1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
use std::{marker::PhantomData, ops::Deref};
use crate::{ResourceId, World};
/// A trait for accessing read/write multiple resources from a system. This can
/// be used to create dynamic systems that don't specify what they fetch at
/// compile-time.
///
/// For compile-time system data this will all be done for you using
/// `StaticAccessor`.
pub trait Accessor: Sized {
/// Tries to create a new instance of this type. This one returns `Some` in
/// case there is a default, otherwise the system needs to override
/// `System::accessor`.
fn try_new() -> Option<Self>;
/// A list of [`ResourceId`]s the bundle
/// needs read access to in order to
/// build the target resource bundle.
///
/// # Contract
///
/// Exactly return the dependencies you're going to `fetch`! Doing otherwise
/// *will* cause a panic.
///
/// This method is only executed once,
/// thus the returned value may never change
/// (otherwise it has no effect).
///
/// [`ResourceId`]: struct.ResourceId.html
fn reads(&self) -> Vec<ResourceId>;
/// A list of [`ResourceId`]s the bundle
/// needs write access to in order to
/// build the target resource bundle.
///
/// # Contract
///
/// Exactly return the dependencies you're going to `fetch`! Doing otherwise
/// *will* cause a panic.
///
/// This method is only executed once,
/// thus the returned value may never change
/// (otherwise it has no effect).
///
/// [`ResourceId`]: struct.ResourceId.html
fn writes(&self) -> Vec<ResourceId>;
}
impl Accessor for () {
fn try_new() -> Option<Self> {
None
}
fn reads(&self) -> Vec<ResourceId> {
Vec::new()
}
fn writes(&self) -> Vec<ResourceId> {
Vec::new()
}
}
impl<T: ?Sized> Accessor for PhantomData<T> {
fn try_new() -> Option<Self> {
None
}
fn reads(&self) -> Vec<ResourceId> {
Vec::new()
}
fn writes(&self) -> Vec<ResourceId> {
Vec::new()
}
}
/// Either an `Accessor` of the system `T` or a reference to it.
pub enum AccessorCow<'a, 'b, T>
where
AccessorTy<'a, T>: 'b,
T: System<'a> + ?Sized,
'a: 'b,
{
/// A reference to an accessor.
Ref(&'b AccessorTy<'a, T>),
/// An owned accessor.
Owned(AccessorTy<'a, T>),
}
impl<'a, 'b, T> Deref for AccessorCow<'a, 'b, T>
where
AccessorTy<'a, T>: 'b,
T: System<'a> + ?Sized + 'b,
'a: 'b,
{
type Target = AccessorTy<'a, T>;
fn deref(&self) -> &AccessorTy<'a, T> {
match self {
AccessorCow::Ref(r) => r,
AccessorCow::Owned(ref o) => o,
}
}
}
type AccessorTy<'a, T> = <<T as System<'a>>::SystemData as DynamicSystemData<'a>>::Accessor;
/// Trait for fetching data and running systems. Automatically implemented for
/// systems.
pub trait RunNow<'a> {
/// Runs the system now.
///
/// # Panics
///
/// Panics if the system tries to fetch resources
/// which are borrowed in an incompatible way already
/// (tries to read from a resource which is already written to or
/// tries to write to a resource which is read from).
fn run_now(&mut self, world: &'a World);
/// Sets up `World` for a later call to `run_now`.
fn setup(&mut self, world: &mut World);
/// Performs clean up that requires resources from the `World`.
/// This commonly removes components from `world` which depend on external
/// resources.
#[allow(clippy::boxed_local)]
fn dispose(self: Box<Self>, world: &mut World) {
let _ = world;
}
}
impl<'a, T> RunNow<'a> for T
where
T: System<'a>,
{
fn run_now(&mut self, world: &'a World) {
let data = T::SystemData::fetch(&self.accessor(), world);
self.run(data);
}
fn setup(&mut self, world: &mut World) {
T::setup(self, world);
}
fn dispose(self: Box<Self>, world: &mut World) {
T::dispose(*self, world);
}
}
#[repr(u8)]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum RunningTime {
VeryShort = 1,
Short = 2,
Average = 3,
Long = 4,
VeryLong = 5,
}
/// A `System`, executed with a set of required [`Resource`]s.
