1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use std::{marker::PhantomData, ops::Deref};

use crate::{ResourceId, World};

/// A trait for accessing read/write multiple resources from a system. This can
/// be used to create dynamic systems that don't specify what they fetch at
/// compile-time.
///
/// For compile-time system data this will all be done for you using
/// `StaticAccessor`.
pub trait Accessor: Sized {
    /// Tries to create a new instance of this type. This one returns `Some` in
    /// case there is a default, otherwise the system needs to override
    /// `System::accessor`.
    fn try_new() -> Option<Self>;

    /// A list of [`ResourceId`]s the bundle
    /// needs read access to in order to
    /// build the target resource bundle.
    ///
    /// # Contract
    ///
    /// Exactly return the dependencies you're going to `fetch`! Doing otherwise
    /// *will* cause a panic.
    ///
    /// This method is only executed once,
    /// thus the returned value may never change
    /// (otherwise it has no effect).
    ///
    /// [`ResourceId`]: struct.ResourceId.html
    fn reads(&self) -> Vec<ResourceId>;

    /// A list of [`ResourceId`]s the bundle
    /// needs write access to in order to
    /// build the target resource bundle.
    ///
    /// # Contract
    ///
    /// Exactly return the dependencies you're going to `fetch`! Doing otherwise
    /// *will* cause a panic.
    ///
    /// This method is only executed once,
    /// thus the returned value may never change
    /// (otherwise it has no effect).
    ///
    /// [`ResourceId`]: struct.ResourceId.html
    fn writes(&self) -> Vec<ResourceId>;
}

impl Accessor for () {
    fn try_new() -> Option<Self> {
        None
    }

    fn reads(&self) -> Vec<ResourceId> {
        Vec::new()
    }

    fn writes(&self) -> Vec<ResourceId> {
        Vec::new()
    }
}

impl<T: ?Sized> Accessor for PhantomData<T> {
    fn try_new() -> Option<Self> {
        None
    }

    fn reads(&self) -> Vec<ResourceId> {
        Vec::new()
    }

    fn writes(&self) -> Vec<ResourceId> {
        Vec::new()
    }
}

/// Either an `Accessor` of the system `T` or a reference to it.
pub enum AccessorCow<'a, 'b, T>
where
    AccessorTy<'a, T>: 'b,
    T: System<'a> + ?Sized,
    'a: 'b,
{
    /// A reference to an accessor.
    Ref(&'b AccessorTy<'a, T>),
    /// An owned accessor.
    Owned(AccessorTy<'a, T>),
}

impl<'a, 'b, T> Deref for AccessorCow<'a, 'b, T>
where
    AccessorTy<'a, T>: 'b,
    T: System<'a> + ?Sized + 'b,
    'a: 'b,
{
    type Target = AccessorTy<'a, T>;

    fn deref(&self) -> &AccessorTy<'a, T> {
        match self {
            AccessorCow::Ref(r) => r,
            AccessorCow::Owned(ref o) => o,
        }
    }
}

type AccessorTy<'a, T> = <<T as System<'a>>::SystemData as DynamicSystemData<'a>>::Accessor;

/// Trait for fetching data and running systems. Automatically implemented for
/// systems.
pub trait RunNow<'a> {
    /// Runs the system now.
    ///
    /// # Panics
    ///
    /// Panics if the system tries to fetch resources
    /// which are borrowed in an incompatible way already
    /// (tries to read from a resource which is already written to or
    /// tries to write to a resource which is read from).
    fn run_now(&mut self, world: &'a World);

    /// Sets up `World` for a later call to `run_now`.
    fn setup(&mut self, world: &mut World);

    /// Performs clean up that requires resources from the `World`.
    /// This commonly removes components from `world` which depend on external
    /// resources.
    #[allow(clippy::boxed_local)]
    fn dispose(self: Box<Self>, world: &mut World) {
        let _ = world;
    }
}

impl<'a, T> RunNow<'a> for T
where
    T: System<'a>,
{
    fn run_now(&mut self, world: &'a World) {
        let data = T::SystemData::fetch(&self.accessor(), world);
        self.run(data);
    }

    fn setup(&mut self, world: &mut World) {
        T::setup(self, world);
    }

    fn dispose(self: Box<Self>, world: &mut World) {
        T::dispose(*self, world);
    }
}

#[repr(u8)]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum RunningTime {
    VeryShort = 1,
    Short = 2,
    Average = 3,
    Long = 4,
    VeryLong = 5,
}

