a key (no promises).
fn plausible<C, T>(bio: &mut buffered_reader::Dup<T, C>, header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
Key4::plausible(bio, header)
}
}
// Key4::parse doesn't actually use the Key4 type parameters. So, we
// can just set them to anything. This avoids the caller having to
// set them to something.
impl Key4<key::UnspecifiedParts, key::UnspecifiedRole>
{
/// Parses the body of a public key, public subkey, secret key or
/// secret subkey packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "Key4::parse", php.recursion_depth());
make_php_try!(php);
let tag = php.header.ctb().tag();
assert!(tag == Tag::Reserved
|| tag == Tag::PublicKey
|| tag == Tag::PublicSubkey
|| tag == Tag::SecretKey
|| tag == Tag::SecretSubkey);
let creation_time = php_try!(php.parse_be_u32("creation_time"));
let pk_algo: PublicKeyAlgorithm = php_try!(php.parse_u8("pk_algo")).into();
let mpis = php_try!(PublicKey::_parse(pk_algo, &mut php));
let secret = if let Ok(s2k_usage) = php.parse_u8("s2k_usage") {
use crypto::mpi;
let sec = match s2k_usage {
// Unencrypted
0 => {
let sec = php_try!(
mpi::SecretKeyMaterial::_parse(
pk_algo, &mut php,
Some(mpi::SecretKeyChecksum::Sum16)));
sec.into()
}
// Encrypted, whether we support the S2K method or not.
_ => {
let sk: SymmetricAlgorithm = match s2k_usage {
254 | 255 =>
php_try!(php.parse_u8("sym_algo")).into(),
_ => s2k_usage.into(),
};
let s2k = match s2k_usage {
254 | 255 => php_try!(S2K::parse_v4(&mut php)),
_ => {
#[allow(deprecated)] S2K::Implicit
},
};
let s2k_supported = s2k.is_supported();
let cipher =
php_try!(php.parse_bytes_eof("encrypted_mpis"))
.into_boxed_slice();
crate::packet::key::Encrypted::new_raw(
s2k, sk,
match s2k_usage {
254 => Some(mpi::SecretKeyChecksum::SHA1),
255 => Some(mpi::SecretKeyChecksum::Sum16),
_ => Some(mpi::SecretKeyChecksum::Sum16),
},
if s2k_supported {
Ok(cipher)
} else {
Err(cipher)
},
).into()
}
};
Some(sec)
} else {
None
};
let have_secret = secret.is_some();
if have_secret {
if tag == Tag::PublicKey || tag == Tag::PublicSubkey {
return php.error(Error::MalformedPacket(
format!("Unexpected secret key found in {:?} packet", tag)
).into());
}
} else if tag == Tag::SecretKey || tag == Tag::SecretSubkey {
return php.error(Error::MalformedPacket(
format!("Expected secret key in {:?} packet", tag)
).into());
}
fn k<R>(creation_time: u32,
pk_algo: PublicKeyAlgorithm,
mpis: PublicKey)
-> Result<Key4<key::PublicParts, R>>
where R: key::KeyRole
{
Key4::make(creation_time, pk_algo, mpis, None)
}
fn s<R>(creation_time: u32,
pk_algo: PublicKeyAlgorithm,
mpis: PublicKey,
secret: SecretKeyMaterial)
-> Result<Key4<key::SecretParts, R>>
where R: key::KeyRole
{
Key4::make(creation_time, pk_algo, mpis, Some(secret))
}
let tag = php.header.ctb().tag();
let p : Packet = match tag {
// For the benefit of Key::from_bytes.
Tag::Reserved => if have_secret {
Packet::SecretKey(
php_try!(s(creation_time, pk_algo, mpis, secret.unwrap()))
.into())
} else {
Packet::PublicKey(
php_try!(k(creation_time, pk_algo, mpis)).into())
},
Tag::PublicKey => Packet::PublicKey(
php_try!(k(creation_time, pk_algo, mpis)).into()),
Tag::PublicSubkey => Packet::PublicSubkey(
php_try!(k(creation_time, pk_algo, mpis)).into()),
Tag::SecretKey => Packet::SecretKey(
php_try!(s(creation_time, pk_algo, mpis, secret.unwrap()))
.into()),
Tag::SecretSubkey => Packet::SecretSubkey(
php_try!(s(creation_time, pk_algo, mpis, secret.unwrap()))
.into()),
_ => unreachable!(),
};
php.ok(p)
}
/// Returns whether the data appears to be a key (no promises).
fn plausible<C, T>(bio: &mut buffered_reader::Dup<T, C>, header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
// The packet's header is 6 bytes.
if let BodyLength::Full(len) = header.length() {
if *len < 6 {
// Much too short.
return Err(Error::MalformedPacket(
format!("Packet too short ({} bytes)", len)).into());
}
} else {
return Err(
Error::MalformedPacket(
format!("Unexpected body length encoding: {:?}",
header.length())).into());
}
// Make sure we have a minimum header.
let data = bio.data(6)?;
if data.len() < 6 {
return Err(
Error::MalformedPacket("Short read".into()).into());
}
// Assume unknown == bad.
let version = data[0];
let pk_algo : PublicKeyAlgorithm = data[5].into();
if version == 4 && !matches!(pk_algo, PublicKeyAlgorithm::Unknown(_)) {
Ok(())
} else {
Err(Error::MalformedPacket("Invalid or unsupported data".into())
.into())
}
}
}
use key::UnspecifiedKey;
impl_parse_with_buffered_reader!(
UnspecifiedKey,
|br| -> Result<Self> {
let parser = PacketHeaderParser::new_naked(br);
let mut pp = Self::parse(parser)?;
pp.buffer_unread_content()?;
match pp.next()? {
(Packet::PublicKey(o), PacketParserResult::EOF(_)) => Ok(o.into()),
(Packet::PublicSubkey(o), PacketParserResult::EOF(_)) => Ok(o.into()),
(Packet::SecretKey(o), PacketParserResult::EOF(_)) => Ok(o.into()),
(Packet::SecretSubkey(o), PacketParserResult::EOF(_)) => Ok(o.into()),
(Packet::Unknown(u), PacketParserResult::EOF(_)) =>
Err(u.into_error()),
(p, PacketParserResult::EOF(_)) =>
Err(Error::InvalidOperation(
format!("Not a Key packet: {:?}", p)).into()),
(_, PacketParserResult::Some(_)) =>
Err(Error::InvalidOperation(
"Excess data after packet".into()).into()),
}
});
impl Trust {
/// Parses the body of a trust packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "Trust::parse", php.recursion_depth());
make_php_try!(php);
let value = php_try!(php.parse_bytes_eof("value"));
php.ok(Packet::Trust(Trust::from(value)))
}
}
impl_parse_with_buffered_reader!(Trust);
impl UserID {
/// Parses the body of a user id packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "UserID::parse", php.recursion_depth());
make_php_try!(php);
let value = php_try!(php.parse_bytes_eof("value"));
php.ok(Packet::UserID(UserID::from(value)))
}
}
impl_parse_with_buffered_reader!(UserID);
impl UserAttribute {
/// Parses the body of a user attribute packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "UserAttribute::parse", php.recursion_depth());
make_php_try!(php);
let value = php_try!(php.parse_bytes_eof("value"));
php.ok(Packet::UserAttribute(UserAttribute::from(value)))
}
}
impl_parse_with_buffered_reader!(UserAttribute);
impl Marker {
/// Parses the body of a marker packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser>
{
tracer!(TRACE, "Marker::parse", php.recursion_depth());
make_php_try!(php);
let marker = php_try!(php.parse_bytes("marker", Marker::BODY.len()));
if &marker[..] == Marker::BODY {
php.ok(Marker::default().into())
} else {
php.fail("invalid marker")
}
}
/// Returns whether the data is a marker packet.
fn plausible<C, T>(bio: &mut buffered_reader::Dup<T, C>, header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
if let BodyLength::Full(len) = header.length() {
let len = *len;
if len as usize != Marker::BODY.len() {
return Err(Error::MalformedPacket(
format!("Unexpected packet length {}", len)).into());
}
} else {
return Err(Error::MalformedPacket(
format!("Unexpected body length encoding: {:?}",
header.length())).into());
}
// Check the body.
let data = bio.data(Marker::BODY.len())?;
if data.len() < Marker::BODY.len() {
return Err(Error::MalformedPacket("Short read".into()).into());
}
if data == Marker::BODY {
Ok(())
} else {
Err(Error::MalformedPacket("Invalid or unsupported data".into())
.into())
}
}
}
impl_parse_with_buffered_reader!(Marker);
impl Literal {
/// Parses the body of a literal packet.
///
/// Condition: Hashing has been disabled by the callee.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser>
{
tracer!(TRACE, "Literal::parse", php.recursion_depth());
make_php_try!(php);
// Directly hashing a literal data packet is... strange.
// Neither the packet's header, the packet's meta-data nor the
// length encoding information is included in the hash.
let format = php_try!(php.parse_u8("format"));
let filename_len = php_try!(php.parse_u8("filename_len"));
let filename = if filename_len > 0 {
Some(php_try!(php.parse_bytes("filename", filename_len as usize)))
} else {
None
};
let date = php_try!(php.parse_be_u32("date"));
// The header is consumed while hashing is disabled.
let recursion_depth = php.recursion_depth();
let mut literal = Literal::new(format.into());
if let Some(filename) = filename {
literal.set_filename(&filename)
.expect("length checked above");
}
literal.set_date(
Some(std::time::SystemTime::from(Timestamp::from(date))))?;
let mut pp = php.ok(Packet::Literal(literal))?;
// Enable hashing of the body.
Cookie::hashing(pp.mut_reader(), Hashing::Enabled,
recursion_depth - 1);
Ok(pp)
}
}
impl_parse_with_buffered_reader!(Literal);
#[test]
fn literal_parser_test () {
use crate::types::DataFormat;
{
let data = crate::tests::message("literal-mode-b.gpg");
let mut pp = PacketParser::from_bytes(data).unwrap().unwrap();
assert_eq!(pp.header.length(), &BodyLength::Full(18));
let content = pp.steal_eof().unwrap();
let p = pp.finish().unwrap();
// eprintln!("{:?}", p);
if let &Packet::Literal(ref p) = p {
assert_eq!(p.format(), DataFormat::Binary);
assert_eq!(p.filename().unwrap()[..], b"foobar"[..]);
assert_eq!(p.date().unwrap(), Timestamp::from(1507458744).into());
assert_eq!(content, b"FOOBAR");
} else {
panic!("Wrong packet!");
}
}
{
let data = crate::tests::message("literal-mode-t-partial-body.gpg");
let mut pp = PacketParser::from_bytes(data).unwrap().unwrap();
assert_eq!(pp.header.length(), &BodyLength::Partial(4096));
let content = pp.steal_eof().unwrap();
let p = pp.finish().unwrap();
if let &Packet::Literal(ref p) = p {
assert_eq!(p.format(), DataFormat::Text);
assert_eq!(p.filename().unwrap()[..],
b"manifesto.txt"[..]);
assert_eq!(p.date().unwrap(), Timestamp::from(1508000649).into());
let expected = crate::tests::manifesto();
assert_eq!(&content[..], expected);
} else {
panic!("Wrong packet!");
}
}
}
impl CompressedData {
/// Parses the body of a compressed data packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
let recursion_depth = php.recursion_depth();
tracer!(TRACE, "CompressedData::parse", recursion_depth);
make_php_try!(php);
let algo: CompressionAlgorithm =
php_try!(php.parse_u8("algo")).into();
let recursion_depth = php.recursion_depth();
let mut pp = php.ok(Packet::CompressedData(CompressedData::new(algo)))?;
#[allow(unreachable_patterns)]
match algo {
CompressionAlgorithm::Uncompressed => (),
#[cfg(feature = "compression-deflate")]
CompressionAlgorithm::Zip
| CompressionAlgorithm::Zlib => (),
#[cfg(feature = "compression-bzip2")]
CompressionAlgorithm::BZip2 => (),
_ => {
// We don't know or support this algorithm. Return a
// CompressedData packet without pushing a filter, so
// that it has an opaque body.
t!("Algorithm {} unknown or unsupported.", algo);
return Ok(pp.set_processed(false));
},
}
t!("Pushing a decompressor for {}, recursion depth = {:?}.",
algo, recursion_depth);
let reader = pp.take_reader();
let reader = match algo {
CompressionAlgorithm::Uncompressed => {
if TRACE {
eprintln!("CompressedData::parse(): Actually, no need \
for a compression filter: this is an \
\"uncompressed compression packet\".");
}
let _ = recursion_depth;
reader
},
#[cfg(feature = "compression-deflate")]
CompressionAlgorithm::Zip =>
Box::new(buffered_reader::Deflate::with_cookie(
reader, Cookie::new(recursion_depth))),
#[cfg(feature = "compression-deflate")]
CompressionAlgorithm::Zlib =>
Box::new(buffered_reader::Zlib::with_cookie(
reader, Cookie::new(recursion_depth))),
#[cfg(feature = "compression-bzip2")]
CompressionAlgorithm::BZip2 =>
Box::new(buffered_reader::Bzip::with_cookie(
reader, Cookie::new(recursion_depth))),
_ => unreachable!(), // Validated above.
};
pp.set_reader(reader);
Ok(pp)
}
}
impl_parse_with_buffered_reader!(CompressedData);
#[cfg(any(feature = "compression-deflate", feature = "compression-bzip2"))]
#[test]
fn compressed_data_parser_test () {
use crate::types::DataFormat;
let expected = crate::tests::manifesto();
for i in 1..4 {
match CompressionAlgorithm::from(i) {
#[cfg(feature = "compression-deflate")]
CompressionAlgorithm::Zip | CompressionAlgorithm::Zlib => (),
#[cfg(feature = "compression-bzip2")]
CompressionAlgorithm::BZip2 => (),
_ => continue,
}
let pp = PacketParser::from_bytes(crate::tests::message(
&format!("compressed-data-algo-{}.gpg", i))).unwrap().unwrap();
// We expect a compressed packet containing a literal data
// packet, and that is it.
if let Packet::CompressedData(ref compressed) = pp.packet {
assert_eq!(compressed.algo(), i.into());
} else {
panic!("Wrong packet!");
}
let ppr = pp.recurse().unwrap().1;
// ppr should be the literal data packet.
let mut pp = ppr.unwrap();
// It is a child.
assert_eq!(pp.recursion_depth(), 1);
let content = pp.steal_eof().unwrap();
let (literal, ppr) = pp.recurse().unwrap();
if let Packet::Literal(literal) = literal {
assert_eq!(literal.filename(), None);
assert_eq!(literal.format(), DataFormat::Binary);
assert_eq!(literal.date().unwrap(),
Timestamp::from(1509219866).into());
assert_eq!(content, expected.to_vec());
} else {
panic!("Wrong packet!");
}
// And, we're done...
assert!(ppr.is_eof());
}
}
impl SKESK {
/// Parses the body of an SK-ESK packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
tracer!(TRACE, "SKESK::parse", php.recursion_depth());
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
match version {
4 => SKESK4::parse(php),
5 => SKESK5::parse(php),
_ => php.fail("unknown version"),
}
}
}
impl SKESK4 {
/// Parses the body of an SK-ESK packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
tracer!(TRACE, "SKESK4::parse", php.recursion_depth());
make_php_try!(php);
let sym_algo = php_try!(php.parse_u8("sym_algo"));
let s2k = php_try!(S2K::parse_v4(&mut php));
let s2k_supported = s2k.is_supported();
let esk = php_try!(php.parse_bytes_eof("esk"));
let skesk = php_try!(SKESK4::new_raw(
sym_algo.into(),
s2k,
if s2k_supported || esk.is_empty() {
Ok(if ! esk.is_empty() {
Some(esk.into())
} else {
None
})
} else {
Err(esk.into())
},
));
php.ok(skesk.into())
}
}
impl SKESK5 {
/// Parses the body of an SK-ESK packet.
fn parse(mut php: PacketHeaderParser)
-> Result<PacketParser>
{
tracer!(TRACE, "SKESK5::parse", php.recursion_depth());
make_php_try!(php);
let sym_algo: SymmetricAlgorithm =
php_try!(php.parse_u8("sym_algo")).into();
let aead_algo: AEADAlgorithm =
php_try!(php.parse_u8("aead_algo")).into();
let s2k = php_try!(S2K::parse_v4(&mut php));
let s2k_supported = s2k.is_supported();
let iv_size = php_try!(aead_algo.nonce_size());
let digest_size = php_try!(aead_algo.digest_size());
// The rest of the packet is (potentially) the S2K
// parameters, the AEAD IV, the ESK, and the AEAD
// digest. We don't know the size of the S2K
// parameters if the S2K method is not supported, and
// we don't know the size of the ESK.
let mut esk = php_try!(php.reader.steal_eof()
.map_err(anyhow::Error::from));
let aead_iv = if s2k_supported && esk.len() >= iv_size {
// We know the S2K method, so the parameters have
// been parsed into the S2K object. So, `esk`
// starts with iv_size bytes of IV.
let mut iv = esk;
esk = iv.split_off(iv_size);
iv
} else {
Vec::with_capacity(0) // A dummy value.
