Crate serde_cbor[−][src]
Expand description
CBOR and serialization.
Usage
Serde CBOR supports Rust 1.40 and up. Add this to your Cargo.toml
:
[dependencies] serde_cbor = "0.10"
Storing and loading Rust types is easy and requires only minimal modifications to the program code.
use serde_derive::{Deserialize, Serialize}; use std::error::Error; use std::fs::File; // Types annotated with `Serialize` can be stored as CBOR. // To be able to load them again add `Deserialize`. #[derive(Debug, Serialize, Deserialize)] struct Mascot { name: String, species: String, year_of_birth: u32, } fn main() -> Result<(), Box<dyn Error>> { let ferris = Mascot { name: "Ferris".to_owned(), species: "crab".to_owned(), year_of_birth: 2015, }; let ferris_file = File::create("examples/ferris.cbor")?; // Write Ferris to the given file. // Instead of a file you can use any type that implements `io::Write` // like a HTTP body, database connection etc. serde_cbor::to_writer(ferris_file, &ferris)?; let tux_file = File::open("examples/tux.cbor")?; // Load Tux from a file. // Serde CBOR performs roundtrip serialization meaning that // the data will not change in any way. let tux: Mascot = serde_cbor::from_reader(tux_file)?; println!("{:?}", tux); // prints: Mascot { name: "Tux", species: "penguin", year_of_birth: 1996 } Ok(()) }
There are a lot of options available to customize the format.
To operate on untyped CBOR values have a look at the Value
type.
Type-based Serialization and Deserialization
Serde provides a mechanism for low boilerplate serialization & deserialization of values to and
from CBOR via the serialization API. To be able to serialize a piece of data, it must implement
the serde::Serialize
trait. To be able to deserialize a piece of data, it must implement the
serde::Deserialize
trait. Serde provides an annotation to automatically generate the
code for these traits: #[derive(Serialize, Deserialize)]
.
The CBOR API also provides an enum serde_cbor::Value
.
Packed Encoding
When serializing structs or enums in CBOR the keys or enum variant names will be serialized
as string keys to a map. Especially in embedded environments this can increase the file
size too much. In packed encoding all struct keys, as well as any enum variant that has no data,
will be serialized as variable sized integers. The first 24 entries in any struct consume only a
single byte! Packed encoding uses serde’s preferred externally tagged enum
format and therefore serializes enum variant names
as string keys when that variant contains data. So, in the packed encoding example, FirstVariant
encodes to a single byte, but encoding SecondVariant
requires 16 bytes.
To serialize a document in this format use Serializer::new(writer).packed_format()
or
the shorthand ser::to_vec_packed
. The deserialization works without any changes.
If you would like to omit the enum variant encoding for all variants, including ones that
contain data, you can add legacy_enums()
in addition to packed_format()
, as can seen
in the Serialize using minimal encoding example.
Self describing documents
In some contexts different formats are used but there is no way to declare the format used
out of band. For this reason CBOR has a magic number that may be added before any document.
Self describing documents are created with serializer.self_describe()
.
Examples
Read a CBOR value that is known to be a map of string keys to string values and print it.
use std::collections::BTreeMap; use serde_cbor::from_slice; let slice = b"\xa5aaaAabaBacaCadaDaeaE"; let value: BTreeMap<String, String> = from_slice(slice).unwrap(); println!("{:?}", value); // {"e": "E", "d": "D", "a": "A", "c": "C", "b": "B"}
Read a general CBOR value with an unknown content.
use serde_cbor::from_slice; use serde_cbor::value::Value; let slice = b"\x82\x01\xa1aaab"; let value: Value = from_slice(slice).unwrap(); println!("{:?}", value); // Array([U64(1), Object({String("a"): String("b")})])
Serialize an object.