///
/// [`Resource`]: trait.Resource.html
pub trait System<'a> {
/// The resource bundle required to execute this system.
///
/// You will mostly use a tuple of system data (which also implements
/// `SystemData`). You can also create such a resource bundle by simply
/// deriving `SystemData` for a struct.
///
/// Every `SystemData` is also a `DynamicSystemData`.
type SystemData: DynamicSystemData<'a>;
/// Executes the system with the required system
/// data.
fn run(&mut self, data: Self::SystemData);
/// Returns a hint how long the system needs for running.
/// This is used to optimize the way they're executed (might
/// allow more parallelization).
///
/// Defaults to `RunningTime::Average`.
fn running_time(&self) -> RunningTime {
RunningTime::Average
}
/// Return the accessor from the [`SystemData`].
fn accessor<'b>(&'b self) -> AccessorCow<'a, 'b, Self> {
AccessorCow::Owned(
AccessorTy::<'a, Self>::try_new().expect("Missing implementation for `accessor`"),
)
}
/// Sets up the `World` using `Self::SystemData::setup`.
fn setup(&mut self, world: &mut World) {
<Self::SystemData as DynamicSystemData>::setup(&self.accessor(), world)
}
/// Performs clean up that requires resources from the `World`.
/// This commonly removes components from `world` which depend on external
/// resources.
fn dispose(self, world: &mut World)
where
Self: Sized,
{
let _ = world;
}
}
/// A static system data that can specify its dependencies at statically (at
/// compile-time). Most system data is a `SystemData`, the `DynamicSystemData`
/// type is only needed for very special setups.
///
/// You can derive this using the `#[derive(SystemData)]` macro provided by
/// `shred-derive`. That is as simple as enabling the `shred-derive` feature.
///
/// # Examples
///
/// ```rust
/// use shred::{Read, ResourceId, SystemData, World, Write};
///
/// #[derive(Default)]
/// pub struct Clock;
/// #[derive(Default)]
/// pub struct Timer;
///
/// // This will implement `SystemData` for `MySystemData`.
/// // Please note that this will only work if `SystemData`, `World` and `ResourceId` are included.
/// # #[cfg(feature = "shred-derive")]
/// #[derive(SystemData)]
/// pub struct MySystemData<'a> {
/// pub clock: Read<'a, Clock>,
/// pub timer: Write<'a, Timer>,
/// }
/// #
/// # // The following is required for the snippet to compile without the `shred-derive` feature.
/// #
/// # #[cfg(not(feature = "shred-derive"))]
/// # struct MySystemData<'a> {
/// # pub clock: Read<'a, Clock>,
/// # pub timer: Write<'a, Timer>,
/// # }
/// #
/// # #[cfg(not(feature = "shred-derive"))]
/// # impl<'a> SystemData<'a> for MySystemData<'a> {
/// # fn setup(world: &mut World) {
/// # Read::<'_, Clock>::setup(world);
/// # Write::<'_, Timer>::setup(world);
/// # }
/// #
/// # fn fetch(world: &'a World) -> Self {
/// # Self {
/// # clock: Read::<'_, Clock>::fetch(world),
/// # timer: Write::<'_, Timer>::fetch(world),
/// # }
/// # }
/// #
/// # fn reads() -> Vec<ResourceId> {
/// # Read::<'_, Clock>::reads()
/// # }
/// #
/// # fn writes() -> Vec<ResourceId> {
/// # Write::<'_, Timer>::writes()
/// # }
/// # }
/// ```
pub trait SystemData<'a> {
/// Sets up the system data for fetching it from the `World`.
fn setup(world: &mut World);
/// Fetches the system data from `World`. Note that this is only specified
/// for one concrete lifetime `'a`, you need to implement the
/// `SystemData` trait for every possible lifetime.
fn fetch(world: &'a World) -> Self;
/// Returns all read dependencies as fetched from `Self::fetch`.
///
/// Please note that returning wrong dependencies can lead to a panic.
fn reads() -> Vec<ResourceId>;
/// Returns all write dependencies as fetched from `Self::fetch`.
