1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A fixed capacity sparse array.
//!
//! See [`SparseChunk`](struct.SparseChunk.html)

use std::collections::{BTreeMap, HashMap};
use std::fmt::{Debug, Error, Formatter};
use std::mem::{self, ManuallyDrop};
use std::ops::Index;
use std::ops::IndexMut;
use std::ptr;
use std::slice::{from_raw_parts, from_raw_parts_mut};

use typenum::U64;

use crate::bitmap::{Bitmap, Iter as BitmapIter};
use crate::types::{Bits, ChunkLength};

/// A fixed capacity sparse array.
///
/// An inline sparse array of up to `N` items of type `A`, where `N` is an
/// [`Unsigned`][Unsigned] type level numeral. You can think of it as an array
/// of `Option<A>`, where the discriminant (whether the value is `Some<A>` or
/// `None`) is kept in a bitmap instead of adjacent to the value.
///
/// Because the bitmap is kept in a primitive type, the maximum value of `N` is
/// currently 128, corresponding to a type of `u128`. The type of the bitmap
/// will be the minimum unsigned integer type required to fit the number of bits
/// required. Thus, disregarding memory alignment rules, the allocated size of a
/// `SparseChunk` will be `uX` + `A` * `N` where `uX` is the type of the
/// discriminant bitmap, either `u8`, `u16`, `u32`, `u64` or `u128`.
///
/// # Examples
///
/// ```rust
/// # #[macro_use] extern crate sized_chunks;
/// # extern crate typenum;
/// # use sized_chunks::SparseChunk;
/// # use typenum::U20;
/// # fn main() {
/// // Construct a chunk with a 20 item capacity
/// let mut chunk = SparseChunk::<i32, U20>::new();
/// // Set the 18th index to the value 5.
/// chunk.insert(18, 5);
/// // Set the 5th index to the value 23.
/// chunk.insert(5, 23);
///
/// assert_eq!(chunk.len(), 2);
/// assert_eq!(chunk.get(5), Some(&23));
/// assert_eq!(chunk.get(6), None);
/// assert_eq!(chunk.get(18), Some(&5));
/// # }
/// ```
///
/// [Unsigned]: https://docs.rs/typenum/1.10.0/typenum/marker_traits/trait.Unsigned.html
pub struct SparseChunk<A, N: Bits + ChunkLength<A> = U64> {
    map: Bitmap<N>,
    data: ManuallyDrop<N::SizedType>,
}

impl<A, N: Bits + ChunkLength<A>> Drop for SparseChunk<A, N> {
    fn drop(&mut self) {
        if mem::needs_drop::<A>() {
            for index in self.map {
                unsafe { SparseChunk::force_drop(index, self) }
            }
        }
    }
}

impl<A: Clone, N: Bits + ChunkLength<A>> Clone for SparseChunk<A, N> {
    fn clone(&self) -> Self {
        let mut out = Self::new();
        for index in self.map {
            out.insert(index, self[index].clone());
        }
        out
    }
}

impl<A, N> SparseChunk<A, N>
where
    N: Bits + ChunkLength<A>,
{
    pub const CAPACITY: usize = N::USIZE;

    #[inline]
    fn values(&self) -> &[A] {
        unsafe { from_raw_parts(&self.data as *const _ as *const A, N::USIZE) }
    }

    #[inline]
    fn values_mut(&mut self) -> &mut [A] {
        unsafe { from_raw_parts_mut(&mut self.data as *mut _ as *mut A, N::USIZE) }
    }

    /// Copy the value at an index, discarding ownership of the copied value
    #[inline]
    unsafe fn force_read(index: usize, chunk: &Self) -> A {
        ptr::read(&chunk.values()[index as usize])
    }

    /// Write a value at an index without trying to drop what's already there
    #[inline]
    unsafe fn force_write(index: usize, value: A, chunk: &mut Self) {
        ptr::write(&mut chunk.values_mut()[index as usize], value)
    }

    /// Drop the value at an index
    #[inline]
    unsafe fn force_drop(index: usize, chunk: &mut Self) {
        ptr::drop_in_place(&mut chunk.values_mut()[index])
    }

    /// Construct a new empty chunk.
    pub fn new() -> Self {
        unsafe { mem::zeroed() }
    }