};
let l = esk.len();
let aead_digest = esk.split_off(l.saturating_sub(digest_size));
// Now fix the map.
if s2k_supported {
php.field("aead_iv", iv_size);
}
php.field("esk", esk.len());
php.field("aead_digest", aead_digest.len());
let skesk = php_try!(SKESK5::new_raw(
sym_algo,
aead_algo,
s2k,
if s2k_supported {
Ok((aead_iv.into(), esk.into()))
} else {
Err(esk.into())
},
aead_digest.into_boxed_slice(),
));
php.ok(skesk.into())
}
}
impl_parse_with_buffered_reader!(SKESK);
#[test]
fn skesk_parser_test() {
use crate::crypto::Password;
struct Test<'a> {
filename: &'a str,
s2k: S2K,
cipher_algo: SymmetricAlgorithm,
password: Password,
key_hex: &'a str,
}
let tests = [
Test {
filename: "s2k/mode-3-encrypted-key-password-bgtyhn.gpg",
cipher_algo: SymmetricAlgorithm::AES128,
s2k: S2K::Iterated {
hash: HashAlgorithm::SHA1,
salt: [0x82, 0x59, 0xa0, 0x6e, 0x98, 0xda, 0x94, 0x1c],
hash_bytes: S2K::decode_count(238),
},
password: "bgtyhn".into(),
key_hex: "474E5C373BA18AF0A499FCAFE6093F131DF636F6A3812B9A8AE707F1F0214AE9",
},
];
for test in tests.iter() {
let pp = PacketParser::from_bytes(
crate::tests::message(test.filename)).unwrap().unwrap();
if let Packet::SKESK(SKESK::V4(ref skesk)) = pp.packet {
eprintln!("{:?}", skesk);
assert_eq!(skesk.symmetric_algo(), test.cipher_algo);
assert_eq!(skesk.s2k(), &test.s2k);
match skesk.decrypt(&test.password) {
Ok((_sym_algo, key)) => {
let key = crate::fmt::to_hex(&key[..], false);
assert_eq!(&key[..], test.key_hex);
}
Err(e) => {
panic!("No session key, got: {:?}", e);
}
}
} else {
panic!("Wrong packet!");
}
}
}
impl SEIP {
/// Parses the body of a SEIP packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "SEIP::parse", php.recursion_depth());
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
if version != 1 {
return php.fail("unknown version");
}
php.ok(SEIP1::new().into())
.map(|pp| pp.set_processed(false))
}
}
impl_parse_with_buffered_reader!(SEIP);
impl MDC {
/// Parses the body of an MDC packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "MDC::parse", php.recursion_depth());
make_php_try!(php);
// Find the HashedReader pushed by the containing SEIP packet.
// In a well-formed message, this will be the outer most
// HashedReader on the BufferedReader stack: we pushed it
// there when we started decrypting the SEIP packet, and an
// MDC packet is the last packet in a SEIP container.
// Nevertheless, we take some basic precautions to check
// whether it is really the matching HashedReader.
let mut computed_digest : [u8; 20] = Default::default();
{
let mut r : Option<&mut dyn BufferedReader<Cookie>>
= Some(&mut php.reader);
while let Some(bio) = r {
{
let state = bio.cookie_mut();
if state.hashes_for == HashesFor::MDC {
if !state.sig_group().hashes.is_empty() {
let h = state.sig_group_mut().hashes
.iter_mut().find_map(
|mode|
if mode.map(|ctx| ctx.algo()) ==
HashingMode::Binary(HashAlgorithm::SHA1)
{
Some(mode.as_mut())
} else {
None
}).unwrap();
let _ = h.digest(&mut computed_digest);
}
// If the outer most HashedReader is not the
// matching HashedReader, then the message is
// malformed.
break;
}
}
r = bio.get_mut();
}
}
let mut digest: [u8; 20] = Default::default();
digest.copy_from_slice(&php_try!(php.parse_bytes("digest", 20)));
#[allow(deprecated)]
php.ok(Packet::MDC(MDC::new(digest, computed_digest)))
}
}
impl_parse_with_buffered_reader!(MDC);
impl AED {
/// Parses the body of a AED packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "AED::parse", php.recursion_depth());
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
match version {
1 => AED1::parse(php),
_ => php.fail("unknown version"),
}
}
}
impl_parse_with_buffered_reader!(AED);
impl AED1 {
/// Parses the body of a AED packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "AED1::parse", php.recursion_depth());
make_php_try!(php);
let cipher: SymmetricAlgorithm =
php_try!(php.parse_u8("sym_algo")).into();
let aead: AEADAlgorithm =
php_try!(php.parse_u8("aead_algo")).into();
let chunk_size = php_try!(php.parse_u8("chunk_size"));
// DRAFT 4880bis-08, section 5.16: "An implementation MUST
// support chunk size octets with values from 0 to 56. Chunk
// size octets with other values are reserved for future
// extensions."
if chunk_size > 56 {
return php.fail("unsupported chunk size");
}
let chunk_size: u64 = 1 << (chunk_size + 6);
let iv_size = php_try!(aead.nonce_size());
let iv = php_try!(php.parse_bytes("iv", iv_size));
let aed = php_try!(Self::new(
cipher, aead, chunk_size, iv.into_boxed_slice()
));
php.ok(aed.into()).map(|pp| pp.set_processed(false))
}
}
impl MPI {
/// Parses an OpenPGP MPI.
///
/// See [Section 3.2 of RFC 4880] for details.
///
/// [Section 3.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-3.2
fn parse(name_len: &'static str,
name: &'static str,
php: &mut PacketHeaderParser<'_>) -> Result<Self> {
Ok(MPI::parse_common(name_len, name, false, false, php)?.into())
}
/// Parses an OpenPGP MPI.
///
/// If `parsing_secrets` is `true`, errors are normalized as not
/// to reveal parts of the plaintext to the caller.
///
/// If `lenient_parsing` is `true`, this function will accept MPIs
/// that are not well-formed (notably, issues related to leading
/// zeros).
fn parse_common(
name_len: &'static str,
name: &'static str,
parsing_secrets: bool,
lenient_parsing: bool,
php: &mut PacketHeaderParser<'_>)
-> Result<Vec<u8>> {
// When we are parsing secrets, we don't want to leak it
// accidentally by revealing it in error messages, or indeed
// by the kind of error.
//
// All errors returned by this function that are depend on
// secret data must be uniform and return the following error.
// We make an exception for i/o errors, which may reveal
// truncation, because swallowing i/o errors may be very
// confusing when diagnosing errors, and we don't consider the
// length of the value to be confidential as it can also be
// inferred from the size of the ciphertext.
let uniform_error_for_secrets = |e: Error| {
if parsing_secrets {
Err(Error::MalformedMPI("Details omitted, \
parsing secret".into()).into())
} else {
Err(e.into())
}
};
// This function is used to parse MPIs from unknown
// algorithms, which may use an encoding unknown to us.
// Therefore, we need to be extra careful only to consume the
// data once we found a well-formed MPI.
let bits = {
let buf = php.reader.data_hard(2)?;
u16::from_be_bytes([buf[0], buf[1]]) as usize
};
if bits == 0 {
// Now consume the data.
php.parse_be_u16(name_len).expect("worked before");
return Ok(vec![]);
}
let bytes = (bits + 7) / 8;
let value = {
let buf = php.reader.data_hard(2 + bytes)?;
Vec::from(&buf[2..2 + bytes])
};
let unused_bits = bytes * 8 - bits;
assert_eq!(bytes * 8 - unused_bits, bits);
// Make sure the unused bits are zeroed.
if unused_bits > 0 {
let mask = !((1 << (8 - unused_bits)) - 1);
let unused_value = value[0] & mask;
if unused_value != 0 && ! lenient_parsing {
return uniform_error_for_secrets(
Error::MalformedMPI(
format!("{} unused bits not zeroed: ({:x})",
unused_bits, unused_value)
));
}
}
let first_used_bit = 8 - unused_bits;
if value[0] & (1 << (first_used_bit - 1)) == 0 && ! lenient_parsing {
return uniform_error_for_secrets(
Error::MalformedMPI(
format!("leading bit is not set: \
expected bit {} to be set in {:8b} ({:x})",
first_used_bit, value[0], value[0])
));
}
// Now consume the data. Note: we avoid using parse_bytes
// here because MPIs may contain secrets, and we don't want to
// casually leak them into the heap. Also, we avoid doing a
// heap allocation.
php.reader.consume(2 + bytes);
// Now fix the map.
php.field(name_len, 2);
php.field(name, bytes);
Ok(value)
}
}
impl_parse_with_buffered_reader!(
MPI,
|bio: Box<dyn BufferedReader<Cookie>>| -> Result<Self> {
let mut parser = PacketHeaderParser::new_naked(bio.into_boxed());
Self::parse("(none_len)", "(none)", &mut parser)
});
impl ProtectedMPI {
/// Parses an OpenPGP MPI containing secrets.
///
/// See [Section 3.2 of RFC 4880] for details.
///
/// [Section 3.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-3.2
fn parse(name_len: &'static str,
name: &'static str,
php: &mut PacketHeaderParser<'_>) -> Result<Self> {
Ok(MPI::parse_common(name_len, name, true, true, php)?.into())
}
}
impl PKESK {
/// Parses the body of an PK-ESK packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "PKESK::parse", php.recursion_depth());
make_php_try!(php);
let version = php_try!(php.parse_u8("version"));
match version {
3 => PKESK3::parse(php),
_ => php.fail("unknown version"),
}
}
}
impl_parse_with_buffered_reader!(PKESK);
impl PKESK3 {
/// Parses the body of an PK-ESK packet.
fn parse(mut php: PacketHeaderParser) -> Result<PacketParser> {
tracer!(TRACE, "PKESK3::parse", php.recursion_depth());
make_php_try!(php);
let mut keyid = [0u8; 8];
keyid.copy_from_slice(&php_try!(php.parse_bytes("keyid", 8)));
let pk_algo: PublicKeyAlgorithm = php_try!(php.parse_u8("pk_algo")).into();
if ! pk_algo.for_encryption() {
return php.fail("not an encryption algorithm");
}
let mpis = crypto::mpi::Ciphertext::_parse(pk_algo, &mut php)?;
let pkesk = php_try!(PKESK3::new(KeyID::from_bytes(&keyid),
pk_algo, mpis));
php.ok(pkesk.into())
}
}
impl_parse_with_buffered_reader!(
PKESK3,
|reader| -> Result<Self> {
PKESK::from_reader(reader).map(|p| match p {
PKESK::V3(p) => p,
// XXX: Once we have a second variant.
//
// p => Err(Error::InvalidOperation(
// format!("Not a PKESKv3 packet: {:?}", p)).into()),
})
});
impl_parse_with_buffered_reader!(
Packet,
|br| -> Result<Self> {
let ppr =
PacketParserBuilder::from_buffered_reader(br)
?.buffer_unread_content().build()?;
let (p, ppr) = match ppr {
PacketParserResult::Some(pp) => {
pp.next()?
},
PacketParserResult::EOF(_) =>
return Err(Error::InvalidOperation(
"Unexpected EOF".into()).into()),
};
match (p, ppr) {
(p, PacketParserResult::EOF(_)) =>
Ok(p),
(_, PacketParserResult::Some(_)) =>
Err(Error::InvalidOperation(
"Excess data after packet".into()).into()),
}
});
// State that lives for the life of the packet parser, not the life of
// an individual packet.
#[derive(Debug)]
struct PacketParserState {
// The `PacketParser`'s settings
settings: PacketParserSettings,
/// Whether the packet sequence is a valid OpenPGP Message.
message_validator: MessageValidator,
/// Whether the packet sequence is a valid OpenPGP keyring.
keyring_validator: KeyringValidator,
/// Whether the packet sequence is a valid OpenPGP Cert.
cert_validator: CertValidator,
// Whether this is the first packet in the packet sequence.
first_packet: bool,
// Whether PacketParser::parse encountered an unrecoverable error.
pending_error: Option<anyhow::Error>,
}
impl PacketParserState {
fn new(settings: PacketParserSettings) -> Self {
PacketParserState {
settings,
message_validator: Default::default(),
keyring_validator: Default::default(),
cert_validator: Default::default(),
first_packet: true,
pending_error: None,
}
}
}
/// A low-level OpenPGP message parser.
///
/// A `PacketParser` provides a low-level, iterator-like interface to
/// parse OpenPGP messages.
///
/// For each iteration, the user is presented with a [`Packet`]
/// corresponding to the last packet, a `PacketParser` for the next
/// packet, and their positions within the message.
///
/// Using the `PacketParser`, the user is able to configure how the
/// new packet will be parsed. For instance, it is possible to stream
/// the packet's contents (a `PacketParser` implements the
/// [`std::io::Read`] and the [`BufferedReader`] traits), buffer them
/// within the [`Packet`], or drop them. The user can also decide to
/// recurse into the packet, if it is a container, instead of getting
/// the following packet.
///
/// See the [`PacketParser::next`] and [`PacketParser::recurse`]
/// methods for more details.
///
/// [`Packet`]: super::Packet
/// [`BufferedReader`]: https://docs.rs/buffered-reader/*/buffered_reader/trait.BufferedReader.html
/// [`PacketParser::next`]: PacketParser::next()
/// [`PacketParser::recurse`]: PacketParser::recurse()
///
/// # Examples
///
/// These examples demonstrate how to process packet bodies by parsing
/// the simplest possible OpenPGP message containing just a single
/// literal data packet with the body "Hello world.". There are three
/// options. First, the body can be dropped. Second, it can be
/// buffered. Lastly, the body can be streamed. In general,
/// streaming should be preferred, because it avoids buffering in
/// Sequoia.
