1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A fixed capacity array sized to match some other type `T`.
//!
//! See [`InlineArray`](struct.InlineArray.html)

use std::borrow::{Borrow, BorrowMut};
use std::cmp::Ordering;
use std::fmt::{Debug, Error, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::slice::{from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut};

mod iter;
pub use self::iter::{Drain, Iter};

/// A fixed capacity array sized to match some other type `T`.
///
/// This works like a vector, but allocated on the stack (and thus marginally
/// faster than `Vec`), with the allocated space exactly matching the size of
/// the given type `T`. The vector consists of a `usize` tracking its current
/// length, followed by zero or more elements of type `A`. The capacity is thus
/// `( size_of::<T>() - size_of::<usize>() ) / size_of::<A>()`. This could lead
/// to situations where the capacity is zero, if `size_of::<A>()` is greater
/// than `size_of::<T>() - size_of::<usize>()`, which is not an error and
/// handled properly by the data structure.
///
/// If `size_of::<T>()` is less than `size_of::<usize>()`, meaning the vector
/// has no space to store its length, `InlineArray::new()` will panic.
///
/// This is meant to facilitate optimisations where a list data structure
/// allocates a fairly large struct for itself, allowing you to replace it with
/// an `InlineArray` until it grows beyond its capacity. This not only gives you
/// a performance boost at very small sizes, it also saves you from having to
/// allocate anything on the heap until absolutely necessary.
///
/// For instance, `im::Vector<A>` in its final form currently looks like this
/// (approximately):
///
/// ```rust, ignore
/// struct RRB<A> {
///     length: usize,
///     tree_height: usize,
///     outer_head: Rc<Chunk<A>>,
///     inner_head: Rc<Chunk<A>>,
///     tree: Rc<TreeNode<A>>,
///     inner_tail: Rc<Chunk<A>>,
///     outer_tail: Rc<Chunk<A>>,
/// }
/// ```
///
/// That's two `usize`s and five `Rc`s, which comes in at 56 bytes on x86_64
/// architectures. With `InlineArray`, that leaves us with 56 -
/// `size_of::<usize>()` = 48 bytes we can use before having to expand into the
/// full data struture. If `A` is `u8`, that's 48 elements, and even if `A` is a
/// pointer we can still keep 6 of them inline before we run out of capacity.
///
/// We can declare an enum like this:
///
/// ```rust, ignore
/// enum VectorWrapper<A> {
///     Inline(InlineArray<A, RRB<A>>),
///     Full(RRB<A>),
/// }
/// ```
///
/// Both of these will have the same size, and we can swap the `Inline` case out
/// with the `Full` case once the `InlineArray` runs out of capacity.
pub struct InlineArray<A, T> {
    data: MaybeUninit<T>,
    phantom: PhantomData<A>,
}

impl<A, T> InlineArray<A, T> {
    const HOST_SIZE: usize = mem::size_of::<T>();
    const ELEMENT_SIZE: usize = mem::size_of::<A>();
    const HEADER_SIZE: usize = mem::size_of::<usize>();

    /// The maximum number of elements the `InlineArray` can hold.
    pub const CAPACITY: usize = (Self::HOST_SIZE - Self::HEADER_SIZE) / Self::ELEMENT_SIZE;

    #[inline]
    #[must_use]
    unsafe fn len_const(&self) -> *const usize {
        (&self.data) as *const _ as *const usize
    }

    #[inline]
    #[must_use]
    pub(crate) unsafe fn len_mut(&mut self) -> *mut usize {
        (&mut self.data) as *mut _ as *mut usize
    }

    #[inline]
    #[must_use]
    pub(crate) unsafe fn data(&self) -> *const A {
        self.len_const().add(1) as *const _ as *const A
    }

    #[inline]
    #[must_use]
    unsafe fn data_mut(&mut self) -> *mut A {
        self.len_mut().add(1) as *mut _ as *mut A
    }

    #[inline]
    #[must_use]
    unsafe fn ptr_at(&self, index: usize) -> *const A {
        self.data().add(index)
    }

    #[inline]
    #[must_use]
    unsafe fn ptr_at_mut(&mut self, index: usize) -> *mut A {
        self.data_mut().add(index)
    }