    /// Construct a new chunk with one item.
    pub fn unit(index: usize, value: A) -> Self {
        let mut chunk = Self::new();
        chunk.insert(index, value);
        chunk
    }

    /// Construct a new chunk with two items.
    pub fn pair(index1: usize, value1: A, index2: usize, value2: A) -> Self {
        let mut chunk = Self::new();
        chunk.insert(index1, value1);
        chunk.insert(index2, value2);
        chunk
    }

    /// Get the length of the chunk.
    #[inline]
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Test if the chunk is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.map.len() == 0
    }

    /// Test if the chunk is at capacity.
    #[inline]
    pub fn is_full(&self) -> bool {
        self.len() == N::USIZE
    }

    /// Insert a new value at a given index.
    ///
    /// Returns the previous value at that index, if any.
    pub fn insert(&mut self, index: usize, value: A) -> Option<A> {
        if index >= N::USIZE {
            panic!("SparseChunk::insert: index out of bounds");
        }
        if self.map.set(index, true) {
            Some(mem::replace(&mut self.values_mut()[index], value))
        } else {
            unsafe { SparseChunk::force_write(index, value, self) };
            None
        }
    }

    /// Remove the value at a given index.
    ///
    /// Returns the value, or `None` if the index had no value.
    pub fn remove(&mut self, index: usize) -> Option<A> {
        if index >= N::USIZE {
            panic!("SparseChunk::remove: index out of bounds");
        }
        if self.map.set(index, false) {
            Some(unsafe { SparseChunk::force_read(index, self) })
        } else {
            None
        }
    }

    /// Remove the first value present in the array.
    ///
    /// Returns the value that was removed, or `None` if the array was empty.
    pub fn pop(&mut self) -> Option<A> {
        self.first_index().and_then(|index| self.remove(index))
    }

    /// Get the value at a given index.
    pub fn get(&self, index: usize) -> Option<&A> {
        if index >= N::USIZE {
            return None;
        }
        if self.map.get(index) {
            Some(&self.values()[index])
        } else {
            None
        }
    }

    /// Get a mutable reference to the value at a given index.
    pub fn get_mut(&mut self, index: usize) -> Option<&mut A> {
        if index >= N::USIZE {
            return None;
        }
        if self.map.get(index) {
            Some(&mut self.values_mut()[index])
        } else {
            None
        }
    }

    /// Make an iterator over the indices which contain values.
    pub fn indices(&self) -> BitmapIter<N> {
        self.map.into_iter()
    }

    /// Find the first index which contains a value.
    pub fn first_index(&self) -> Option<usize> {
        self.map.first_index()
    }

    /// Make an iterator of references to the values contained in the array.
    pub fn iter(&self) -> Iter<'_, A, N> {
        Iter {
            indices: self.indices(),
            chunk: self,
        }
    }

    /// Make an iterator of mutable references to the values contained in the
    /// array.
    pub fn iter_mut(&mut self) -> IterMut<'_, A, N> {
        IterMut {
            indices: self.indices(),
            chunk: self,
        }
    }

    /// Turn the chunk into an iterator over the values contained within it.
    pub fn drain(self) -> Drain<A, N> {
        Drain { chunk: self }
    }

    /// Make an iterator of pairs of indices and references to the values
    /// contained in the array.
    pub fn entries(&self) -> impl Iterator<Item = (usize, &A)> {
        self.indices().zip(self.iter())
    }
}

impl<A, N: Bits + ChunkLength<A>> Index<usize> for SparseChunk<A, N> {
    type Output = A;

    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        self.get(index).unwrap()
    }
}

impl<A, N: Bits + ChunkLength<A>> IndexMut<usize> for SparseChunk<A, N> {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        self.get_mut(index).unwrap()
    }
}

impl<A, N: Bits + ChunkLength<A>> IntoIterator for SparseChunk<A, N> {
    type Item = A;
    type IntoIter = Drain<A, N>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.drain()
    }
}

impl<A, N> PartialEq for SparseChunk<A, N>
where
    A: PartialEq,
    N: Bits + ChunkLength<A>,
{
    fn eq(&self, other: &Self) -> bool {
        if self.map != other.map {
            return false;
        }
        for index in self.indices() {
            if self.get(index) != other.get(index) {
                return false;
            }
        }
        true
    }
}