///
/// This example demonstrates simply ignoring the packet body:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // By default, the `PacketParser` will drop packet bodies.
/// let mut ppr =
/// PacketParser::from_bytes(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.")?;
/// while let PacketParserResult::Some(pp) = ppr {
/// // Get the packet out of the parser and start parsing the next
/// // packet, recursing.
/// let (packet, next_ppr) = pp.recurse()?;
/// ppr = next_ppr;
///
/// // Process the packet.
/// if let Packet::Literal(literal) = packet {
/// // The body was dropped.
/// assert_eq!(literal.body(), b"");
/// } else {
/// unreachable!("We know it is a literal packet.");
/// }
/// }
/// # Ok(()) }
/// ```
///
/// This example demonstrates how the body can be buffered by
/// configuring the `PacketParser` to buffer all packet bodies:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParserBuilder};
///
/// // By default, the `PacketParser` will drop packet bodies. Use a
/// // `PacketParserBuilder` to change that.
/// let mut ppr =
/// PacketParserBuilder::from_bytes(
/// b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.")?
/// .buffer_unread_content()
/// .build()?;
/// while let PacketParserResult::Some(pp) = ppr {
/// // Get the packet out of the parser and start parsing the next
/// // packet, recursing.
/// let (packet, next_ppr) = pp.recurse()?;
/// ppr = next_ppr;
///
/// // Process the packet.
/// if let Packet::Literal(literal) = packet {
/// // The body was buffered.
/// assert_eq!(literal.body(), b"Hello world.");
/// } else {
/// unreachable!("We know it is a literal packet.");
/// }
/// }
/// # Ok(()) }
/// ```
///
/// This example demonstrates how the body can be buffered by
/// buffering an individual packet:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // By default, the `PacketParser` will drop packet bodies.
/// let mut ppr =
/// PacketParser::from_bytes(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.")?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// if let Packet::Literal(_) = pp.packet {
/// // Buffer this packet's body.
/// pp.buffer_unread_content()?;
/// }
///
/// // Get the packet out of the parser and start parsing the next
/// // packet, recursing.
/// let (packet, next_ppr) = pp.recurse()?;
/// ppr = next_ppr;
///
/// // Process the packet.
/// if let Packet::Literal(literal) = packet {
/// // The body was buffered.
/// assert_eq!(literal.body(), b"Hello world.");
/// } else {
/// unreachable!("We know it is a literal packet.");
/// }
/// }
/// # Ok(()) }
/// ```
///
/// This example demonstrates how to stream the packet body:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use std::io::Read;
///
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let mut ppr =
/// PacketParser::from_bytes(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.")?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// if let Packet::Literal(_) = pp.packet {
/// // Stream the body.
/// let mut buf = Vec::new();
/// pp.read_to_end(&mut buf)?;
/// assert_eq!(buf, b"Hello world.");
/// } else {
/// unreachable!("We know it is a literal packet.");
/// }
///
/// // Get the packet out of the parser and start parsing the next
/// // packet, recursing.
/// let (packet, next_ppr) = pp.recurse()?;
/// ppr = next_ppr;
///
/// // Process the packet.
/// if let Packet::Literal(literal) = packet {
/// // The body was streamed, not buffered.
/// assert_eq!(literal.body(), b"");
/// } else {
/// unreachable!("We know it is a literal packet.");
/// }
/// }
/// # Ok(()) }
/// ```
///
/// # Packet Parser Design
///
/// There are two major concerns that inform the design of the parsing
/// API.
///
/// First, when processing a container, it is possible to either
/// recurse into the container, and process its children, or treat the
/// contents of the container as an opaque byte stream, and process
/// the packet following the container. The low-level
/// [`PacketParser`] and mid-level [`PacketPileParser`] abstractions
/// allow the caller to choose the behavior by either calling the
/// [`PacketParser::recurse`] method or the [`PacketParser::next`]
/// method, as appropriate. OpenPGP doesn't impose any restrictions
/// on the amount of nesting. So, to prevent a denial of service
/// attack, the parsers don't recurse more than
/// [`DEFAULT_MAX_RECURSION_DEPTH`] times, by default.
///
///
/// Second, packets can contain an effectively unbounded amount of
/// data. To avoid errors due to memory exhaustion, the
/// `PacketParser` and [`PacketPileParser`] abstractions support
/// parsing packets in a streaming manner, i.e., never buffering more
/// than O(1) bytes of data. To do this, the parsers initially only
/// parse a packet's header (which is rarely more than a few kilobytes
/// of data), and return control to the caller. After inspecting that
/// data, the caller can decide how to handle the packet's contents.
/// If the content is deemed interesting, it can be streamed or
/// buffered. Otherwise, it can be dropped. Streaming is possible
/// not only for literal data packets, but also containers (other
/// packets also support the interface, but just return EOF). For
/// instance, encryption can be stripped by saving the decrypted
/// content of an encryption packet, which is just an OpenPGP message.
///
/// ## Iterator Design
///
/// We explicitly chose to not use a callback-based API, but something
/// that is closer to Rust's iterator API. Unfortunately, because a
/// `PacketParser` needs mutable access to the input stream (so that
/// the content can be streamed), only a single `PacketParser` item
/// can be live at a time (without a fair amount of unsafe nastiness).
/// This is incompatible with Rust's iterator concept, which allows
/// any number of items to be live at any time. For instance:
///
/// ```rust
/// let mut v = vec![1, 2, 3, 4];
/// let mut iter = v.iter_mut();
///
/// let x = iter.next().unwrap();
/// let y = iter.next().unwrap();
///
/// *x += 10; // This does not cause an error!
/// *y += 10;
/// ```
pub struct PacketParser<'a> {
/// The current packet's header.
header: Header,
/// The packet that is being parsed.
pub packet: Packet,
// The path of the packet that is currently being parsed.
path: Vec<usize>,
// The path of the packet that was most recently returned by
// `next()` or `recurse()`.
last_path: Vec<usize>,
reader: Box<dyn BufferedReader<Cookie> + 'a>,
// Whether the caller read the packet's content. If so, then we
// can't recurse, because we're missing some of the packet!
content_was_read: bool,
// Whether PacketParser::finish has been called.
finished: bool,
// Whether the content has been processed.
processed: bool,
/// A map of this packet.
map: Option<map::Map>,
/// We compute a hashsum over the body to implement comparison on
/// containers that have been streamed.
body_hash: Option<Box<Xxh3>>,
state: PacketParserState,
}
assert_send_and_sync!(PacketParser<'_>);
impl<'a> std::fmt::Display for PacketParser<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "PacketParser")
}
}
impl<'a> std::fmt::Debug for PacketParser<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("PacketParser")
.field("header", &self.header)
.field("packet", &self.packet)
.field("path", &self.path)
.field("last_path", &self.last_path)
.field("processed", &self.processed)
.field("content_was_read", &self.content_was_read)
.field("settings", &self.state.settings)
.field("map", &self.map)
.finish()
}
}
/// The return value of PacketParser::parse.
#[allow(clippy::upper_case_acronyms)]
enum ParserResult<'a> {
Success(PacketParser<'a>),
EOF((Box<dyn BufferedReader<Cookie> + 'a>, PacketParserState, Vec<usize>)),
}
/// Information about the stream of packets parsed by the
/// `PacketParser`.
///
/// Once the [`PacketParser`] reaches the end of the input stream, it
/// returns a [`PacketParserResult::EOF`] with a `PacketParserEOF`.
/// This object provides information about the parsed stream, notably
/// whether or not the packet stream was a well-formed [`Message`],
/// [`Cert`] or keyring.
///
/// [`Message`]: super::Message
/// [`Cert`]: crate::cert::Cert
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and detects the
/// kind of data:
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// if eof.is_message().is_ok() {
/// // ...
/// } else if eof.is_cert().is_ok() {
/// // ...
/// } else if eof.is_keyring().is_ok() {
/// // ...
/// } else {
/// // ...
/// }
/// }
/// # Ok(()) }
/// ```
#[derive(Debug)]
pub struct PacketParserEOF<'a> {
state: PacketParserState,
reader: Box<dyn BufferedReader<Cookie> + 'a>,
last_path: Vec<usize>,
}
assert_send_and_sync!(PacketParserEOF<'_>);
impl<'a> PacketParserEOF<'a> {
/// Copies the important information in `pp` into a new
/// `PacketParserEOF` instance.
fn new(mut state: PacketParserState,
reader: Box<dyn BufferedReader<Cookie> + 'a>)
-> Self {
state.message_validator.finish();
state.keyring_validator.finish();
state.cert_validator.finish();
PacketParserEOF {
state,
reader,
last_path: vec![],
}
}
/// Creates a placeholder instance for PacketParserResult::take.
fn empty() -> Self {
Self::new(
PacketParserState::new(Default::default()),
buffered_reader::Memory::with_cookie(b"", Default::default())
.into_boxed())
}
/// Returns whether the stream is an OpenPGP Message.
///
/// A [`Message`] has a very specific structure. Returns `true`
/// if the stream is of that form, as opposed to a [`Cert`] or
/// just a bunch of packets.
///
/// [`Message`]: super::Message
/// [`Cert`]: crate::cert::Cert
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and detects the
/// kind of data:
///
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// if eof.is_message().is_ok() {
/// // ...
/// }
/// }
/// # Ok(()) }
/// ```
pub fn is_message(&self) -> Result<()> {
use crate::message::MessageValidity;
match self.state.message_validator.check() {
MessageValidity::Message => Ok(()),
MessageValidity::MessagePrefix => unreachable!(),
MessageValidity::Error(err) => Err(err),
}
}
/// Returns whether the message is an OpenPGP keyring.
///
/// A keyring has a very specific structure. Returns `true` if
/// the stream is of that form, as opposed to a [`Message`] or
/// just a bunch of packets.
///
/// [`Message`]: super::Message
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and detects the
/// kind of data:
///
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// if eof.is_keyring().is_ok() {
/// // ...
/// }
/// }
/// # Ok(()) }
/// ```
pub fn is_keyring(&self) -> Result<()> {
match self.state.keyring_validator.check() {
KeyringValidity::Keyring => Ok(()),
KeyringValidity::KeyringPrefix => unreachable!(),
KeyringValidity::Error(err) => Err(err),
}
}
/// Returns whether the message is an OpenPGP Cert.
///
/// A [`Cert`] has a very specific structure. Returns `true` if
/// the stream is of that form, as opposed to a [`Message`] or
/// just a bunch of packets.
///
/// [`Message`]: super::Message
/// [`Cert`]: crate::cert::Cert
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and detects the
/// kind of data:
///
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// if eof.is_cert().is_ok() {
/// // ...
/// }
/// }
/// # Ok(()) }
/// ```
pub fn is_cert(&self) -> Result<()> {
match self.state.cert_validator.check() {
CertValidity::Cert => Ok(()),
CertValidity::CertPrefix => unreachable!(),
CertValidity::Error(err) => Err(err),
}
}
/// Returns the path of the last packet.
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and returns
/// the path (see [`PacketPile::path_ref`]) of the last packet:
///
/// [`PacketPile::path_ref`]: super::PacketPile::path_ref()
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// let _ = eof.last_path();
/// }
/// # Ok(()) }
/// ```
pub fn last_path(&self) -> &[usize] {
&self.last_path[..]
}
/// The last packet's recursion depth.
///
/// A top-level packet has a recursion depth of 0. Packets in a
/// top-level container have a recursion depth of 1, etc.
///
/// # Examples
///
/// Parse some OpenPGP stream using a [`PacketParser`] and returns
/// the recursion depth of the last packet:
///
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// let openpgp_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/public-key.gpg");
/// let mut ppr = PacketParser::from_bytes(openpgp_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
///
/// if let PacketParserResult::EOF(eof) = ppr {
/// let _ = eof.last_recursion_depth();
/// }
/// # Ok(()) }
/// ```
pub fn last_recursion_depth(&self) -> Option<isize> {
if self.last_path.is_empty() {
None
} else {
Some(self.last_path.len() as isize - 1)
}
}
/// Returns the exhausted reader.
pub fn into_reader(self) -> Box<dyn BufferedReader<Cookie> + 'a> {
self.reader
}
}
/// The result of parsing a packet.
///
/// This type is returned by [`PacketParser::next`],
/// [`PacketParser::recurse`], [`PacketParserBuilder::build`], and the
/// implementation of [`PacketParser`]'s [`Parse` trait]. The result
/// is either `Some(PacketParser)`, indicating successful parsing of a
/// packet, or `EOF(PacketParserEOF)` if the end of the input stream
/// has been reached.
///
/// [`PacketParser::next`]: PacketParser::next()
/// [`PacketParser::recurse`]: PacketParser::recurse()
/// [`PacketParserBuilder::build`]: PacketParserBuilder::build()
/// [`Parse` trait]: struct.PacketParser.html#impl-Parse%3C%27a%2C%20PacketParserResult%3C%27a%3E%3E
#[derive(Debug)]
pub enum PacketParserResult<'a> {
/// A `PacketParser` for the next packet.
Some(PacketParser<'a>),
/// Information about a fully parsed packet sequence.
EOF(PacketParserEOF<'a>),
}
assert_send_and_sync!(PacketParserResult<'_>);
impl<'a> PacketParserResult<'a> {
/// Returns `true` if the result is `EOF`.
pub fn is_eof(&self) -> bool {
matches!(self, PacketParserResult::EOF(_))
}
/// Returns `true` if the result is `Some`.
pub fn is_some(&self) -> bool {
! Self::is_eof(self)
}
/// Unwraps a result, yielding the content of an `Some`.
///
/// # Panics
///
/// Panics if the value is an `EOF`, with a panic message
/// including the passed message, and the information in the
/// [`PacketParserEOF`] object.
///
pub fn expect(self, msg: &str) -> PacketParser<'a> {
if let PacketParserResult::Some(pp) = self {
pp
} else {
panic!("{}", msg);
}
}
/// Unwraps a result, yielding the content of an `Some`.
///
/// # Panics
///
/// Panics if the value is an `EOF`, with a panic message
/// including the information in the [`PacketParserEOF`] object.
///
pub fn unwrap(self) -> PacketParser<'a> {
self.expect("called `PacketParserResult::unwrap()` on a \
`PacketParserResult::PacketParserEOF` value")
}
/// Converts from `PacketParserResult` to `Result<&PacketParser,
/// &PacketParserEOF>`.
///
/// Produces a new `Result`, containing references into the
/// original `PacketParserResult`, leaving the original in place.
pub fn as_ref(&self)
-> StdResult<&PacketParser<'a>, &PacketParserEOF> {
match self {
PacketParserResult::Some(pp) => Ok(pp),
PacketParserResult::EOF(eof) => Err(eof),
}
}
/// Converts from `PacketParserResult` to `Result<&mut
/// PacketParser, &mut PacketParserEOF>`.
///
/// Produces a new `Result`, containing mutable references into the
/// original `PacketParserResult`, leaving the original in place.
pub fn as_mut(&mut self)
-> StdResult<&mut PacketParser<'a>, &mut PacketParserEOF<'a>>
{
match self {
PacketParserResult::Some(pp) => Ok(pp),
PacketParserResult::EOF(eof) => Err(eof),
}
}
/// Takes the value out of the `PacketParserResult`, leaving a
/// `EOF` in its place.