/// A `System`, executed with a set of required [`Resource`]s.
///
/// [`Resource`]: trait.Resource.html
pub trait System<'a> {
    /// The resource bundle required to execute this system.
    ///
    /// You will mostly use a tuple of system data (which also implements
    /// `SystemData`). You can also create such a resource bundle by simply
    /// deriving `SystemData` for a struct.
    ///
    /// Every `SystemData` is also a `DynamicSystemData`.
    type SystemData: DynamicSystemData<'a>;

    /// Executes the system with the required system
    /// data.
    fn run(&mut self, data: Self::SystemData);

    /// Returns a hint how long the system needs for running.
    /// This is used to optimize the way they're executed (might
    /// allow more parallelization).
    ///
    /// Defaults to `RunningTime::Average`.
    fn running_time(&self) -> RunningTime {
        RunningTime::Average
    }

    /// Return the accessor from the [`SystemData`].
    fn accessor<'b>(&'b self) -> AccessorCow<'a, 'b, Self> {
        AccessorCow::Owned(
            AccessorTy::<'a, Self>::try_new().expect("Missing implementation for `accessor`"),
        )
    }

    /// Sets up the `World` using `Self::SystemData::setup`.
    fn setup(&mut self, world: &mut World) {
        <Self::SystemData as DynamicSystemData>::setup(&self.accessor(), world)
    }

    /// Performs clean up that requires resources from the `World`.
    /// This commonly removes components from `world` which depend on external
    /// resources.
    fn dispose(self, world: &mut World)
    where
        Self: Sized,
    {
        let _ = world;
    }
}

/// A static system data that can specify its dependencies at statically (at
/// compile-time). Most system data is a `SystemData`, the `DynamicSystemData`
/// type is only needed for very special setups.
///
/// You can derive this using the `#[derive(SystemData)]` macro provided by
/// `shred-derive`. That is as simple as enabling the `shred-derive` feature.
///
/// # Examples
///
/// ```rust
/// use shred::{Read, ResourceId, SystemData, World, Write};
///
/// #[derive(Default)]
/// pub struct Clock;
/// #[derive(Default)]
/// pub struct Timer;
///
/// // This will implement `SystemData` for `MySystemData`.
/// // Please note that this will only work if `SystemData`, `World` and `ResourceId` are included.
/// # #[cfg(feature = "shred-derive")]
/// #[derive(SystemData)]
/// pub struct MySystemData<'a> {
///     pub clock: Read<'a, Clock>,
///     pub timer: Write<'a, Timer>,
/// }
/// #
/// # // The following is required for the snippet to compile without the `shred-derive` feature.
/// #
/// # #[cfg(not(feature = "shred-derive"))]
/// # struct MySystemData<'a> {
/// #     pub clock: Read<'a, Clock>,
/// #     pub timer: Write<'a, Timer>,
/// # }
/// #
/// # #[cfg(not(feature = "shred-derive"))]
/// # impl<'a> SystemData<'a> for MySystemData<'a> {
/// #     fn setup(world: &mut World) {
/// #         Read::<'_, Clock>::setup(world);
/// #         Write::<'_, Timer>::setup(world);
/// #     }
/// #
/// #     fn fetch(world: &'a World) -> Self {
/// #         Self {
/// #             clock: Read::<'_, Clock>::fetch(world),
/// #             timer: Write::<'_, Timer>::fetch(world),
/// #         }
/// #     }
/// #
/// #     fn reads() -> Vec<ResourceId> {
/// #         Read::<'_, Clock>::reads()
/// #     }
/// #
/// #     fn writes() -> Vec<ResourceId> {
/// #         Write::<'_, Timer>::writes()
/// #     }
/// # }
/// ```
pub trait SystemData<'a> {
    /// Sets up the system data for fetching it from the `World`.
    fn setup(world: &mut World);

    /// Fetches the system data from `World`. Note that this is only specified
    /// for one concrete lifetime `'a`, you need to implement the
    /// `SystemData` trait for every possible lifetime.
    fn fetch(world: &'a World) -> Self;

    /// Returns all read dependencies as fetched from `Self::fetch`.
    ///
    /// Please note that returning wrong dependencies can lead to a panic.
    fn reads() -> Vec<ResourceId>;