use std::collections::BTreeMap; use serde_cbor::to_vec; let mut programming_languages = BTreeMap::new(); programming_languages.insert("rust", vec!["safe", "concurrent", "fast"]); programming_languages.insert("python", vec!["powerful", "friendly", "open"]); programming_languages.insert("js", vec!["lightweight", "interpreted", "object-oriented"]); let encoded = to_vec(&programming_languages); assert_eq!(encoded.unwrap().len(), 103);
Deserializing data in the middle of a slice
use serde_cbor::Deserializer; let data: Vec<u8> = vec![ 0x66, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72, 0x66, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72, ]; let mut deserializer = Deserializer::from_slice(&data); let value: &str = serde::de::Deserialize::deserialize(&mut deserializer) .unwrap(); let rest = &data[deserializer.byte_offset()..]; assert_eq!(value, "foobar"); assert_eq!(rest, &[0x66, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72]);
Serialize using packed encoding
use serde_derive::{Deserialize, Serialize}; use serde_cbor::ser::to_vec_packed; use WithTwoVariants::*; #[derive(Debug, Serialize, Deserialize)] enum WithTwoVariants { FirstVariant, SecondVariant(u8), } let cbor = to_vec_packed(&FirstVariant).unwrap(); assert_eq!(cbor.len(), 1); let cbor = to_vec_packed(&SecondVariant(0)).unwrap(); assert_eq!(cbor.len(), 16); // Includes 13 bytes of "SecondVariant"
Serialize using minimal encoding
use serde_derive::{Deserialize, Serialize}; use serde_cbor::{Result, Serializer, ser::{self, IoWrite}}; use WithTwoVariants::*; fn to_vec_minimal<T>(value: &T) -> Result<Vec<u8>> where T: serde::Serialize, { let mut vec = Vec::new(); value.serialize(&mut Serializer::new(&mut IoWrite::new(&mut vec)).packed_format().legacy_enums())?; Ok(vec) } #[derive(Debug, Serialize, Deserialize)] enum WithTwoVariants { FirstVariant, SecondVariant(u8), } let cbor = to_vec_minimal(&FirstVariant).unwrap(); assert_eq!(cbor.len(), 1); let cbor = to_vec_minimal(&SecondVariant(0)).unwrap(); assert_eq!(cbor.len(), 3);
no-std
support
Serde CBOR supports building in a no_std
context, use the following lines
in your Cargo.toml
dependencies:
[dependencies] serde = { version = "1.0", default-features = false } serde_cbor = { version = "0.10", default-features = false }
Without the std
feature the functions from_reader, from_slice, to_vec, and to_writer
are not exported. To export from_slice and to_vec enable the alloc
feature. The alloc
feature uses the alloc
library and requires at least version 1.36.0 of Rust.
Note: to use derive macros in serde you will need to declare serde
dependency like so:
serde = { version = "1.0", default-features = false, features = ["derive"] }
Serialize an object with no_std
and without alloc
.
use serde::Serialize; use serde_cbor::Serializer; use serde_cbor::ser::SliceWrite; #[derive(Serialize)] struct User { user_id: u32, password_hash: [u8; 4], } let mut buf = [0u8; 100]; let writer = SliceWrite::new(&mut buf[..]); let mut ser = Serializer::new(writer); let user = User { user_id: 42, password_hash: [1, 2, 3, 4], }; user.serialize(&mut ser)?; let writer = ser.into_inner(); let size = writer.bytes_written(); let expected = [ 0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d, 0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73, 0x68, 0x84, 0x1, 0x2, 0x3, 0x4 ]; assert_eq!(&buf[..size], expected);
Deserialize an object.
#[derive(Debug, PartialEq, Deserialize)] struct User { user_id: u32, password_hash: [u8; 4], } let value = [ 0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d, 0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73, 0x68, 0x84, 0x1, 0x2, 0x3, 0x4 ]; // from_slice_with_scratch will not alter input data, use it whenever you // borrow from somewhere else. // You will have to size your scratch according to the input data you // expect. use serde_cbor::de::from_slice_with_scratch; let mut scratch = [0u8; 32]; let user: User = from_slice_with_scratch(&value[..], &mut scratch)?; assert_eq!(user, User { user_id: 42, password_hash: [1, 2, 3, 4], }); let mut value = [ 0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d, 0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73, 0x68, 0x84, 0x1, 0x2, 0x3, 0x4 ]; // from_mut_slice will move data around the input slice, you may only use it // on data you may own or can modify. use serde_cbor::de::from_mut_slice; let user: User = from_mut_slice(&mut value[..])?; assert_eq!(user, User { user_id: 42, password_hash: [1, 2, 3, 4], });
Limitations
While Serde CBOR strives to support all features of Serde and CBOR there are a few limitations.
- Tags are ignored during deserialization and can’t be emitted during serialization. This is because Serde has no concept of tagged values. See: #3
- Unknown simple values cause an
UnassignedCode
error. The simple values False and True are recognized and parsed as bool. Null and Undefined are both deserialized as unit. The unit type is serialized as Null. See: #86 - 128-bit integers can’t be directly encoded in CBOR. If you need them store them as a byte string. See: #77
Modules
Deserialization.
When serializing or deserializing CBOR goes wrong.
Serialize a Rust data structure to CBOR data.
Support for cbor tags
CBOR values, keys and serialization routines.
Structs
A Serde Deserialize
r of CBOR data.
This type represents all possible errors that can occur when serializing or deserializing CBOR data.
A structure for serializing Rust values to CBOR.
Iterator that deserializes a stream into multiple CBOR values.
Enums
The Value
enum, a loosely typed way of representing any valid CBOR value.
Functions
Decodes a value from CBOR data in a reader.
Decodes a value from CBOR data in a slice.
Serializes a value to a vector.
Serializes a value to a writer.
Type Definitions
Alias for a Result
with the error type serde_cbor::Error
.