1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! # Sized Chunks //! //! This crate contains three fixed size low level array like data structures, //! primarily intended for use in [immutable.rs], but fully supported as a //! standalone crate. //! //! Their sizing information is encoded in the type using the //! [`typenum`][typenum] crate, which you may want to take a look at before //! reading on, but usually all you need to know about it is that it provides //! types `U1` to `U128` to represent numbers, which the data types take as type //! parameters, eg. `SparseChunk<A, U32>` would give you a sparse array with //! room for 32 elements of type `A`. You can also omit the size, as they all //! default to a size of 64, so `SparseChunk<A>` would be a sparse array with a //! capacity of 64. //! //! All data structures always allocate the same amount of space, as determined //! by their capacity, regardless of how many elements they contain, and when //! they run out of space, they will panic. //! //! ## Data Structures //! //! | Type | Description | Push | Pop | Deref to `&[A]` | //! | --- | --- | --- | --- | --- | //! | [`Chunk`][Chunk] | Contiguous array | O(1)/O(n) | O(1) | Yes | //! | [`RingBuffer`][RingBuffer] | Non-contiguous array | O(1) | O(1) | No | //! | [`SparseChunk`][SparseChunk] | Sparse array | N/A | N/A | No | //! //! The [`Chunk`][Chunk] and [`RingBuffer`][RingBuffer] are very similar in //! practice, in that they both work like a plain array, except that you can //! push to either end with some expectation of performance. The difference is //! that [`RingBuffer`][RingBuffer] always allows you to do this in constant //! time, but in order to give that guarantee, it doesn't lay out its elements //! contiguously in memory, which means that you can't dereference it to a slice //! `&[A]`. //! //! [`Chunk`][Chunk], on the other hand, will shift its contents around when //! necessary to accommodate a push to a full side, but is able to guarantee a //! contiguous memory layout in this way, so it can always be dereferenced into //! a slice. Performance wise, repeated pushes to the same side will always run //! in constant time, but a push to one side followed by a push to the other //! side will cause the latter to run in linear time if there's no room (which //! there would only be if you've popped from that side). //! //!To choose between them, you can use the following rules: //! - I only ever want to push to the back: you don't need this crate, try //! [`ArrayVec`][ArrayVec]. //! - I need to push to either side but probably not both on the same array: use //! [`Chunk`][Chunk]. //! - I need to push to both sides and I don't need slices: use //! [`RingBuffer`][RingBuffer]. //! - I need to push to both sides but I do need slices: use [`Chunk`][Chunk]. //! //! Finally, [`SparseChunk`][SparseChunk] is a more efficient version of //! `Vec<Option<A>>`: each index is either inhabited or not, but instead of //! using the `Option` discriminant to decide which is which, it uses a compact //! bitmap. You can also think of `SparseChunk<A, N>` as a `BTreeMap<usize, A>` //! where the `usize` must be less than `N`, but without the performance //! overhead. Its API is also more consistent with a map than an array - there's //! no push, pop, append, etc, just insert, remove and lookup. //! //! [immutable.rs]: https://immutable.rs/ //! [typenum]: https://docs.rs/typenum/ //! [Chunk]: struct.Chunk.html //! [RingBuffer]: struct.RingBuffer.html //! [SparseChunk]: struct.SparseChunk.html //! [ArrayVec]: https://docs.rs/arrayvec/ pub mod bitmap; pub mod inline_array; pub mod ring_buffer; pub mod sized_chunk; pub mod sparse_chunk; pub mod types; #[cfg(test)] mod tests; pub use crate::bitmap::Bitmap; pub use crate::inline_array::InlineArray; pub use crate::ring_buffer::RingBuffer; pub use crate::sized_chunk::Chunk; pub use crate::sparse_chunk::SparseChunk;