    /// Returns all write dependencies as fetched from `Self::fetch`.
    ///
    /// Please note that returning wrong dependencies can lead to a panic.
    fn writes() -> Vec<ResourceId>;
}

impl<'a, T> DynamicSystemData<'a> for T
where
    T: SystemData<'a>,
{
    type Accessor = StaticAccessor<T>;

    fn setup(_: &StaticAccessor<T>, world: &mut World) {
        T::setup(world);
    }

    fn fetch(_: &StaticAccessor<T>, world: &'a World) -> Self {
        T::fetch(world)
    }
}

impl<'a> SystemData<'a> for () {
    fn setup(_: &mut World) {}

    fn fetch(_: &'a World) -> Self {}

    fn reads() -> Vec<ResourceId> {
        Vec::new()
    }

    fn writes() -> Vec<ResourceId> {
        Vec::new()
    }
}

/// The static accessor that is used for `SystemData`.
#[derive(Default)]
pub struct StaticAccessor<T> {
    marker: PhantomData<fn() -> T>,
}

impl<'a, T> Accessor for StaticAccessor<T>
where
    T: SystemData<'a>,
{
    fn try_new() -> Option<Self> {
        Some(StaticAccessor {
            marker: PhantomData,
        })
    }

    fn reads(&self) -> Vec<ResourceId> {
        T::reads()
    }

    fn writes(&self) -> Vec<ResourceId> {
        T::writes()
    }
}

/// A struct implementing system data indicates that it bundles some resources
/// which are required for the execution.
///
/// This is the more flexible, but complex variant of `SystemData`.
pub trait DynamicSystemData<'a> {
    /// The accessor of the `SystemData`, which specifies the read and write
    /// dependencies and does the fetching.
    type Accessor: Accessor;

    /// Sets up `World` for fetching this system data.
    fn setup(accessor: &Self::Accessor, world: &mut World);

    /// Creates a new resource bundle
    /// by fetching the required resources
    /// from the [`World`] struct.
    ///
    /// # Contract
    ///
    /// Only fetch the resources you returned from `reads` / `writes`!
    ///
    /// # Panics
    ///
    /// This function may panic if the above contract is violated.
    /// This function may panic if the resource doesn't exist. This is only the
    /// case if either `setup` was not called or it didn't insert any
    /// fallback value.
    ///
    /// [`World`]: trait.World.html
    fn fetch(access: &Self::Accessor, world: &'a World) -> Self;
}

impl<'a, T: ?Sized> SystemData<'a> for PhantomData<T> {
    fn setup(_: &mut World) {}

    fn fetch(_: &World) -> Self {
        PhantomData
    }

    fn reads() -> Vec<ResourceId> {
        vec![]
    }

    fn writes() -> Vec<ResourceId> {
        vec![]
    }
}

macro_rules! impl_data {
    ( $($ty:ident),* ) => {
        impl<'a, $($ty),*> SystemData<'a> for ( $( $ty , )* )
            where $( $ty : SystemData<'a> ),*
            {
                fn setup(world: &mut World) {
                    #![allow(unused_variables)]

                    $(
                        <$ty as SystemData>::setup(&mut *world);
                     )*
                }

                fn fetch(world: &'a World) -> Self {
                    #![allow(unused_variables)]

                    ( $( <$ty as SystemData<'a>>::fetch(world), )* )
                }

                fn reads() -> Vec<ResourceId> {
                    #![allow(unused_mut)]

                    let mut r = Vec::new();

                    $( {
                        let mut reads = <$ty as SystemData>::reads();
                        r.append(&mut reads);
                    } )*

                    r
                }

                fn writes() -> Vec<ResourceId> {
                    #![allow(unused_mut)]

                    let mut r = Vec::new();

                    $( {
                        let mut writes = <$ty as SystemData>::writes();
                        r.append(&mut writes);
                    } )*

                    r
                }
            }
    };
}

mod impl_data {
    #![cfg_attr(rustfmt, rustfmt_skip)]

    use super::*;

    impl_data!(A);
    impl_data!(A, B);
    impl_data!(A, B, C);
    impl_data!(A, B, C, D);
    impl_data!(A, B, C, D, E);
    impl_data!(A, B, C, D, E, F);
    impl_data!(A, B, C, D, E, F, G);
    impl_data!(A, B, C, D, E, F, G, H);
    impl_data!(A, B, C, D, E, F, G, H, I);
    impl_data!(A, B, C, D, E, F, G, H, I, J);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y);
    impl_data!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z);
}