    #[inline]
    unsafe fn read_at(&self, index: usize) -> A {
        ptr::read(self.ptr_at(index))
    }

    #[inline]
    unsafe fn write_at(&mut self, index: usize, value: A) {
        ptr::write(self.ptr_at_mut(index), value);
    }

    /// Get the length of the array.
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        unsafe { *self.len_const() }
    }

    /// Test if the array is empty.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Test if the array is at capacity.
    #[inline]
    #[must_use]
    pub fn is_full(&self) -> bool {
        self.len() >= Self::CAPACITY
    }

    /// Construct a new empty array.
    #[inline]
    #[must_use]
    pub fn new() -> Self {
        debug_assert!(Self::HOST_SIZE > Self::HEADER_SIZE);
        let mut self_ = Self {
            data: MaybeUninit::uninit(),
            phantom: PhantomData,
        };
        unsafe { *self_.len_mut() = 0 }
        self_
    }

    #[inline]
    #[must_use]
    fn get_unchecked(&self, index: usize) -> &A {
        unsafe { &*self.data().add(index) }
    }

    /// Push an item to the back of the array.
    ///
    /// Panics if the capacity of the array is exceeded.
    ///
    /// Time: O(1)
    pub fn push(&mut self, value: A) {
        if self.is_full() {
            panic!("InlineArray::push: chunk size overflow");
        }
        unsafe {
            self.write_at(self.len(), value);
            *self.len_mut() += 1;
        }
    }

    /// Pop an item from the back of the array.
    ///
    /// Returns `None` if the array is empty.
    ///
    /// Time: O(1)
    pub fn pop(&mut self) -> Option<A> {
        if self.is_empty() {
            None
        } else {
            unsafe {
                *self.len_mut() -= 1;
            }
            Some(unsafe { self.read_at(self.len()) })
        }
    }

    /// Insert a new value at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the array is at capacity.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn insert(&mut self, index: usize, value: A) {
        if self.is_full() {
            panic!("InlineArray::push: chunk size overflow");
        }
        if index > self.len() {
            panic!("InlineArray::insert: index out of bounds");
        }
        unsafe {
            let src = self.ptr_at_mut(index);
            ptr::copy(src, src.add(1), self.len() - index);
            ptr::write(src, value);
            *self.len_mut() += 1;
        }
    }

    /// Remove the value at index `index`, shifting all the following values to
    /// the left.
    ///
    /// Returns the removed value, or `None` if the array is empty or the index
    /// is out of bounds.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn remove(&mut self, index: usize) -> Option<A> {
        if index >= self.len() {
            None
        } else {
            unsafe {
                let src = self.ptr_at_mut(index);
                let value = ptr::read(src);
                *self.len_mut() -= 1;
                ptr::copy(src.add(1), src, self.len() - index);
                Some(value)
            }
        }
    }

    /// Split an array into two, the original array containing
    /// everything up to `index` and the returned array containing
    /// everything from `index` onwards.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items in the new chunk
    pub fn split_off(&mut self, index: usize) -> Self {
        if index > self.len() {
            panic!("InlineArray::split_off: index out of bounds");
        }
        let mut out = Self::new();
        if index < self.len() {
            unsafe {
                ptr::copy(self.ptr_at(index), out.data_mut(), self.len() - index);
                *out.len_mut() = self.len() - index;
                *self.len_mut() = index;
            }
        }
        out
    }

    #[inline]
    fn drop_contents(&mut self) {
        unsafe { ptr::drop_in_place::<[A]>(&mut **self) }
    }

    /// Discard the contents of the array.
    ///
    /// Time: O(n)
    pub fn clear(&mut self) {
        self.drop_contents();
        unsafe {
            *self.len_mut() = 0;
        }
    }

    /// Construct an iterator that drains values from the front of the array.
    pub fn drain(&mut self) -> Drain<'_, A, T> {
        Drain { array: self }
    }
}

impl<A, T> Drop for InlineArray<A, T> {
    fn drop(&mut self) {
        self.drop_contents()
    }
}

impl<A, T> Default for InlineArray<A, T> {
    fn default() -> Self {
        Self::new()
    }
}