///
/// The `EOF` left in place carries a [`PacketParserEOF`] with
/// default values.
///
pub fn take(&mut self) -> Self {
mem::replace(
self,
PacketParserResult::EOF(PacketParserEOF::empty()))
}
/// Maps a `PacketParserResult` to `Result<PacketParser,
/// PacketParserEOF>` by applying a function to a contained `Some`
/// value, leaving an `EOF` value untouched.
pub fn map<U, F>(self, f: F) -> StdResult<U, PacketParserEOF<'a>>
where F: FnOnce(PacketParser<'a>) -> U
{
match self {
PacketParserResult::Some(x) => Ok(f(x)),
PacketParserResult::EOF(e) => Err(e),
}
}
}
impl<'a> Parse<'a, PacketParserResult<'a>> for PacketParser<'a> {
/// Starts parsing an OpenPGP object stored in a `BufferedReader` object.
///
/// This function returns a `PacketParser` for the first packet in
/// the stream.
fn from_buffered_reader<R>(reader: R) -> Result<PacketParserResult<'a>>
where
R: BufferedReader<Cookie> + 'a,
{
PacketParserBuilder::from_buffered_reader(reader)?.build()
}
/// Starts parsing an OpenPGP message stored in a `std::io::Read` object.
///
/// This function returns a `PacketParser` for the first packet in
/// the stream.
fn from_reader<R: io::Read + 'a + Send + Sync>(reader: R)
-> Result<PacketParserResult<'a>> {
PacketParserBuilder::from_reader(reader)?.build()
}
/// Starts parsing an OpenPGP message stored in a file named `path`.
///
/// This function returns a `PacketParser` for the first packet in
/// the stream.
fn from_file<P: AsRef<Path>>(path: P)
-> Result<PacketParserResult<'a>> {
PacketParserBuilder::from_file(path)?.build()
}
/// Starts parsing an OpenPGP message stored in a buffer.
///
/// This function returns a `PacketParser` for the first packet in
/// the stream.
fn from_bytes<D: AsRef<[u8]> + ?Sized + Send + Sync>(data: &'a D)
-> Result<PacketParserResult<'a>> {
PacketParserBuilder::from_bytes(data)?.build()
}
}
impl <'a> PacketParser<'a> {
/// Starts parsing an OpenPGP message stored in a `BufferedReader`
/// object.
///
/// This function returns a `PacketParser` for the first packet in
/// the stream.
pub(crate) fn from_cookie_reader(bio: Box<dyn BufferedReader<Cookie> + 'a>)
-> Result<PacketParserResult<'a>> {
PacketParserBuilder::from_cookie_reader(bio)?.build()
}
/// Returns the reader stack, replacing it with a
/// `buffered_reader::EOF` reader.
///
/// This function may only be called when the `PacketParser` is in
/// State::Body.
fn take_reader(&mut self) -> Box<dyn BufferedReader<Cookie> + 'a> {
self.set_reader(
Box::new(buffered_reader::EOF::with_cookie(Default::default())))
}
/// Replaces the reader stack.
///
/// This function may only be called when the `PacketParser` is in
/// State::Body.
fn set_reader(&mut self, reader: Box<dyn BufferedReader<Cookie> + 'a>)
-> Box<dyn BufferedReader<Cookie> + 'a>
{
mem::replace(&mut self.reader, reader)
}
/// Returns a mutable reference to the reader stack.
fn mut_reader(&mut self) -> &mut dyn BufferedReader<Cookie> {
&mut self.reader
}
/// Marks the packet's contents as processed or not.
fn set_processed(mut self, v: bool) -> Self {
self.processed = v;
self
}
/// Returns whether the packet's contents have been processed.
///
/// This function returns `true` while processing an encryption
/// container before it is decrypted using
/// [`PacketParser::decrypt`]. Once successfully decrypted, it
/// returns `false`.
///
/// [`PacketParser::decrypt`]: PacketParser::decrypt()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::fmt::hex;
/// use openpgp::types::SymmetricAlgorithm;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse an encrypted message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/encrypted-aes256-password-123.gpg");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// if let Packet::SEIP(_) = pp.packet {
/// assert!(!pp.processed());
/// pp.decrypt(SymmetricAlgorithm::AES256,
/// &hex::decode("7EF4F08C44F780BEA866961423306166\
/// B8912C43352F3D9617F745E4E3939710")?
/// .into())?;
/// assert!(pp.processed());
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn processed(&self) -> bool {
self.processed
}
/// Returns whether the packet's contents are encrypted.
///
/// This function has been obsoleted by the negation of
/// [`PacketParser::processed`].
#[deprecated(since = "1.10.0", note = "Use !processed()")]
pub fn encrypted(&self) -> bool {
!self.processed()
}
/// Returns the path of the last packet.
///
/// This function returns the path (see [`PacketPile::path_ref`]
/// for a description of paths) of the packet last returned by a
/// call to [`PacketParser::recurse`] or [`PacketParser::next`].
/// If no packet has been returned (i.e. the current packet is the
/// first packet), this returns the empty slice.
///
/// [`PacketPile::path_ref`]: super::PacketPile::path_ref()
/// [`PacketParser::recurse`]: PacketParser::recurse()
/// [`PacketParser::next`]: PacketParser::next()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a compressed message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// match pp.packet {
/// Packet::CompressedData(_) => assert_eq!(pp.last_path(), &[]),
/// Packet::Literal(_) => assert_eq!(pp.last_path(), &[0]),
/// _ => (),
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn last_path(&self) -> &[usize] {
&self.last_path[..]
}
/// Returns the path of the current packet.
///
/// This function returns the path (see [`PacketPile::path_ref`]
/// for a description of paths) of the packet currently being
/// processed (see [`PacketParser::packet`]).
///
/// [`PacketPile::path_ref`]: super::PacketPile::path_ref()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a compressed message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// match pp.packet {
/// Packet::CompressedData(_) => assert_eq!(pp.path(), &[0]),
/// Packet::Literal(_) => assert_eq!(pp.path(), &[0, 0]),
/// _ => (),
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn path(&self) -> &[usize] {
&self.path[..]
}
/// The current packet's recursion depth.
///
/// A top-level packet has a recursion depth of 0. Packets in a
/// top-level container have a recursion depth of 1, etc.
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a compressed message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// match pp.packet {
/// Packet::CompressedData(_) => assert_eq!(pp.recursion_depth(), 0),
/// Packet::Literal(_) => assert_eq!(pp.recursion_depth(), 1),
/// _ => (),
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn recursion_depth(&self) -> isize {
self.path.len() as isize - 1
}
/// The last packet's recursion depth.
///
/// A top-level packet has a recursion depth of 0. Packets in a
/// top-level container have a recursion depth of 1, etc.
///
/// Note: if no packet has been returned yet, this returns None.
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a compressed message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// match pp.packet {
/// Packet::CompressedData(_) => assert_eq!(pp.last_recursion_depth(), None),
/// Packet::Literal(_) => assert_eq!(pp.last_recursion_depth(), Some(0)),
/// _ => (),
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn last_recursion_depth(&self) -> Option<isize> {
if self.last_path.is_empty() {
assert_eq!(&self.path[..], &[ 0 ]);
None
} else {
Some(self.last_path.len() as isize - 1)
}
}
/// Returns whether the message appears to be an OpenPGP Message.
///
/// Only when the whole message has been processed is it possible
/// to say whether the message is definitely an OpenPGP Message.
/// Before that, it is only possible to say that the message is a
/// valid prefix or definitely not an OpenPGP message (see
/// [`PacketParserEOF::is_message`]).
///
/// [`PacketParserEOF::is_message`]: PacketParserEOF::is_message()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a compressed message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// pp.possible_message()?;
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn possible_message(&self) -> Result<()> {
use crate::message::MessageValidity;
match self.state.message_validator.check() {
MessageValidity::Message => unreachable!(),
MessageValidity::MessagePrefix => Ok(()),
MessageValidity::Error(err) => Err(err),
}
}
/// Returns whether the message appears to be an OpenPGP keyring.
///
/// Only when the whole message has been processed is it possible
/// to say whether the message is definitely an OpenPGP keyring.
/// Before that, it is only possible to say that the message is a
/// valid prefix or definitely not an OpenPGP keyring (see
/// [`PacketParserEOF::is_keyring`]).
///
/// [`PacketParserEOF::is_keyring`]: PacketParserEOF::is_keyring()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a certificate.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/testy.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// pp.possible_keyring()?;
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn possible_keyring(&self) -> Result<()> {
match self.state.keyring_validator.check() {
KeyringValidity::Keyring => unreachable!(),
KeyringValidity::KeyringPrefix => Ok(()),
KeyringValidity::Error(err) => Err(err),
}
}
/// Returns whether the message appears to be an OpenPGP Cert.
///
/// Only when the whole message has been processed is it possible
/// to say whether the message is definitely an OpenPGP Cert.
/// Before that, it is only possible to say that the message is a
/// valid prefix or definitely not an OpenPGP Cert (see
/// [`PacketParserEOF::is_cert`]).
///
/// [`PacketParserEOF::is_cert`]: PacketParserEOF::is_cert()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a certificate.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/keys/testy.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// pp.possible_cert()?;
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn possible_cert(&self) -> Result<()> {
match self.state.cert_validator.check() {
CertValidity::Cert => unreachable!(),
CertValidity::CertPrefix => Ok(()),
CertValidity::Error(err) => Err(err),
}
}
/// Tests whether the data appears to be a legal cert packet.
///
/// This is just a heuristic. It can be used for recovering from
/// garbage.
///
/// Successfully reading the header only means that the top bit of
/// the ptag is 1. Assuming a uniform distribution, there's a 50%
/// chance that that is the case.
///
/// To improve our chances of a correct recovery, we make sure the
/// tag is known (for new format CTBs, there are 64 possible tags,
/// but only a third of them are reasonable; for old format
/// packets, there are only 16 and nearly all are plausible), and
/// we make sure the packet contents are reasonable.
///
/// Currently, we only try to recover the most interesting
/// packets.
pub(crate) fn plausible_cert<C, T>(bio: &mut buffered_reader::Dup<T, C>,
header: &Header)
-> Result<()>
where T: BufferedReader<C>, C: fmt::Debug + Send + Sync
{
let bad = Err(
Error::MalformedPacket("Can't make an educated case".into()).into());
match header.ctb().tag() {
Tag::Reserved
| Tag::Unknown(_) | Tag::Private(_) =>
Err(Error::MalformedPacket("Looks like garbage".into()).into()),
Tag::Marker => Marker::plausible(bio, header),
Tag::Signature => Signature::plausible(bio, header),
Tag::SecretKey => Key::plausible(bio, header),
Tag::PublicKey => Key::plausible(bio, header),
Tag::SecretSubkey => Key::plausible(bio, header),
Tag::PublicSubkey => Key::plausible(bio, header),
Tag::UserID => bad,
Tag::UserAttribute => bad,
// It is reasonable to try and ignore garbage in Certs,
// because who knows what the keyservers return, etc.
// But, if we have what appears to be an OpenPGP message,
// then, ignore.
Tag::PKESK => bad,
Tag::SKESK => bad,
Tag::OnePassSig => bad,
Tag::CompressedData => bad,
Tag::SED => bad,
Tag::Literal => bad,
Tag::Trust => bad,
Tag::SEIP => bad,
Tag::MDC => bad,
Tag::AED => bad,
}
}
/// Returns a `PacketParser` for the next OpenPGP packet in the
/// stream. If there are no packets left, this function returns
/// `bio`.
fn parse(mut bio: Box<dyn BufferedReader<Cookie> + 'a>,
mut state: PacketParserState,
path: Vec<usize>)
-> Result<ParserResult<'a>>
{
assert!(!path.is_empty());
let indent = path.len() as isize - 1;
tracer!(TRACE, "PacketParser::parse", indent);
if let Some(err) = state.pending_error.take() {
t!("Returning pending error: {}", err);
return Err(err);
}
t!("Parsing packet at {:?}", path);
let recursion_depth = path.len() as isize - 1;
// When header encounters an EOF, it returns an error. But,
// we want to return None. Try a one byte read.
if bio.data(1)?.is_empty() {
t!("No packet at {:?} (EOF).", path);
return Ok(ParserResult::EOF((bio, state, path)));
}
// When computing a hash for a signature, most of the
// signature packet should not be included in the hash. That
// is:
//
// [ one pass sig ] [ ... message ... ] [ sig ]
// ^^^^^^^^^^^^^^^^^^^
// hash only this
//
// (The special logic for the Signature packet is in
// Signature::parse.)
//
// To avoid this, we use a Dup reader to figure out if the
// next packet is a sig packet without consuming the headers,
// which would cause the headers to be hashed. If so, we
// extract the hash context.
let mut bio = buffered_reader::Dup::with_cookie(bio, Cookie::default());
let header;
// Read the header.
let mut skip = 0;
let mut orig_error : Option<anyhow::Error> = None;
loop {
bio.rewind();
if let Err(_err) = bio.data_consume_hard(skip) {
// EOF. We checked for EOF above when skip was 0, so
// we must have skipped something.
assert!(skip > 0);
// Fabricate a header.
header = Header::new(CTB::new(Tag::Reserved),
BodyLength::Full(skip as u32));
break;
}
match Header::parse(&mut bio) {
Ok(header_) => {
if skip == 0 {
header = header_;
break;
}
match Self::plausible_cert(&mut bio, &header_) {
Ok(()) => {
header = Header::new(CTB::new(Tag::Reserved),
BodyLength::Full(skip as u32));
break;
}
Err(err_) => {
t!("{} not plausible @ {}: {}",
header_.ctb().tag(), skip, err_);
},
}
}
Err(err) => {
t!("Failed to read a header after skipping {} bytes: {}",
skip, err);
if orig_error.is_none() {
orig_error = Some(err);
}
if state.first_packet {
// We don't try to recover if we haven't see
// any packets.
return Err(orig_error.unwrap());
}
if skip > RECOVERY_THRESHOLD {
// Limit the search space. This should be
// enough to find a reasonable recovery point
// in a Cert.
state.pending_error = orig_error;
// Fabricate a header.
header = Header::new(CTB::new(Tag::Reserved),
BodyLength::Full(skip as u32));
break;
}
}
}
skip += 1;
}
// Prepare to actually consume the header or garbage.
let consumed = if skip == 0 {
bio.total_out()
} else {
t!("turning {} bytes of junk into an Unknown packet", skip);
bio.rewind();
0
};
let tag = header.ctb().tag();
t!("Packet's tag is {}", tag);
// A buffered_reader::Dup always has an inner.
let mut bio = Box::new(bio).into_inner().unwrap();
// Disable hashing for literal packets, Literal::parse will
// enable it for the body. Signatures and OnePassSig packets
// are only hashed by notarizing signatures.
if tag == Tag::Literal {
Cookie::hashing(
&mut bio, Hashing::Disabled, recursion_depth - 1);
} else if tag == Tag::OnePassSig || tag == Tag::Signature {
if Cookie::processing_csf_message(&bio) {
// When processing a CSF message, the hashing reader
// is not peeled off, because the number of signature
// packets cannot be known from the number of OPS
// packets. Instead, we simply disable hashing.
//
// XXX: It would be nice to peel off the hashing
// reader and drop this workaround.