impl<A, N> PartialEq<BTreeMap<usize, A>> for SparseChunk<A, N>
where
    A: PartialEq,
    N: Bits + ChunkLength<A>,
{
    fn eq(&self, other: &BTreeMap<usize, A>) -> bool {
        if self.len() != other.len() {
            return false;
        }
        for index in 0..N::USIZE {
            if self.get(index) != other.get(&index) {
                return false;
            }
        }
        true
    }
}

impl<A, N> PartialEq<HashMap<usize, A>> for SparseChunk<A, N>
where
    A: PartialEq,
    N: Bits + ChunkLength<A>,
{
    fn eq(&self, other: &HashMap<usize, A>) -> bool {
        if self.len() != other.len() {
            return false;
        }
        for index in 0..N::USIZE {
            if self.get(index) != other.get(&index) {
                return false;
            }
        }
        true
    }
}

impl<A, N> Eq for SparseChunk<A, N>
where
    A: Eq,
    N: Bits + ChunkLength<A>,
{
}

impl<A, N> Debug for SparseChunk<A, N>
where
    A: Debug,
    N: Bits + ChunkLength<A>,
{
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        f.write_str("SparseChunk")?;
        f.debug_map().entries(self.entries()).finish()
    }
}

pub struct Iter<'a, A: 'a, N: 'a + Bits + ChunkLength<A>> {
    indices: BitmapIter<N>,
    chunk: &'a SparseChunk<A, N>,
}

impl<'a, A, N: Bits + ChunkLength<A>> Iterator for Iter<'a, A, N> {
    type Item = &'a A;

    fn next(&mut self) -> Option<Self::Item> {
        self.indices.next().map(|index| &self.chunk.values()[index])
    }
}

pub struct IterMut<'a, A: 'a, N: 'a + Bits + ChunkLength<A>> {
    indices: BitmapIter<N>,
    chunk: &'a mut SparseChunk<A, N>,
}

impl<'a, A, N: Bits + ChunkLength<A>> Iterator for IterMut<'a, A, N> {
    type Item = &'a mut A;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(index) = self.indices.next() {
            unsafe {
                let p: *mut A = &mut self.chunk.values_mut()[index];
                Some(&mut *p)
            }
        } else {
            None
        }
    }
}

pub struct Drain<A, N: Bits + ChunkLength<A>> {
    chunk: SparseChunk<A, N>,
}

impl<'a, A, N: Bits + ChunkLength<A>> Iterator for Drain<A, N> {
    type Item = A;

    fn next(&mut self) -> Option<Self::Item> {
        self.chunk.pop()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use typenum::U32;

    #[test]
    fn insert_remove_iterate() {
        let mut chunk: SparseChunk<_, U32> = SparseChunk::new();
        assert_eq!(None, chunk.insert(5, 5));
        assert_eq!(None, chunk.insert(1, 1));
        assert_eq!(None, chunk.insert(24, 42));
        assert_eq!(None, chunk.insert(22, 22));
        assert_eq!(Some(42), chunk.insert(24, 24));
        assert_eq!(None, chunk.insert(31, 31));
        assert_eq!(Some(24), chunk.remove(24));
        assert_eq!(4, chunk.len());
        let indices: Vec<_> = chunk.indices().collect();
        assert_eq!(vec![1, 5, 22, 31], indices);
        let values: Vec<_> = chunk.into_iter().collect();
        assert_eq!(vec![1, 5, 22, 31], values);
    }

    #[test]
    fn clone_chunk() {
        let mut chunk: SparseChunk<_, U32> = SparseChunk::new();
        assert_eq!(None, chunk.insert(5, 5));
        assert_eq!(None, chunk.insert(1, 1));
        assert_eq!(None, chunk.insert(24, 42));
        assert_eq!(None, chunk.insert(22, 22));
        let cloned = chunk.clone();
        let right_indices: Vec<_> = chunk.indices().collect();
        let left_indices: Vec<_> = cloned.indices().collect();
        let right: Vec<_> = chunk.into_iter().collect();
        let left: Vec<_> = cloned.into_iter().collect();
        assert_eq!(left, right);
        assert_eq!(left_indices, right_indices);
        assert_eq!(vec![1, 5, 22, 24], left_indices);
        assert_eq!(vec![1, 5, 22, 24], right_indices);
    }
}