// WANT:
// impl<A, T> Copy for InlineArray<A, T> where A: Copy {}

impl<A, T> Clone for InlineArray<A, T>
where
    A: Clone,
{
    fn clone(&self) -> Self {
        let mut copy = Self::new();
        for i in 0..self.len() {
            unsafe {
                copy.write_at(i, self.get_unchecked(i).clone());
            }
        }
        unsafe {
            *copy.len_mut() = self.len();
        }
        copy
    }
}

impl<A, T> Deref for InlineArray<A, T> {
    type Target = [A];
    fn deref(&self) -> &Self::Target {
        unsafe { from_raw_parts(self.data(), self.len()) }
    }
}

impl<A, T> DerefMut for InlineArray<A, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { from_raw_parts_mut(self.data_mut(), self.len()) }
    }
}

impl<A, T> Borrow<[A]> for InlineArray<A, T> {
    fn borrow(&self) -> &[A] {
        self.deref()
    }
}

impl<A, T> BorrowMut<[A]> for InlineArray<A, T> {
    fn borrow_mut(&mut self) -> &mut [A] {
        self.deref_mut()
    }
}

impl<A, T> AsRef<[A]> for InlineArray<A, T> {
    fn as_ref(&self) -> &[A] {
        self.deref()
    }
}

impl<A, T> AsMut<[A]> for InlineArray<A, T> {
    fn as_mut(&mut self) -> &mut [A] {
        self.deref_mut()
    }
}
impl<A, T, Slice> PartialEq<Slice> for InlineArray<A, T>
where
    Slice: Borrow<[A]>,
    A: PartialEq,
{
    fn eq(&self, other: &Slice) -> bool {
        self.deref() == other.borrow()
    }
}

impl<A, T> Eq for InlineArray<A, T> where A: Eq {}

impl<A, T> PartialOrd for InlineArray<A, T>
where
    A: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

impl<A, T> Ord for InlineArray<A, T>
where
    A: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

impl<A, T> Debug for InlineArray<A, T>
where
    A: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        f.write_str("Chunk")?;
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<A, T> Hash for InlineArray<A, T>
where
    A: Hash,
{
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        for item in self {
            item.hash(hasher)
        }
    }
}

impl<A, T> IntoIterator for InlineArray<A, T> {
    type Item = A;
    type IntoIter = Iter<A, T>;
    fn into_iter(self) -> Self::IntoIter {
        Iter { array: self }
    }
}

impl<A, T> FromIterator<A> for InlineArray<A, T> {
    fn from_iter<I>(it: I) -> Self
    where
        I: IntoIterator<Item = A>,
    {
        let mut chunk = Self::new();
        for item in it {
            chunk.push(item);
        }
        chunk
    }
}

impl<'a, A, T> IntoIterator for &'a InlineArray<A, T> {
    type Item = &'a A;
    type IntoIter = SliceIter<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, A, T> IntoIterator for &'a mut InlineArray<A, T> {
    type Item = &'a mut A;
    type IntoIter = SliceIterMut<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<A, T> Extend<A> for InlineArray<A, T> {
    /// Append the contents of the iterator to the back of the array.
    ///
    /// Panics if the array exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = A>,
    {
        for item in it {
            self.push(item);
        }
    }
}

impl<'a, A, T> Extend<&'a A> for InlineArray<A, T>
where
    A: 'a + Copy,
{
    /// Append the contents of the iterator to the back of the array.
    ///
    /// Panics if the array exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = &'a A>,
    {
        for item in it {
            self.push(*item);
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::tests::DropTest;
    use std::sync::atomic::{AtomicUsize, Ordering};

    #[test]
    fn dropping() {
        let counter = AtomicUsize::new(0);
        {
            let mut chunk: InlineArray<DropTest<'_>, [usize; 32]> = InlineArray::new();
            for _i in 0..16 {
                chunk.push(DropTest::new(&counter));
            }
            assert_eq!(16, counter.load(Ordering::Relaxed));
            for _i in 0..8 {
                chunk.pop();
            }
            assert_eq!(8, counter.load(Ordering::Relaxed));
        }
        assert_eq!(0, counter.load(Ordering::Relaxed));
    }
}