Cookie::hashing(
&mut bio, Hashing::Disabled, recursion_depth - 1);
} else {
Cookie::hashing(
&mut bio, Hashing::Notarized, recursion_depth - 1);
}
}
// Save header for the map or nested signatures.
let header_bytes =
Vec::from(&bio.data_consume_hard(consumed)?[..consumed]);
let bio : Box<dyn BufferedReader<Cookie>>
= match header.length() {
&BodyLength::Full(len) => {
t!("Pushing a limitor ({} bytes), level: {}.",
len, recursion_depth);
Box::new(buffered_reader::Limitor::with_cookie(
bio, len as u64,
Cookie::new(recursion_depth)))
},
&BodyLength::Partial(len) => {
t!("Pushing a partial body chunk decoder, level: {}.",
recursion_depth);
Box::new(BufferedReaderPartialBodyFilter::with_cookie(
bio, len,
// When hashing a literal data packet, we only
// hash the packet's contents; we don't hash
// the literal data packet's meta-data or the
// length information, which includes the
// partial body headers.
tag != Tag::Literal,
Cookie::new(recursion_depth)))
},
BodyLength::Indeterminate => {
t!("Indeterminate length packet, not adding a limitor.");
bio
},
};
// Our parser should not accept packets that fail our header
// syntax check. Doing so breaks roundtripping, and seems
// like a bad idea anyway.
let mut header_syntax_error = header.valid(true).err();
// Check packet size.
if header_syntax_error.is_none() {
let max_size = state.settings.max_packet_size;
match tag {
// Don't check the size for container packets, those
// can be safely streamed.
Tag::Literal | Tag::CompressedData | Tag::SED | Tag::SEIP
| Tag::AED => (),
_ => match header.length() {
BodyLength::Full(l) => if *l > max_size {
header_syntax_error = Some(
Error::PacketTooLarge(tag, *l, max_size).into());
},
_ => unreachable!("non-data packets have full length, \
syntax check above"),
}
}
}
let parser = PacketHeaderParser::new(bio, state, path,
header, header_bytes);
let mut result = match tag {
Tag::Reserved if skip > 0 => Unknown::parse(
parser, Error::MalformedPacket(format!(
"Skipped {} bytes of junk", skip)).into()),
_ if header_syntax_error.is_some() =>
Unknown::parse(parser, header_syntax_error.unwrap()),
Tag::Signature => Signature::parse(parser),
Tag::OnePassSig => OnePassSig::parse(parser),
Tag::PublicSubkey => Key::parse(parser),
Tag::PublicKey => Key::parse(parser),
Tag::SecretKey => Key::parse(parser),
Tag::SecretSubkey => Key::parse(parser),
Tag::Trust => Trust::parse(parser),
Tag::UserID => UserID::parse(parser),
Tag::UserAttribute => UserAttribute::parse(parser),
Tag::Marker => Marker::parse(parser),
Tag::Literal => Literal::parse(parser),
Tag::CompressedData => CompressedData::parse(parser),
Tag::SKESK => SKESK::parse(parser),
Tag::SEIP => SEIP::parse(parser),
Tag::MDC => MDC::parse(parser),
Tag::PKESK => PKESK::parse(parser),
Tag::AED => AED::parse(parser),
_ => Unknown::parse(parser,
Error::UnsupportedPacketType(tag).into()),
}?;
if tag == Tag::OnePassSig {
Cookie::hashing(
&mut result, Hashing::Enabled, recursion_depth - 1);
}
result.state.first_packet = false;
t!(" -> {:?}, path: {:?}, level: {:?}.",
result.packet.tag(), result.path, result.cookie_ref().level);
return Ok(ParserResult::Success(result));
}
/// Finishes parsing the current packet and starts parsing the
/// next one.
///
/// This function finishes parsing the current packet. By
/// default, any unread content is dropped. (See
/// [`PacketParsererBuilder`] for how to configure this.) It then
/// creates a new packet parser for the next packet. If the
/// current packet is a container, this function does *not*
/// recurse into the container, but skips any packets it contains.
/// To recurse into the container, use the [`recurse()`] method.
///
/// [`PacketParsererBuilder`]: PacketParserBuilder
/// [`recurse()`]: PacketParser::recurse()
///
/// The return value is a tuple containing:
///
/// - A `Packet` holding the fully processed old packet;
///
/// - A `PacketParser` holding the new packet;
///
/// To determine the two packet's position within the parse tree,
/// you can use `last_path()` and `path()`, respectively. To
/// determine their depth, you can use `last_recursion_depth()`
/// and `recursion_depth()`, respectively.
///
/// Note: A recursion depth of 0 means that the packet is a
/// top-level packet, a recursion depth of 1 means that the packet
/// is an immediate child of a top-level-packet, etc.
///
/// Since the packets are serialized in depth-first order and all
/// interior nodes are visited, we know that if the recursion
/// depth is the same, then the packets are siblings (they have a
/// common parent) and not, e.g., cousins (they have a common
/// grandparent). This is because, if we move up the tree, the
/// only way to move back down is to first visit a new container
/// (e.g., an aunt).
///
/// Using the two positions, we can compute the change in depth as
/// new_depth - old_depth. Thus, if the change in depth is 0, the
/// two packets are siblings. If the value is 1, the old packet
/// is a container, and the new packet is its first child. And,
/// if the value is -1, the new packet is contained in the old
/// packet's grandparent. The idea is illustrated below:
///
/// ```text
/// ancestor
/// | \
/// ... -n
/// |
/// grandparent
/// | \
/// parent -1
/// | \
/// packet 0
/// |
/// 1
/// ```
///
/// Note: since this function does not automatically recurse into
/// a container, the change in depth will always be non-positive.
/// If the current container is empty, this function DOES pop that
/// container off the container stack, and returns the following
/// packet in the parent container.
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet.
/// ppr = pp.next()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn next(mut self)
-> Result<(Packet, PacketParserResult<'a>)>
{
let indent = self.recursion_depth();
tracer!(TRACE, "PacketParser::next", indent);
t!("({:?}, path: {:?}, level: {:?}).",
self.packet.tag(), self.path, self.cookie_ref().level);
self.finish()?;
let (mut fake_eof, mut reader) = buffered_reader_stack_pop(
mem::replace(&mut self.reader,
Box::new(buffered_reader::EOF::with_cookie(
Default::default()))),
self.recursion_depth())?;
self.last_path.clear();
self.last_path.extend_from_slice(&self.path[..]);
// Assume that we succeed in parsing the next packet. If not,
// then we'll adjust the path.
*self.path.last_mut().expect("A path is never empty") += 1;
// Now read the next packet.
loop {
// Parse the next packet.
t!("Reading packet at {:?}", self.path);
let recursion_depth = self.recursion_depth();
let ppr = PacketParser::parse(reader, self.state, self.path)?;
match ppr {
ParserResult::EOF((reader_, state_, path_)) => {
// We got EOF on the current container. The
// container at recursion depth n is empty. Pop
// it and any filters for it, i.e., those at level
// n (e.g., the limitor that caused us to hit
// EOF), and then try again.
t!("depth: {}, got EOF trying to read the next packet",
recursion_depth);
self.path = path_;
if ! fake_eof && recursion_depth == 0 {
t!("Popped top-level container, done reading message.");
// Pop topmost filters (e.g. the armor::Reader).
let (_, reader_) = buffered_reader_stack_pop(
reader_, ARMOR_READER_LEVEL)?;
let mut eof = PacketParserEOF::new(state_, reader_);
eof.last_path = self.last_path;
return Ok((self.packet,
PacketParserResult::EOF(eof)));
} else {
self.state = state_;
self.finish()?;
let (fake_eof_, reader_) = buffered_reader_stack_pop(
reader_, recursion_depth - 1)?;
fake_eof = fake_eof_;
if ! fake_eof {
self.path.pop().unwrap();
*self.path.last_mut()
.expect("A path is never empty") += 1;
}
reader = reader_;
}
},
ParserResult::Success(mut pp) => {
let path = pp.path().to_vec();
pp.state.message_validator.push(
pp.packet.tag(), pp.packet.version(),
&path);
pp.state.keyring_validator.push(pp.packet.tag());
pp.state.cert_validator.push(pp.packet.tag());
pp.last_path = self.last_path;
return Ok((self.packet, PacketParserResult::Some(pp)));
}
}
}
}
/// Finishes parsing the current packet and starts parsing the
/// next one, recursing if possible.
///
/// This method is similar to the [`next()`] method (see that
/// method for more details), but if the current packet is a
/// container (and we haven't reached the maximum recursion depth,
/// and the user hasn't started reading the packet's contents), we
/// recurse into the container, and return a `PacketParser` for
/// its first child. Otherwise, we return the next packet in the
/// packet stream. If this function recurses, then the new
/// packet's recursion depth will be `last_recursion_depth() + 1`;
/// because we always visit interior nodes, we can't recurse more
/// than one level at a time.
///
/// [`next()`]: PacketParser::next()
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn recurse(self) -> Result<(Packet, PacketParserResult<'a>)> {
let indent = self.recursion_depth();
tracer!(TRACE, "PacketParser::recurse", indent);
t!("({:?}, path: {:?}, level: {:?})",
self.packet.tag(), self.path, self.cookie_ref().level);
match self.packet {
// Packets that recurse.
Packet::CompressedData(_) | Packet::SEIP(_) | Packet::AED(_)
if self.processed =>
{
if self.recursion_depth() as u8
>= self.state.settings.max_recursion_depth
{
t!("Not recursing into the {:?} packet, maximum recursion \
depth ({}) reached.",
self.packet.tag(),
self.state.settings.max_recursion_depth);
// Drop through.
} else if self.content_was_read {
t!("Not recursing into the {:?} packet, some data was \
already read.",
self.packet.tag());
// Drop through.
} else {
let mut last_path = self.last_path;
last_path.clear();
last_path.extend_from_slice(&self.path[..]);
let mut path = self.path;
path.push(0);
match PacketParser::parse(self.reader, self.state,
path.clone())?
{
ParserResult::Success(mut pp) => {
t!("Recursed into the {:?} packet, got a {:?}.",
self.packet.tag(), pp.packet.tag());
pp.state.message_validator.push(
pp.packet.tag(),
pp.packet.version(),
&path);
pp.state.keyring_validator.push(pp.packet.tag());
pp.state.cert_validator.push(pp.packet.tag());
pp.last_path = last_path;
return Ok((self.packet,
PacketParserResult::Some(pp)));
},
ParserResult::EOF(_) => {
return Err(Error::MalformedPacket(
"Container is truncated".into()).into());
},
}
}
},
// Packets that don't recurse.
#[allow(deprecated)]
Packet::Unknown(_) | Packet::Signature(_) | Packet::OnePassSig(_)
| Packet::PublicKey(_) | Packet::PublicSubkey(_)
| Packet::SecretKey(_) | Packet::SecretSubkey(_)
| Packet::Marker(_) | Packet::Trust(_)
| Packet::UserID(_) | Packet::UserAttribute(_)
| Packet::Literal(_) | Packet::PKESK(_) | Packet::SKESK(_)
| Packet::SEIP(_) | Packet::MDC(_) | Packet::AED(_)
| Packet::CompressedData(_) => {
// Drop through.
t!("A {:?} packet is not a container, not recursing.",
self.packet.tag());
},
}
// No recursion.
self.next()
}
/// Causes the PacketParser to buffer the packet's contents.
///
/// The packet's contents can be retrieved using
/// e.g. [`Container::body`]. In general, you should avoid
/// buffering a packet's content and prefer streaming its content
/// unless you are certain that the content is small.
///
/// [`Container::body`]: crate::packet::Container::body()
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/literal-mode-t-partial-body.gpg");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// // Process the packet.
///
/// if let Packet::Literal(_) = pp.packet {
/// assert!(pp.buffer_unread_content()?
/// .starts_with(b"A Cypherpunk's Manifesto"));
/// # assert!(pp.buffer_unread_content()?
/// # .starts_with(b"A Cypherpunk's Manifesto"));
/// if let Packet::Literal(l) = &pp.packet {
/// assert!(l.body().starts_with(b"A Cypherpunk's Manifesto"));
/// assert_eq!(l.body().len(), 5158);
/// } else {
/// unreachable!();
/// }
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn buffer_unread_content(&mut self) -> Result<&[u8]> {
let rest = self.steal_eof()?;
fn set_or_extend(rest: Vec<u8>, c: &mut Container, processed: bool)
-> Result<&[u8]> {
if !rest.is_empty() {
let current = match c.body() {
Body::Unprocessed(bytes) => &bytes[..],
Body::Processed(bytes) => &bytes[..],
Body::Structured(packets) if packets.is_empty() => &[][..],
Body::Structured(_) => return Err(Error::InvalidOperation(
"cannot append unread bytes to parsed packets"
.into()).into()),
};
let rest = if !current.is_empty() {
let mut new =
Vec::with_capacity(current.len() + rest.len());
new.extend_from_slice(current);
new.extend_from_slice(&rest);
new
} else {
rest
};
c.set_body(if processed {
Body::Processed(rest)
} else {
Body::Unprocessed(rest)
});
}
match c.body() {
Body::Unprocessed(bytes) => Ok(bytes),
Body::Processed(bytes) => Ok(bytes),
Body::Structured(packets) if packets.is_empty() => Ok(&[][..]),
Body::Structured(_) => Err(Error::InvalidOperation(
"cannot append unread bytes to parsed packets"
.into()).into()),
}
}
use std::ops::DerefMut;
match &mut self.packet {
Packet::Literal(p) => set_or_extend(rest, p.container_mut(), false),
Packet::Unknown(p) => set_or_extend(rest, p.container_mut(), false),
Packet::CompressedData(p) =>
set_or_extend(rest, p.deref_mut(), self.processed),
Packet::SEIP(p) =>
set_or_extend(rest, p.deref_mut(), self.processed),
Packet::AED(p) =>
set_or_extend(rest, p.deref_mut(), self.processed),
p => {
if !rest.is_empty() {
Err(Error::MalformedPacket(
format!("Unexpected body data for {:?}: {}",
p, crate::fmt::hex::encode_pretty(rest)))
.into())
} else {
Ok(&b""[..])
}
},
}
}
/// Finishes parsing the current packet.
///
/// By default, this drops any unread content. Use, for instance,
/// [`PacketParserBuilder`] to customize the default behavior.
///
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// let p = pp.finish()?;
/// # let _ = p;
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
// Note: this function is public and may be called multiple times!
pub fn finish(&mut self) -> Result<&Packet> {
let indent = self.recursion_depth();
tracer!(TRACE, "PacketParser::finish", indent);
if self.finished {
return Ok(&self.packet);
}
let recursion_depth = self.recursion_depth();
let unread_content = if self.state.settings.buffer_unread_content {
t!("({:?} at depth {}): buffering {} bytes of unread content",
self.packet.tag(), recursion_depth,
self.data_eof().unwrap_or(&[]).len());
!self.buffer_unread_content()?.is_empty()
} else {
t!("({:?} at depth {}): dropping {} bytes of unread content",
self.packet.tag(), recursion_depth,
self.data_eof().unwrap_or(&[]).len());
self.drop_eof()?
