1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#![cfg_attr(not(feature = "const-generics"), forbid(unsafe_code))]

/*!
Big array helper for serde.
The purpose of this crate is to make (de-)serializing arrays of sizes > 32 easy.
This solution is needed until [serde adopts const generics support](https://github.com/serde-rs/serde/issues/1937).

## Example
```
extern crate serde;
#[macro_use]
extern crate serde_derive;
extern crate serde_json;
#[macro_use]
extern crate serde_big_array;

big_array! { BigArray; }

#[derive(Serialize, Deserialize)]
struct S {
    #[serde(with = "BigArray")]
    arr: [u8; 64],
}

#[test]
fn test() {
    let s = S { arr: [1; 64] };
    let j = serde_json::to_string(&s).unwrap();
    let s_back = serde_json::from_str::<S>(&j).unwrap();
    assert!(&s.arr[..] == &s_back.arr[..]);
    assert!(false);
}

# fn main() {}
```

If you enable the `const-generics` feature, you won't have to invoke the `big_array` macro any more:

```Rust
#[macro_use]
extern crate serde_derive;
use serde_big_array::BigArray;

#[derive(Serialize, Deserialize)]
struct S {
    #[serde(with = "BigArray")]
    arr: [u8; 64],
}

#[test]
fn test() {
    let s = S { arr: [1; 64] };
    let j = serde_json::to_string(&s).unwrap();
    let s_back = serde_json::from_str::<S>(&j).unwrap();
    assert!(&s.arr[..] == &s_back.arr[..]);
}

# fn main() {}
```
*/
#![no_std]

#[doc(hidden)]
pub mod reex {
    pub use core::fmt;
    pub use core::result;
    pub use core::marker::PhantomData;
    pub use serde::ser;
    pub use serde::ser::{Serialize, Serializer};
    pub use serde::de::{Deserialize, Deserializer, Visitor, SeqAccess, Error};
}

#[cfg(feature = "const-generics")]
mod const_generics;
#[cfg(feature = "const-generics")]
pub use const_generics::BigArray;

/**
Big array macro

This is the main macro of this crate.
Invoking it creates a trait that can be used together with a `#[serde(with = "TraitName")]` like attribute
on an array that's a member of a struct you want to (de-) serialize.
```
# use serde_derive::{Serialize, Deserialize};
# use serde_big_array::big_array;
# fn main() {}
#
big_array! { BigArray; }

#[derive(Serialize, Deserialize)]
struct S {
    #[serde(with = "BigArray")]
    arr: [u8; 128],
}
```
The name of the added trait is your choice.

The macro doesn't automatically implement the trait for all possible array lengths.
Instead, the trait is implemented for a pre-specified set of numbers.
The default way to invoke the macro is by specifying the name only, like:
```
# use serde_derive::{Serialize, Deserialize};
# use serde_big_array::big_array;
# fn main() {}
#
big_array! {
    BigArray;
}
```
Then, the trait will be implemented for a pre-defined set of interesting array lengths.
Currently, the numbers are:
```ignore
40, 48, 50, 56, 64, 72, 96, 100, 128, 160, 192, 200, 224, 256, 384, 512,
768, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
```
These are the same numbers that the `arrayvec` crate uses as well,
and should cover most places this macro is used.

If this default setting is not suiting your use case, the macro has you covered as well.
You can specify a custom set of numbers by using the second way to invoke the macro:

```
# use serde_derive::{Serialize, Deserialize};
# use serde_big_array::big_array;
# fn main() {}
#
big_array! {
    BigArray;
    +42, 300, 1234, 99999,
}

#[derive(Serialize, Deserialize)]
struct S {
    #[serde(with = "BigArray")]
    arr_a: [u8; 300],
    #[serde(with = "BigArray")]
    arr_b: [u8; 42],
}
```

If the `+` is specified like in the example above, the trait is also implemented for the
pre-defined set of array lengths. If omitted, it's implemented for the specified numbers only.
*/
#[macro_export]
macro_rules! big_array {
    ($name:ident; $($len:expr),+ $(,)?) => {
        pub trait $name<'de>: Sized {
            fn serialize<S>(&self, serializer: S) -> $crate::reex::result::Result<S::Ok, S::Error>
                where S: $crate::reex::Serializer;
            fn deserialize<D>(deserializer: D) -> $crate::reex::result::Result<Self, D::Error>
                where D: $crate::reex::Deserializer<'de>;
        }
        $(
            impl<'de, T> $name<'de> for [T; $len]
                where T: Default + Copy + $crate::reex::Serialize + $crate::reex::Deserialize<'de>
            {
                fn serialize<S>(&self, serializer: S) -> $crate::reex::result::Result<S::Ok, S::Error>
                    where S: $crate::reex::Serializer
                {
                    use $crate::reex::ser::SerializeTuple;
                    let mut seq = serializer.serialize_tuple(self.len())?;
                    for elem in &self[..] {
                        seq.serialize_element(elem)?;
                    }
                    seq.end()
                }

                fn deserialize<D>(deserializer: D) -> $crate::reex::result::Result<[T; $len], D::Error>
                    where D: $crate::reex::Deserializer<'de>
                {
                    use $crate::reex::PhantomData;
                    struct ArrayVisitor<T> {
                        element: PhantomData<T>,
                    }

                    impl<'de, T> $crate::reex::Visitor<'de> for ArrayVisitor<T>
                        where T: Default + Copy + $crate::reex::Deserialize<'de>
                    {
                        type Value = [T; $len];

                        fn expecting(&self, formatter: &mut $crate::reex::fmt::Formatter) -> $crate::reex::fmt::Result {
                            macro_rules! write_len {
                                ($l:literal) => {
                                    write!(formatter, concat!("an array of length ", $l))
                                };
                                ($l:tt) => {
                                    write!(formatter, "an array of length {}", $l)
                                };
                            }

                            write_len!($len)
                        }

                        fn visit_seq<A>(self, mut seq: A) -> $crate::reex::result::Result<[T; $len], A::Error>
                            where A: $crate::reex::SeqAccess<'de>
                        {
                            let mut arr = [T::default(); $len];
                            for i in 0..$len {
                                arr[i] = seq.next_element()?
                                    .ok_or_else(|| $crate::reex::Error::invalid_length(i, &self))?;
                            }
                            Ok(arr)
                        }
                    }

                    let visitor = ArrayVisitor { element: PhantomData };
                    // The allow is needed to support (32 + 33) like expressions
                    #[allow(unused_parens)]
                    deserializer.deserialize_tuple($len, visitor)
                }
            }
        )+
    };
    ($name:ident; + $($len:expr),* $(,)?) => {
        big_array! {
            $name;
            40, 48, 50, 56, 64, 72, 96, 100, 128, 160, 192, 200, 224, 256, 384, 512,
            768, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
            $($len,)*
        }
    };
    ($name:ident;) => {
        big_array! {
            $name; +
        }
    }
}