///
/// Please note that returning wrong dependencies can lead to a panic.
fn writes() -> Vec<ResourceId>;
}
impl<'a, T> DynamicSystemData<'a> for T
where
T: SystemData<'a>,
{
type Accessor = StaticAccessor<T>;
fn setup(_: &StaticAccessor<T>, world: &mut World) {
T::setup(world);
}
fn fetch(_: &StaticAccessor<T>, world: &'a World) -> Self {
T::fetch(world)
}
}
impl<'a> SystemData<'a> for () {
fn setup(_: &mut World) {}
fn fetch(_: &'a World) -> Self {}
fn reads() -> Vec<ResourceId> {
Vec::new()
}
fn writes() -> Vec<ResourceId> {
Vec::new()
}
}
/// The static accessor that is used for `SystemData`.
#[derive(Default)]
pub struct StaticAccessor<T> {
marker: PhantomData<fn() -> T>,
}
impl<'a, T> Accessor for StaticAccessor<T>
where
T: SystemData<'a>,
{
fn try_new() -> Option<Self> {
Some(StaticAccessor {
marker: PhantomData,
})
}
fn reads(&self) -> Vec<ResourceId> {
T::reads()
}
fn writes(&self) -> Vec<ResourceId> {
T::writes()
}
}
/// A struct implementing system data indicates that it bundles some resources
/// which are required for the execution.
///
/// This is the more flexible, but complex variant of `SystemData`.
pub trait DynamicSystemData<'a> {
/// The accessor of the `SystemData`, which specifies the read and write
/// dependencies and does the fetching.
type Accessor: Accessor;
/// Sets up `World` for fetching this system data.
fn setup(accessor: &Self::Accessor, world: &mut World);
/// Creates a new resource bundle
/// by fetching the required resources
/// from the [`World`] struct.
///
/// # Contract
///
/// Only fetch the resources you returned from `reads` / `writes`!
///
/// # Panics
///
/// This function may panic if the above contract is violated.
/// This function may panic if the resource doesn't exist. This is only the
/// case if either `setup` was not called or it didn't insert any
/// fallback value.
///
/// [`World`]: trait.World.html
fn fetch(access: &Self::Accessor, world: &'a World) -> Self;
}
impl<'a, T: ?Sized> SystemData<'a> for PhantomData<T> {
fn setup(_: &mut World) {}
fn fetch(_: &World) -> Self {
PhantomData
}
fn reads() -> Vec<ResourceId> {
vec![]
}
fn writes() -> Vec<ResourceId> {
vec![]
}
}
macro_rules! impl_data {
( $($ty:ident),* ) => {
impl<'a, $($ty),*> SystemData<'a> for ( $( $ty , )* )
where $( $ty : SystemData<'a> ),*
{
fn setup(world: &mut World) {
#![allow(unused_variables)]
$(
<$ty as SystemData>::setup(&mut *world);
)*
}
fn fetch(world: &'a World) -> Self {
#![allow(unused_variables)]
( $( <$ty as SystemData<'a>>::fetch(world), )* )
}
fn reads() -> Vec<ResourceId> {
#![allow(unused_mut)]
let mut r = Vec::new();
$( {
let mut reads = <$ty as SystemData>::reads();
r.append(&mut reads);
} )*
r
}
fn writes() -> Vec<ResourceId> {
#![allow(unused_mut)]
let mut r = Vec::new();
$( {
let mut writes = <$ty as SystemData>::writes();
r.append(&mut writes);
} )*
r
}
}
};
}
mod impl_data {
#![cfg_attr(rustfmt, rustfmt_skip)]
use super::*;
impl_data!(A);
impl_data!(A, B);
impl_data!(A, B, C);
impl_data!(A, B, C, D);
impl_data!(A, B, C, D, E);
impl_data!(A, B, C, D, E, F);
impl_data!(A, B, C, D, E, F, G);
impl_data!(A, B, C, D, E, F, G, H);
impl_data!(A, B, C, D, E, F, G, H, I);
impl_data!(A, B, C, D, E, F, G, H, I, J);
impl_data!(A, B, C, D, E, F, G, H, I, J, K);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y);
impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z);
}