};
if unread_content {
match self.packet.tag() {
Tag::SEIP | Tag::AED | Tag::SED | Tag::CompressedData => {
// We didn't (fully) process a container's content. Add
// this as opaque content to the message validator.
let mut path = self.path().to_vec();
path.push(0);
#[allow(deprecated)]
self.state.message_validator.push_token(
message::Token::OpaqueContent, &path);
}
_ => {},
}
}
if let Some(c) = self.packet.container_mut() {
let h = self.body_hash.take()
.expect("body_hash is Some");
c.set_body_hash(h);
}
self.finished = true;
Ok(&self.packet)
}
/// Hashes content that has been streamed.
fn hash_read_content(&mut self, b: &[u8]) {
if !b.is_empty() {
assert!(self.body_hash.is_some());
if let Some(h) = self.body_hash.as_mut() {
h.update(b);
}
self.content_was_read = true;
}
}
/// Returns a reference to the current packet's header.
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse a message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/compressed-data-algo-0.pgp");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// pp.header().valid(false)?;
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
pub fn header(&self) -> &Header {
&self.header
}
/// Returns a reference to the map (if any is written).
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::parse::{Parse, PacketParserBuilder};
///
/// let message_data = b"\xcb\x12t\x00\x00\x00\x00\x00Hello world.";
/// let pp = PacketParserBuilder::from_bytes(message_data)?
/// .map(true) // Enable mapping.
/// .build()?
/// .expect("One packet, not EOF");
/// let map = pp.map().expect("Mapping is enabled");
///
/// assert_eq!(map.iter().nth(0).unwrap().name(), "CTB");
/// assert_eq!(map.iter().nth(0).unwrap().offset(), 0);
/// assert_eq!(map.iter().nth(0).unwrap().as_bytes(), &[0xcb]);
/// # Ok(()) }
/// ```
pub fn map(&self) -> Option<&map::Map> {
self.map.as_ref()
}
/// Takes the map (if any is written).
///
/// # Examples
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::parse::{Parse, PacketParserBuilder};
///
/// let message_data = b"\xcb\x12t\x00\x00\x00\x00\x00Hello world.";
/// let mut pp = PacketParserBuilder::from_bytes(message_data)?
/// .map(true) // Enable mapping.
/// .build()?
/// .expect("One packet, not EOF");
/// let map = pp.take_map().expect("Mapping is enabled");
///
/// assert_eq!(map.iter().nth(0).unwrap().name(), "CTB");
/// assert_eq!(map.iter().nth(0).unwrap().offset(), 0);
/// assert_eq!(map.iter().nth(0).unwrap().as_bytes(), &[0xcb]);
/// # Ok(()) }
/// ```
pub fn take_map(&mut self) -> Option<map::Map> {
self.map.take()
}
/// Checks if we are processing a signed message using the
/// Cleartext Signature Framework.
pub(crate) fn processing_csf_message(&self) -> bool {
Cookie::processing_csf_message(&self.reader)
}
}
/// This interface allows a caller to read the content of a
/// `PacketParser` using the `Read` interface. This is essential to
/// supporting streaming operation.
///
/// Note: it is safe to mix the use of the `std::io::Read` and
/// `BufferedReader` interfaces.
impl<'a> io::Read for PacketParser<'a> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
// The BufferedReader interface takes care of hashing the read
// values.
buffered_reader_generic_read_impl(self, buf)
}
}
/// This interface allows a caller to read the content of a
/// `PacketParser` using the `BufferedReader` interface. This is
/// essential to supporting streaming operation.
///
/// Note: it is safe to mix the use of the `std::io::Read` and
/// `BufferedReader` interfaces.
impl<'a> BufferedReader<Cookie> for PacketParser<'a> {
fn buffer(&self) -> &[u8] {
self.reader.buffer()
}
fn data(&mut self, amount: usize) -> io::Result<&[u8]> {
// There is no need to set `content_was_read`, because this
// doesn't actually consume any data.
self.reader.data(amount)
}
fn data_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
// There is no need to set `content_was_read`, because this
// doesn't actually consume any data.
self.reader.data_hard(amount)
}
fn data_eof(&mut self) -> io::Result<&[u8]> {
// There is no need to set `content_was_read`, because this
// doesn't actually consume any data.
self.reader.data_eof()
}
fn consume(&mut self, amount: usize) -> &[u8] {
// This is awkward. Juggle mutable references around.
if let Some(mut body_hash) = self.body_hash.take() {
let data = self.data_hard(amount)
.expect("It is an error to consume more than data returns");
body_hash.update(&data[..amount]);
self.body_hash = Some(body_hash);
self.content_was_read |= amount > 0;
} else {
panic!("body_hash is None");
}
self.reader.consume(amount)
}
fn data_consume(&mut self, mut amount: usize) -> io::Result<&[u8]> {
// This is awkward. Juggle mutable references around.
if let Some(mut body_hash) = self.body_hash.take() {
let data = self.data(amount)?;
amount = cmp::min(data.len(), amount);
body_hash.update(&data[..amount]);
self.body_hash = Some(body_hash);
self.content_was_read |= amount > 0;
} else {
panic!("body_hash is None");
}
self.reader.data_consume(amount)
}
fn data_consume_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
// This is awkward. Juggle mutable references around.
if let Some(mut body_hash) = self.body_hash.take() {
let data = self.data_hard(amount)?;
body_hash.update(&data[..amount]);
self.body_hash = Some(body_hash);
self.content_was_read |= amount > 0;
} else {
panic!("body_hash is None");
}
self.reader.data_consume_hard(amount)
}
fn steal(&mut self, amount: usize) -> io::Result<Vec<u8>> {
let v = self.reader.steal(amount)?;
self.hash_read_content(&v);
Ok(v)
}
fn steal_eof(&mut self) -> io::Result<Vec<u8>> {
let v = self.reader.steal_eof()?;
self.hash_read_content(&v);
Ok(v)
}
fn get_mut(&mut self) -> Option<&mut dyn BufferedReader<Cookie>> {
None
}
fn get_ref(&self) -> Option<&dyn BufferedReader<Cookie>> {
None
}
fn into_inner<'b>(self: Box<Self>)
-> Option<Box<dyn BufferedReader<Cookie> + 'b>>
where Self: 'b {
None
}
fn cookie_set(&mut self, cookie: Cookie)
-> Cookie {
self.reader.cookie_set(cookie)
}
fn cookie_ref(&self) -> &Cookie {
self.reader.cookie_ref()
}
fn cookie_mut(&mut self) -> &mut Cookie {
self.reader.cookie_mut()
}
}
// Check that we can use the read interface to stream the contents of
// a packet.
#[cfg(feature = "compression-deflate")]
#[test]
fn packet_parser_reader_interface() {
// We need the Read trait.
use std::io::Read;
let expected = crate::tests::manifesto();
// A message containing a compressed packet that contains a
// literal packet.
let pp = PacketParser::from_bytes(
crate::tests::message("compressed-data-algo-1.gpg")).unwrap().unwrap();
// The message has the form:
//
// [ compressed data [ literal data ] ]
//
// packet is the compressed data packet; ppo is the literal data
// packet.
let packet_depth = pp.recursion_depth();
let (packet, ppr) = pp.recurse().unwrap();
let pp_depth = ppr.as_ref().unwrap().recursion_depth();
if let Packet::CompressedData(_) = packet {
} else {
panic!("Expected a compressed data packet.");
}
let relative_position = pp_depth - packet_depth;
assert_eq!(relative_position, 1);
let mut pp = ppr.unwrap();
if let Packet::Literal(_) = pp.packet {
} else {
panic!("Expected a literal data packet.");
}
// Check that we can read the packet's contents. We do this one
// byte at a time to exercise the cursor implementation.
for i in 0..expected.len() {
let mut buf = [0u8; 1];
let r = pp.read(&mut buf).unwrap();
assert_eq!(r, 1);
assert_eq!(buf[0], expected[i]);
}
// And, now an EOF.
let mut buf = [0u8; 1];
let r = pp.read(&mut buf).unwrap();
assert_eq!(r, 0);
// Make sure we can still get the next packet (which in this case
// is just EOF).
let (packet, ppr) = pp.recurse().unwrap();
assert!(ppr.is_eof());
// Since we read all of the data, we expect content to be None.
assert_eq!(packet.unprocessed_body().unwrap().len(), 0);
}
impl<'a> PacketParser<'a> {
/// Tries to decrypt the current packet.
///
/// On success, this function pushes one or more readers onto the
/// `PacketParser`'s reader stack, and sets the packet parser's
/// `processed` flag (see [`PacketParser::processed`]).
///
/// [`PacketParser::processed`]: PacketParser::processed()
///
/// If this function is called on a packet that does not contain
/// encrypted data, or some of the data was already read, then it
/// returns [`Error::InvalidOperation`].
///
/// [`Error::InvalidOperation`]: super::Error::InvalidOperation
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// use sequoia_openpgp as openpgp;
/// use openpgp::Packet;
/// use openpgp::fmt::hex;
/// use openpgp::types::SymmetricAlgorithm;
/// use openpgp::parse::{Parse, PacketParserResult, PacketParser};
///
/// // Parse an encrypted message.
/// let message_data: &[u8] = // ...
/// # include_bytes!("../tests/data/messages/encrypted-aes256-password-123.gpg");
/// let mut ppr = PacketParser::from_bytes(message_data)?;
/// while let PacketParserResult::Some(mut pp) = ppr {
/// if let Packet::SEIP(_) = pp.packet {
/// pp.decrypt(SymmetricAlgorithm::AES256,
/// &hex::decode("7EF4F08C44F780BEA866961423306166\
/// B8912C43352F3D9617F745E4E3939710")?
/// .into())?;
/// }
///
/// // Start parsing the next packet, recursing.
/// ppr = pp.recurse()?.1;
/// }
/// # Ok(()) }
/// ```
///
/// # Security Considerations
///
/// This functions returns rich errors in case the decryption
/// fails. In combination with certain asymmetric algorithms
/// (RSA), this may lead to compromise of secret key material or
/// (partial) recovery of the message's plain text. See [Section
/// 14 of RFC 4880].
///
/// [Section 14 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-14
///
/// DO NOT relay these errors in situations where an attacker can
/// request decryption of messages in an automated fashion. The
/// API of the streaming [`Decryptor`] prevents leaking rich
/// decryption errors.
///
/// [`Decryptor`]: stream::Decryptor
///
/// Nevertheless, decrypting messages that do not use an
/// authenticated encryption mode in an automated fashion that
/// relays or leaks information to a third party is NEVER SAFE due
/// to unavoidable format oracles, see [Format Oracles on
/// OpenPGP].
///
/// [Format Oracles on OpenPGP]: https://www.ssi.gouv.fr/uploads/2015/05/format-Oracles-on-OpenPGP.pdf
pub fn decrypt(&mut self, algo: SymmetricAlgorithm, key: &SessionKey)
-> Result<()>
{
let indent = self.recursion_depth();
tracer!(TRACE, "PacketParser::decrypt", indent);
if self.content_was_read {
return Err(Error::InvalidOperation(
"Packet's content has already been read.".to_string()).into());
}
if self.processed {
return Err(Error::InvalidOperation(
"Packet not encrypted.".to_string()).into());
}
if algo.key_size()? != key.len () {
return Err(Error::InvalidOperation(
format!("Bad key size: {} expected: {}",
key.len(), algo.key_size()?)).into());
}
match self.packet.clone() {
Packet::SEIP(_) => {
// Get the first blocksize plus two bytes and check
// whether we can decrypt them using the provided key.
// Don't actually consume them in case we can't.
let bl = algo.block_size()?;
{
let mut dec = Decryptor::new(
algo, key, &self.data_hard(bl + 2)?[..bl + 2])?;
let mut header = vec![ 0u8; bl + 2 ];
dec.read_exact(&mut header)?;
if !(header[bl - 2] == header[bl]
&& header[bl - 1] == header[bl + 1]) {
return Err(Error::InvalidSessionKey(
"Decryption failed".into()).into());
}
}
// Ok, we can decrypt the data. Push a Decryptor and
// a HashedReader on the `BufferedReader` stack.
// This can't fail, because we create a decryptor
// above with the same parameters.
let reader = self.take_reader();
let mut reader = BufferedReaderDecryptor::with_cookie(
algo, key, reader, Cookie::default()).unwrap();
reader.cookie_mut().level = Some(self.recursion_depth());
t!("Pushing Decryptor, level {:?}.", reader.cookie_ref().level);
// And the hasher.
let mut reader = HashedReader::new(
reader, HashesFor::MDC,
vec![HashingMode::Binary(HashAlgorithm::SHA1)])?;
reader.cookie_mut().level = Some(self.recursion_depth());
t!("Pushing HashedReader, level {:?}.",
reader.cookie_ref().level);
// A SEIP packet is a container that always ends with
// an MDC packet. But, if the packet preceding the
// MDC packet uses an indeterminate length encoding
// (gpg generates these for compressed data packets,
// for instance), the parser has to detect the EOF and
// be careful to not read any further. Unfortunately,
// our decompressor buffers the data. To stop the
// decompressor from buffering the MDC packet, we use
// a buffered_reader::Reserve. Note: we do this
// unconditionally, since it doesn't otherwise
// interfere with parsing.
// An MDC consists of a 1-byte CTB, a 1-byte length
// encoding, and a 20-byte hash.
let mut reader = buffered_reader::Reserve::with_cookie(
reader, 1 + 1 + 20,
Cookie::new(self.recursion_depth()));
reader.cookie_mut().fake_eof = true;
t!("Pushing buffered_reader::Reserve, level: {}.",
self.recursion_depth());
// Consume the header. This shouldn't fail, because
// it worked when reading the header.
reader.data_consume_hard(bl + 2).unwrap();
self.reader = Box::new(reader);
self.processed = true;
Ok(())
},
Packet::AED(AED::V1(aed)) => {
let chunk_size =
aead::chunk_size_usize(aed.chunk_size())?;
// Read the first chunk and check whether we can
// decrypt it using the provided key. Don't actually
// consume them in case we can't.
{
// We need a bit more than one chunk so that
// `aead::Decryptor` won't see EOF and think that
// it has a partial block and it needs to verify
// the final chunk.
let amount = aead::chunk_size_usize(
aed.chunk_digest_size()?
+ aed.aead().digest_size()? as u64)?;
let data = self.data(amount)?;
let schedule = aead::AEDv1Schedule::new(
aed.symmetric_algo(),
aed.aead(),
chunk_size,
aed.iv())?;
let dec = aead::Decryptor::new(
aed.symmetric_algo(), aed.aead(), chunk_size,
schedule, key.clone(),
&data[..cmp::min(data.len(), amount)])?;
let mut chunk = Vec::new();
dec.take(aed.chunk_size() as u64).read_to_end(&mut chunk)?;
}
// Ok, we can decrypt the data. Push a Decryptor and
// a HashedReader on the `BufferedReader` stack.
// This can't fail, because we create a decryptor
// above with the same parameters.
let schedule = aead::AEDv1Schedule::new(
aed.symmetric_algo(),
aed.aead(),
chunk_size,
aed.iv())?;
let reader = self.take_reader();
let mut reader = aead::BufferedReaderDecryptor::with_cookie(
aed.symmetric_algo(), aed.aead(), chunk_size,
schedule, key.clone(), reader, Cookie::default()).unwrap();
reader.cookie_mut().level = Some(self.recursion_depth());
t!("Pushing aead::Decryptor, level {:?}.",
reader.cookie_ref().level);
self.reader = Box::new(reader);
self.processed = true;
Ok(())
},
_ =>
Err(Error::InvalidOperation(
format!("Can't decrypt {:?} packets.",
self.packet.tag())).into())
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::serialize::Serialize;
enum Data<'a> {
File(&'a str),
String(&'a [u8]),
}
impl<'a> Data<'a> {
fn content(&self) -> Vec<u8> {
match self {
Data::File(filename) => crate::tests::message(filename).to_vec(),
Data::String(data) => data.to_vec(),
}
}
}
struct DecryptTest<'a> {
filename: &'a str,
algo: SymmetricAlgorithm,
aead_algo: Option<AEADAlgorithm>,
key_hex: &'a str,
plaintext: Data<'a>,
paths: &'a[ (Tag, &'a[ usize ] ) ],
}
const DECRYPT_TESTS: &[DecryptTest] = &[
// Messages with a relatively simple structure:
//
// [ SKESK SEIP [ Literal MDC ] ].
//
// And simple length encodings (no indeterminate length
// encodings).
DecryptTest {
filename: "encrypted-aes256-password-123.gpg",
algo: SymmetricAlgorithm::AES256,
aead_algo: None,
key_hex: "7EF4F08C44F780BEA866961423306166B8912C43352F3D9617F745E4E3939710",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "encrypted-aes192-password-123456.gpg",
algo: SymmetricAlgorithm::AES192,
aead_algo: None,
key_hex: "B2F747F207EFF198A6C826F1D398DE037986218ED468DB61",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "encrypted-aes128-password-123456789.gpg",
algo: SymmetricAlgorithm::AES128,
aead_algo: None,
key_hex: "AC0553096429260B4A90B1CEC842D6A0",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
// Created using:
//
// gpg --compression-algo none \
// --s2k-digest-algo sha256 \
// --cipher-algo camellia256 \
// --s2k-cipher-algo camellia256 \
// --encrypt --symmetric \
// -o encrypted-camellia256-password-123.gpg \
// a-cypherpunks-manifesto.txt
DecryptTest {
filename: "encrypted-camellia256-password-123.gpg",
algo: SymmetricAlgorithm::Camellia256,
aead_algo: None,
key_hex: "FC9644B500B9D0540880CB44B40F8C89\
A7D817F2EF7EF9DA0D34A574377E300A",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "encrypted-camellia192-password-123.gpg",
algo: SymmetricAlgorithm::Camellia192,
aead_algo: None,
key_hex: "EC941DB1C5F4D3605E3F3C10B30888DA3287256E55CC978B",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "encrypted-camellia128-password-123.gpg",
algo: SymmetricAlgorithm::Camellia128,
aead_algo: None,
key_hex: "E1CF87BF2E030CC89CBC0F03EC2B7DF5",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "encrypted-twofish-password-red-fish-blue-fish.gpg",
algo: SymmetricAlgorithm::Twofish,
aead_algo: None,
key_hex: "96AFE1EDFA7C9CB7E8B23484C718015E5159CFA268594180D4DB68B2543393CB",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
// More complex messages. In particular, some of these
// messages include compressed data packets, and some are
// signed. But what makes these particularly complex is the
// use of an indeterminate length encoding, which checks the
// buffered_reader::Reserve hack.
#[cfg(feature = "compression-deflate")]
DecryptTest {
filename: "seip/msg-compression-not-signed-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: None,
key_hex: "86A8C1C7961F55A3BE181A990D0ABB2A",
plaintext: Data::String(b"compression, not signed\n"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::CompressedData, &[ 1, 0 ]),
(Tag::Literal, &[ 1, 0, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
#[cfg(feature = "compression-deflate")]
DecryptTest {
filename: "seip/msg-compression-signed-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: None,
key_hex: "1B195CD35CAD4A99D9399B4CDA4CDA4E",
plaintext: Data::String(b"compression, signed\n"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::CompressedData, &[ 1, 0 ]),
(Tag::OnePassSig, &[ 1, 0, 0 ]),
(Tag::Literal, &[ 1, 0, 1 ]),
(Tag::Signature, &[ 1, 0, 2 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "seip/msg-no-compression-not-signed-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: None,
key_hex: "AFB43B83A4B9D971E4B4A4C53749076A",
plaintext: Data::String(b"no compression, not signed\n"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
(Tag::MDC, &[ 1, 1 ]),
],
},
DecryptTest {
filename: "seip/msg-no-compression-signed-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: None,
key_hex: "9D5DB92F77F0E4A356EE53813EF2C3DC",
plaintext: Data::String(b"no compression, signed\n"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::SEIP, &[ 1 ]),
(Tag::OnePassSig, &[ 1, 0 ]),
(Tag::Literal, &[ 1, 1 ]),
(Tag::Signature, &[ 1, 2 ]),
(Tag::MDC, &[ 1, 3 ]),
],
},
// AEAD encrypted messages.
DecryptTest {
filename: "aed/msg-aes128-eax-chunk-size-64-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: Some(AEADAlgorithm::EAX),
key_hex: "E88151F2B6F6F6F0AE6B56ED247AA61B",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::AED, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
],
},
DecryptTest {
filename: "aed/msg-aes128-eax-chunk-size-4194304-password-123.pgp",
algo: SymmetricAlgorithm::AES128,
aead_algo: Some(AEADAlgorithm::EAX),
key_hex: "918E6BF5C6CE4320D014735AF27BFA76",
plaintext: Data::File("a-cypherpunks-manifesto.txt"),
paths: &[
(Tag::SKESK, &[ 0 ]),
(Tag::AED, &[ 1 ]),
(Tag::Literal, &[ 1, 0 ]),
],
},
];
// Consume packets until we get to one in `keep`.
fn consume_until<'a>(mut ppr: PacketParserResult<'a>,
ignore_first: bool, keep: &[Tag], skip: &[Tag])
-> PacketParserResult<'a>
{
if ignore_first {
ppr = ppr.unwrap().recurse().unwrap().1;
}
while let PacketParserResult::Some(pp) = ppr {
let tag = pp.packet.tag();
for t in keep.iter() {
if *t == tag {
return PacketParserResult::Some(pp);
}
}
let mut ok = false;
for t in skip.iter() {
if *t == tag {
ok = true;
}
}
if !ok {
panic!("Packet not in keep ({:?}) or skip ({:?}) set: {:?}",
keep, skip, pp.packet);
}
ppr = pp.recurse().unwrap().1;
}
ppr
}
#[test]
fn decrypt_test() {
decrypt_test_common(false);
}
#[test]
fn decrypt_test_stream() {
decrypt_test_common(true);
}
#[allow(deprecated)]
fn decrypt_test_common(stream: bool) {
for test in DECRYPT_TESTS.iter() {
if !test.algo.is_supported() {
eprintln!("Algorithm {} unsupported, skipping", test.algo);
continue;
}
if let Some(aead_algo) = test.aead_algo {
if !aead_algo.is_supported() {
eprintln!("AEAD algorithm {} unsupported by
selected crypto backend, skipping", aead_algo);
continue;
}
}
eprintln!("Decrypting {}, streaming content: {}",
test.filename, stream);
let ppr = PacketParserBuilder::from_bytes(
crate::tests::message(test.filename)).unwrap()
.buffer_unread_content()
.build()
.expect(&format!("Error reading {}", test.filename)[..]);
let mut ppr = consume_until(
ppr, false, &[ Tag::SEIP, Tag::AED ][..],
&[ Tag::SKESK, Tag::PKESK ][..] );
if let PacketParserResult::Some(ref mut pp) = ppr {
let key = crate::fmt::from_hex(test.key_hex, false)
.unwrap().into();
pp.decrypt(test.algo, &key).unwrap();
} else {
panic!("Expected a SEIP/AED packet. Got: {:?}", ppr);
}
let mut ppr = consume_until(
ppr, true, &[ Tag::Literal ][..],
&[ Tag::OnePassSig, Tag::CompressedData ][..]);
if let PacketParserResult::Some(ref mut pp) = ppr {
if stream {
let mut body = Vec::new();
loop {
let mut b = [0];
if pp.read(&mut b).unwrap() == 0 {
break;
}
body.push(b[0]);
}
assert_eq!(&body[..],
&test.plaintext.content()[..],
"{:?}", pp.packet);
} else {
pp.buffer_unread_content().unwrap();
if let Packet::Literal(l) = &pp.packet {
assert_eq!(l.body(), &test.plaintext.content()[..],
"{:?}", pp.packet);
} else {
panic!("Expected literal, got: {:?}", pp.packet);
}
}
} else {
panic!("Expected a Literal packet. Got: {:?}", ppr);
}
let ppr = consume_until(
ppr, true, &[ Tag::MDC ][..], &[ Tag::Signature ][..]);
if let PacketParserResult::Some(
PacketParser { packet: Packet::MDC(ref mdc), .. }) = ppr
{
assert_eq!(mdc.computed_digest(), mdc.digest(),
"MDC doesn't match");
}
if ppr.is_eof() {
// AED packets don't have an MDC packet.
continue;
}
let ppr = consume_until(
ppr, true, &[][..], &[][..]);
assert!(ppr.is_eof());
}
}
#[test]
fn message_validator() {
for marker in 0..4 {
let marker_before = marker & 1 > 0;
let marker_after = marker & 2 > 0;
for test in DECRYPT_TESTS.iter() {
if !test.algo.is_supported() {
eprintln!("Algorithm {} unsupported, skipping", test.algo);
continue;
}
if let Some(aead_algo) = test.aead_algo {
if !aead_algo.is_supported() {
eprintln!("AEAD algorithm {} unsupported by
selected crypto backend, skipping", aead_algo);
continue;
}
}
let mut buf = Vec::new();
if marker_before {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
buf.extend_from_slice(crate::tests::message(test.filename));
if marker_after {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
let mut ppr = PacketParserBuilder::from_bytes(&buf)
.unwrap()
.build()
.expect(&format!("Error reading {}", test.filename)[..]);
// Make sure we actually decrypted...
let mut saw_literal = false;
while let PacketParserResult::Some(mut pp) = ppr {
pp.possible_message().unwrap();
match pp.packet {
Packet::SEIP(_) | Packet::AED(_) => {
let key = crate::fmt::from_hex(test.key_hex, false)
.unwrap().into();
pp.decrypt(test.algo, &key).unwrap();
},
Packet::Literal(_) => {
assert!(! saw_literal);
saw_literal = true;
},
_ => {},
}
ppr = pp.recurse().unwrap().1;
}
assert!(saw_literal);
if let PacketParserResult::EOF(eof) = ppr {
eof.is_message().unwrap();
} else {
unreachable!();
}
}
}
}
#[test]
fn keyring_validator() {
for marker in 0..4 {
let marker_before = marker & 1 > 0;
let marker_after = marker & 2 > 0;
for test in &["testy.pgp",
"lutz.gpg",
"testy-new.pgp",
"neal.pgp"]
{
let mut buf = Vec::new();
if marker_before {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
buf.extend_from_slice(crate::tests::key("testy.pgp"));
buf.extend_from_slice(crate::tests::key(test));
if marker_after {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
let mut ppr = PacketParserBuilder::from_bytes(&buf)
.unwrap()
.build()
.expect(&format!("Error reading {:?}", test));
while let PacketParserResult::Some(pp) = ppr {
assert!(pp.possible_keyring().is_ok());
ppr = pp.recurse().unwrap().1;
}
if let PacketParserResult::EOF(eof) = ppr {
assert!(eof.is_keyring().is_ok());
assert!(eof.is_cert().is_err());
} else {
unreachable!();
}
}
}
}
#[test]
fn cert_validator() {
for marker in 0..4 {
let marker_before = marker & 1 > 0;
let marker_after = marker & 2 > 0;
for test in &["testy.pgp",
"lutz.gpg",
"testy-new.pgp",
"neal.pgp"]
{
let mut buf = Vec::new();
if marker_before {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
buf.extend_from_slice(crate::tests::key(test));
if marker_after {
Packet::Marker(Default::default()).serialize(&mut buf).unwrap();
}
let mut ppr = PacketParserBuilder::from_bytes(&buf)
.unwrap()
.build()
.expect(&format!("Error reading {:?}", test));
while let PacketParserResult::Some(pp) = ppr {
assert!(pp.possible_keyring().is_ok());
assert!(pp.possible_cert().is_ok());
ppr = pp.recurse().unwrap().1;
}
if let PacketParserResult::EOF(eof) = ppr {
assert!(eof.is_keyring().is_ok());
assert!(eof.is_cert().is_ok());
} else {
unreachable!();
}
}
}
}
// If we don't decrypt the SEIP packet, it shows up as opaque
// content.
#[test]
fn message_validator_opaque_content() {
for test in DECRYPT_TESTS.iter() {
let mut ppr = PacketParserBuilder::from_bytes(
crate::tests::message(test.filename)).unwrap()
.build()
.expect(&format!("Error reading {}", test.filename)[..]);
let mut saw_literal = false;
while let PacketParserResult::Some(pp) = ppr {
assert!(pp.possible_message().is_ok());
match pp.packet {
Packet::Literal(_) => {
assert!(! saw_literal);
saw_literal = true;
},
_ => {},
}
ppr = pp.recurse().unwrap().1;
}
assert!(! saw_literal);
if let PacketParserResult::EOF(eof) = ppr {
eprintln!("eof: {:?}; message: {:?}", eof, eof.is_message());
assert!(eof.is_message().is_ok());
} else {
unreachable!();
}
}
}
#[test]
fn path() {
for test in DECRYPT_TESTS.iter() {
if !test.algo.is_supported() {
eprintln!("Algorithm {} unsupported, skipping", test.algo);
continue;
}
if let Some(aead_algo) = test.aead_algo {
if !aead_algo.is_supported() {
eprintln!("AEAD algorithm {} unsupported, skipping", aead_algo);
continue;
}
}
eprintln!("Decrypting {}", test.filename);
let mut ppr = PacketParserBuilder::from_bytes(
crate::tests::message(test.filename)).unwrap()
.build()
.expect(&format!("Error reading {}", test.filename)[..]);
let mut last_path = vec![];
let mut paths = test.paths.to_vec();
// We pop from the end.
paths.reverse();
while let PacketParserResult::Some(mut pp) = ppr {
let path = paths.pop().expect("Message longer than expect");
assert_eq!(path.0, pp.packet.tag());
assert_eq!(path.1, pp.path());
assert_eq!(last_path, pp.last_path());
last_path = pp.path.to_vec();
eprintln!(" {}: {:?}", pp.packet.tag(), pp.path());
match pp.packet {
Packet::SEIP(_) | Packet::AED(_) => {
let key = crate::fmt::from_hex(test.key_hex, false)
.unwrap().into();
pp.decrypt(test.algo, &key).unwrap();
}
_ => (),
}
ppr = pp.recurse().unwrap().1;
}
paths.reverse();
assert_eq!(paths.len(), 0,
"Message shorter than expected (expecting: {:?})",
paths);
if let PacketParserResult::EOF(eof) = ppr {
assert_eq!(last_path, eof.last_path());
} else {
panic!("Expect an EOF");
}
}
}
#[test]
fn corrupted_cert() {
use crate::armor::{Reader, ReaderMode, Kind};
// The following Cert is corrupted about a third the way
// through. Make sure we can recover.
let mut ppr = PacketParser::from_reader(
Reader::from_bytes(crate::tests::key("corrupted.pgp"),
ReaderMode::Tolerant(Some(Kind::PublicKey))))
.unwrap();
let mut sigs = 0;
let mut subkeys = 0;
let mut userids = 0;
let mut uas = 0;
let mut unknown = 0;
while let PacketParserResult::Some(pp) = ppr {
match pp.packet {
Packet::Signature(_) => sigs += 1,
Packet::PublicSubkey(_) => subkeys += 1,
Packet::UserID(_) => userids += 1,
Packet::UserAttribute(_) => uas += 1,
Packet::Unknown(_) => {
unknown += 1;
},
_ => (),
}
ppr = pp.next().unwrap().1;
}
assert_eq!(sigs, 53);
assert_eq!(subkeys, 3);
assert_eq!(userids, 5);
assert_eq!(uas, 0);
assert_eq!(unknown, 2);
}
#[test]
fn junk_prefix() {
// Make sure we can read the first packet.
let msg = crate::tests::message("sig.gpg");
let ppr = PacketParserBuilder::from_bytes(msg).unwrap()
.dearmor(packet_parser_builder::Dearmor::Disabled)
.build();
assert_match!(Ok(PacketParserResult::Some(ref _pp)) = ppr);
// Prepend an invalid byte and make sure we fail. Note: we
// have a mechanism to skip corruption, however, that is only
// activated once we've seen a good packet. This test checks
// that we don't try to recover.
let mut msg2 = Vec::new();
msg2.push(0);
msg2.extend_from_slice(msg);
let ppr = PacketParserBuilder::from_bytes(&msg2[..]).unwrap()
.dearmor(packet_parser_builder::Dearmor::Disabled)
.build();
assert_match!(Err(_) = ppr);
}
/// Issue #141.
#[test]
fn truncated_packet() {
for msg in &[crate::tests::message("literal-mode-b.gpg"),
crate::tests::message("literal-mode-t-partial-body.gpg"),
] {
// Make sure we can read the first packet.
let ppr = PacketParserBuilder::from_bytes(msg).unwrap()
.dearmor(packet_parser_builder::Dearmor::Disabled)
.build();
assert_match!(Ok(PacketParserResult::Some(ref _pp)) = ppr);
// Now truncate the packet.
let msg2 = &msg[..msg.len() - 1];
let ppr = PacketParserBuilder::from_bytes(msg2).unwrap()
.dearmor(packet_parser_builder::Dearmor::Disabled)
.build().unwrap();
if let PacketParserResult::Some(pp) = ppr {
let err = pp.next().err().unwrap();
assert_match!(Some(&Error::MalformedPacket(_))
= err.downcast_ref());
} else {
panic!("No packet!?");
}
}
}
#[test]
fn max_packet_size() {
use crate::serialize::Serialize;
let uid = Packet::UserID("foobar".into());
let mut buf = Vec::new();
uid.serialize(&mut buf).unwrap();
// Make sure we can read it.
let ppr = PacketParserBuilder::from_bytes(&buf).unwrap()
.build().unwrap();
if let PacketParserResult::Some(pp) = ppr {
assert_eq!(Packet::UserID("foobar".into()), pp.packet);
} else {
panic!("failed to parse userid");
}
// But if we set the maximum packet size too low, it is parsed
// into a unknown packet.
let ppr = PacketParserBuilder::from_bytes(&buf).unwrap()
.max_packet_size(5)
.build().unwrap();
if let PacketParserResult::Some(pp) = ppr {
if let Packet::Unknown(ref u) = pp.packet {
assert_eq!(u.tag(), Tag::UserID);
assert_match!(Some(&Error::PacketTooLarge(_, _, _))
= u.error().downcast_ref());
} else {
panic!("expected an unknown packet, got {:?}", pp.packet);
}
} else {
panic!("failed to parse userid");
}
}
/// We erroneously assumed that when BufferedReader::next() is
/// called, a SEIP container be opaque and hence there cannot be a
/// buffered_reader::Reserve on the stack with Cookie::fake_eof
/// set. But, we could simply call BufferedReader::next() after
/// the SEIP packet is decrypted, or buffer a SEIP packet's body,
/// then call BufferedReader::recurse(), which falls back to
/// BufferedReader::next() because some data has been read.
#[test]
fn issue_455() -> Result<()> {
let sk: SessionKey =
crate::fmt::hex::decode("3E99593760EE241488462BAFAE4FA268\
260B14B82D310D196DCEC82FD4F67678")?.into();
let algo = SymmetricAlgorithm::AES256;
// Decrypt, then call BufferedReader::next().
eprintln!("Decrypt, then next():\n");
let mut ppr = PacketParser::from_bytes(
crate::tests::message("encrypted-to-testy.gpg"))?;
while let PacketParserResult::Some(mut pp) = ppr {
match &pp.packet {
Packet::SEIP(_) => {
pp.decrypt(algo, &sk)?;
},
_ => (),
}
// Used to trigger the assertion failure on the SEIP
// packet:
ppr = pp.next()?.1;
}
// Decrypt, buffer, then call BufferedReader::recurse().
eprintln!("\nDecrypt, buffer, then recurse():\n");
let mut ppr = PacketParser::from_bytes(
crate::tests::message("encrypted-to-testy.gpg"))?;
while let PacketParserResult::Some(mut pp) = ppr {
match &pp.packet {
Packet::SEIP(_) => {
pp.decrypt(algo, &sk)?;
pp.buffer_unread_content()?;
},
_ => (),
}
// Used to trigger the assertion failure on the SEIP
// packet:
ppr = pp.recurse()?.1;
}
Ok(())
}
/// Crash in the AED parser due to missing chunk size validation.
#[test]
fn issue_514() -> Result<()> {
let data = &[212, 43, 1, 0, 0, 125, 212, 0, 10, 10, 10];
let ppr = PacketParser::from_bytes(&data)?;
let packet = &ppr.unwrap().packet;
if let Packet::Unknown(_) = packet {
Ok(())
} else {
panic!("expected unknown packet, got: {:?}", packet);
}
}
/// Malformed subpackets must not cause a hard parsing error.
#[test]
fn malformed_embedded_signature() -> Result<()> {
let ppr = PacketParser::from_bytes(
crate::tests::file("edge-cases/malformed-embedded-sig.pgp"))?;
let packet = &ppr.unwrap().packet;
if let Packet::Unknown(_) = packet {
Ok(())
} else {
panic!("expected unknown packet, got: {:?}", packet);
}
}
/// Malformed notation names must not cause hard parsing errors.
#[test]
fn malformed_notation_name() -> Result<()> {
let ppr = PacketParser::from_bytes(
crate::tests::file("edge-cases/malformed-notation-name.pgp"))?;
let packet = &ppr.unwrap().packet;
if let Packet::Unknown(_) = packet {
Ok(())
} else {
panic!("expected unknown packet, got: {:?}", packet);
}
}
/// Checks that the content hash is correctly computed whether or
/// not the content has been (fully) read.
#[test]
fn issue_537() -> Result<()> {
// Buffer unread content.
let ppr0 = PacketParserBuilder::from_bytes(
crate::tests::message("literal-mode-b.gpg"))?
.buffer_unread_content()
.build()?;
let pp0 = ppr0.unwrap();
let (packet0, _) = pp0.recurse()?;
// Drop unread content.
let ppr1 = PacketParser::from_bytes(
crate::tests::message("literal-mode-b.gpg"))?;
let pp1 = ppr1.unwrap();
let (packet1, _) = pp1.recurse()?;
// Read content.
let ppr2 = PacketParser::from_bytes(
crate::tests::message("literal-mode-b.gpg"))?;
let mut pp2 = ppr2.unwrap();
io::copy(&mut pp2, &mut io::sink())?;
let (packet2, _) = pp2.recurse()?;
// Partially read content.
let ppr3 = PacketParser::from_bytes(
crate::tests::message("literal-mode-b.gpg"))?;
let mut pp3 = ppr3.unwrap();
let mut buf = [0];
let nread = pp3.read(&mut buf)?;
assert_eq!(buf.len(), nread);
let (packet3, _) = pp3.recurse()?;
assert_eq!(packet0, packet1);
assert_eq!(packet1, packet2);
assert_eq!(packet2, packet3);
Ok(())
}
/// Checks that newlines are properly normalized when verifying
/// text signatures.
#[test]
fn issue_530_verifying() -> Result<()> {
use std::io::Write;
use crate::*;
use crate::packet::signature;
use crate::serialize::stream::{Message, Signer};
use crate::policy::StandardPolicy;
use crate::{Result, Cert};
use crate::parse::Parse;
use crate::parse::stream::*;
let data = b"one\r\ntwo\r\nthree";
let p = &StandardPolicy::new();
let cert: Cert =
Cert::from_bytes(crate::tests::key("testy-new-private.pgp"))?;
let signing_keypair = cert.keys().secret()
.with_policy(p, None).alive().revoked(false).for_signing().next().unwrap()
.key().clone().into_keypair()?;
let mut signature = vec![];
{
let message = Message::new(&mut signature);
let mut message = Signer::with_template(
message, signing_keypair,
signature::SignatureBuilder::new(SignatureType::Text)
).detached().build()?;
message.write_all(data)?;
message.finalize()?;
}
struct Helper {}
impl VerificationHelper for Helper {
fn get_certs(&mut self, _ids: &[KeyHandle]) -> Result<Vec<Cert>> {
Ok(vec![Cert::from_bytes(crate::tests::key("testy-new.pgp"))?])
}
fn check(&mut self, structure: MessageStructure) -> Result<()> {
for (i, layer) in structure.iter().enumerate() {
assert_eq!(i, 0);
if let MessageLayer::SignatureGroup { results } = layer {
assert_eq!(results.len(), 1);
results[0].as_ref().unwrap();
assert!(results[0].is_ok());
return Ok(());
} else {
unreachable!();
}
}
unreachable!()
}
}
let h = Helper {};
let mut v = DetachedVerifierBuilder::from_bytes(&signature)?
.with_policy(p, None, h)?;
for data in &[
&b"one\r\ntwo\r\nthree"[..], // dos
b"one\ntwo\nthree", // unix
b"one\ntwo\r\nthree", // mixed
b"one\r\ntwo\nthree",
b"one\rtwo\rthree", // classic mac
] {
v.verify_bytes(data)?;
}
Ok(())
}
/// Tests for a panic in the SKESK parser.
#[test]
fn issue_588() -> Result<()> {
let data = vec![0x8c, 0x34, 0x05, 0x12, 0x02, 0x00, 0xaf, 0x0d,
0xff, 0xff, 0x65];
let _ = PacketParser::from_bytes(&data);
Ok(())
}
/// Tests for a panic in the packet parser.
#[test]
fn packet_parser_on_mangled_cert() -> Result<()> {
// The armored input cert is mangled. Currently, Sequoia
// doesn't grok the mangled armor, but it should not panic.
let mut ppr = match PacketParser::from_bytes(
crate::tests::key("bobs-cert-badly-mangled.asc")) {
Ok(ppr) => ppr,
Err(_) => return Ok(()),
};
while let PacketParserResult::Some(pp) = ppr {
dbg!(&pp.packet);
if let Ok((_, tmp)) = pp.recurse() {
ppr = tmp;
} else {
break;
}
}
Ok(())
}
// Issue 967.
#[test]
fn packet_before_junk_emitted() -> Result<()> {
let bytes = crate::tests::key("testy-new.pgp");
let mut ppr = match PacketParser::from_bytes(bytes) {
Ok(ppr) => ppr,
Err(_) => panic!("valid"),
};
let mut packets_ok = Vec::new();
while let PacketParserResult::Some(pp) = ppr {
if let Ok((packet, tmp)) = pp.recurse() {
packets_ok.push(packet);
ppr = tmp;
} else {
break;
}
}
let mut bytes = bytes.to_vec();
// Add some junk.
bytes.push(0);
let mut ppr = match PacketParser::from_bytes(&bytes[..]) {
Ok(ppr) => ppr,
Err(_) => panic!("valid"),
};
let mut packets_mangled = Vec::new();
while let PacketParserResult::Some(pp) = ppr {
if let Ok((packet, tmp)) = pp.recurse() {
packets_mangled.push(packet);
ppr = tmp;
} else {
break;
}
}
assert_eq!(packets_ok.len(), packets_mangled.len());
assert_eq!(packets_ok, packets_mangled);
Ok(())
}
/// Tests for a panic in the packet parser.
fn parse_message(message: &str) {
eprintln!("parsing {:?}", message);
let mut ppr = match PacketParser::from_bytes(message) {
Ok(ppr) => ppr,
Err(_) => return,
};
while let PacketParserResult::Some(pp) = ppr {
dbg!(&pp.packet);
if let Ok((_, tmp)) = pp.recurse() {
ppr = tmp;
} else {
break;
}
}
}
/// Tests issue 1005.
#[test]
fn panic_on_short_zip() {
parse_message("-----BEGIN PGP SIGNATURE-----
owGjAA0=
zXvj
-----END PGP SIGNATURE-----
");
}
/// Tests issue 957.
#[test]
fn panic_on_malformed_armor() {
parse_message("-----BEGIN PGP MESSAGE-----
heLBX8Pq0kUBwQz2iFAzRwOdgTBvH5KsDU9lmE
-----END PGP MESSAGE-----
");
}
/// Tests issue 1024.
#[test]
fn parse_secret_with_leading_zeros() -> Result<()> {
crate::Cert::from_bytes(
crate::tests::key("leading-zeros-private.pgp"))?
.primary_key().key().clone()
.parts_into_secret()?
.decrypt_secret(&("hunter22"[..]).into())?
.into_keypair()?;
Ok(())
}
/// Tests that junk pseudo-packets have a proper map when
/// buffering is turned on.
#[test]
#[cfg(feature = "compression-deflate")]
fn parse_junk_with_mapping() -> Result<()> {
let silly = "-----BEGIN PGP MESSAGE-----
yCsBO81bKqlfklugX5yRX5qTopuXX6KbWpFZXKJXUlGSetb4dXm+gYFBCRcA
=IHpt
-----END PGP MESSAGE-----
";
let mut ppr = PacketParserBuilder::from_bytes(silly)?
.map(true).buffer_unread_content().build()?;
let mut i = 0;
while let PacketParserResult::Some(pp) = ppr {
assert!(pp.map().unwrap().iter().count() > 0);
for f in pp.map().unwrap().iter() {
eprintln!("{:?}", f);
}
ppr = match pp.recurse() {
Ok((_, ppr)) => {
i += 1;
ppr
},
Err(_) => {
// The third packet is a junk pseudo-packet, and
// recursing will fail.
assert_eq!(i, 2);
break;
},
}
}
Ok(())
}
/// Tests for issue 1095, parsing a secret key packet with an
/// unknown S2K mechanism.
#[test]
fn key_unknown_s2k() -> Result<()> {
let mut ppr = PacketParser::from_bytes(
crate::tests::key("hardware-backed-secret.pgp"))?;
let mut i = 0;
while let PacketParserResult::Some(pp) = ppr {
if i == 0 {
assert!(matches!(&pp.packet, Packet::SecretKey(_)));
}
if i == 3 {
assert!(matches!(&pp.packet, Packet::SecretSubkey(_)));
}
// Make sure it roundtrips.
let p = &pp.packet;
let v = p.to_vec()?;
let q = Packet::from_bytes(&v)?;
assert_eq!(p, &q);
ppr = pp.recurse()?.1;
i += 1;
}
Ok(())
}
}