1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A fixed capacity smart array.
//!
//! See [`Chunk`](struct.Chunk.html)

use crate::inline_array::InlineArray;
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::mem::{replace, MaybeUninit};
use core::ops::{Deref, DerefMut, Index, IndexMut};
use core::ptr;
use core::slice::{
    from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut, SliceIndex,
};

#[cfg(feature = "std")]
use std::io;

use typenum::U64;

use crate::types::ChunkLength;

mod iter;
pub use self::iter::{Drain, Iter};

#[cfg(feature = "refpool")]
mod refpool;

/// A fixed capacity smart array.
///
/// An inline array of items with a variable length but a fixed, preallocated
/// capacity given by the `N` type, which must be an [`Unsigned`][Unsigned] type
/// level numeral.
///
/// It's 'smart' because it's able to reorganise its contents based on expected
/// behaviour. If you construct one using `push_back`, it will be laid out like
/// a `Vec` with space at the end. If you `push_front` it will start filling in
/// values from the back instead of the front, so that you still get linear time
/// push as long as you don't reverse direction. If you do, and there's no room
/// at the end you're pushing to, it'll shift its contents over to the other
/// side, creating more space to push into. This technique is tuned for
/// `Chunk`'s expected use case in [im::Vector]: usually, chunks always see
/// either `push_front` or `push_back`, but not both unless they move around
/// inside the tree, in which case they're able to reorganise themselves with
/// reasonable efficiency to suit their new usage patterns.
///
/// It maintains a `left` index and a `right` index instead of a simple length
/// counter in order to accomplish this, much like a ring buffer would, except
/// that the `Chunk` keeps all its items sequentially in memory so that you can
/// always get a `&[A]` slice for them, at the price of the occasional
/// reordering operation. The allocated size of a `Chunk` is thus `usize` * 2 +
/// `A` * `N`.
///
/// This technique also lets us choose to shift the shortest side to account for
/// the inserted or removed element when performing insert and remove
/// operations, unlike `Vec` where you always need to shift the right hand side.
///
/// Unlike a `Vec`, the `Chunk` has a fixed capacity and cannot grow beyond it.
/// Being intended for low level use, it expects you to know or test whether
/// you're pushing to a full array, and has an API more geared towards panics
/// than returning `Option`s, on the assumption that you know what you're doing.
/// Of course, if you don't, you can expect it to panic immediately rather than
/// do something undefined and usually bad.
///
/// ## Isn't this just a less efficient ring buffer?
///
/// You might be wondering why you would want to use this data structure rather
/// than a [`RingBuffer`][RingBuffer], which is similar but doesn't need to
/// shift its content around when it hits the sides of the allocated buffer. The
/// answer is that `Chunk` can be dereferenced into a slice, while a ring buffer
/// can not. You'll also save a few cycles on index lookups, as a `Chunk`'s data
/// is guaranteed to be contiguous in memory, so there's no need to remap logical
/// indices to a ring buffer's physical layout.
///
/// # Examples
///
/// ```rust
/// # #[macro_use] extern crate sized_chunks;
/// # extern crate typenum;
/// # use sized_chunks::Chunk;
/// # use typenum::U64;
/// // Construct a chunk with a 64 item capacity
/// let mut chunk = Chunk::<i32, U64>::new();
/// // Fill it with descending numbers
/// chunk.extend((0..64).rev());
/// // It derefs to a slice so we can use standard slice methods
/// chunk.sort();
/// // It's got all the amenities like `FromIterator` and `Eq`
/// let expected: Chunk<i32, U64> = (0..64).collect();
/// assert_eq!(expected, chunk);
/// ```
///
/// [Unsigned]: https://docs.rs/typenum/1.10.0/typenum/marker_traits/trait.Unsigned.html
/// [im::Vector]: https://docs.rs/im/latest/im/vector/enum.Vector.html
/// [RingBuffer]: ../ring_buffer/struct.RingBuffer.html
pub struct Chunk<A, N = U64>
where
    N: ChunkLength<A>,
{
    left: usize,
    right: usize,
    data: MaybeUninit<N::SizedType>,
}

impl<A, N> Drop for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn drop(&mut self) {
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
    }
}

impl<A, N> Clone for Chunk<A, N>
where
    A: Clone,
    N: ChunkLength<A>,
{
    fn clone(&self) -> Self {
        let mut out = Self::new();
        out.left = self.left;
        out.right = self.left;
        for index in self.left..self.right {
            unsafe { Chunk::force_write(index, (*self.ptr(index)).clone(), &mut out) }
            // Panic safety, move the right index to cover only the really initialized things. This
            // way we don't try to drop uninitialized, but also don't leak if we panic in the
            // middle.
            out.right = index + 1;
        }
        out
    }
}

impl<A, N> Chunk<A, N>
where
    N: ChunkLength<A>,
{
    /// The maximum number of elements this `Chunk` can contain.
    pub const CAPACITY: usize = N::USIZE;

    /// Construct a new empty chunk.
    pub fn new() -> Self {
        Self {
            left: 0,
            right: 0,
            data: MaybeUninit::uninit(),
        }
    }

    /// Construct a new chunk with one item.
    pub fn unit(value: A) -> Self {
        assert!(Self::CAPACITY >= 1);
        let mut chunk = Self {
            left: 0,
            right: 1,
            data: MaybeUninit::uninit(),
        };
        unsafe {
            Chunk::force_write(0, value, &mut chunk);
        }
        chunk
    }

    /// Construct a new chunk with two items.
    pub fn pair(left: A, right: A) -> Self {
        assert!(Self::CAPACITY >= 2);
        let mut chunk = Self {
            left: 0,
            right: 2,
            data: MaybeUninit::uninit(),
        };
        unsafe {
            Chunk::force_write(0, left, &mut chunk);
            Chunk::force_write(1, right, &mut chunk);
        }
        chunk
    }

    /// Construct a new chunk and move every item from `other` into the new
    /// chunk.
    ///
    /// Time: O(n)
    pub fn drain_from(other: &mut Self) -> Self {
        let other_len = other.len();
        Self::from_front(other, other_len)
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// iterator `iter`.
    ///
    /// Panics if the iterator contains less than `count` items.
    ///
    /// Time: O(n)
    pub fn collect_from<I>(iter: &mut I, mut count: usize) -> Self
    where
        I: Iterator<Item = A>,
    {
        let mut chunk = Self::new();
        while count > 0 {
            count -= 1;
            chunk.push_back(
                iter.next()
                    .expect("Chunk::collect_from: underfull iterator"),
            );
        }
        chunk
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// front of `other`.
    ///
    /// Time: O(n) for the number of items moved
    pub fn from_front(other: &mut Self, count: usize) -> Self {
        let other_len = other.len();
        debug_assert!(count <= other_len);
        let mut chunk = Self::new();
        unsafe { Chunk::force_copy_to(other.left, 0, count, other, &mut chunk) };
        chunk.right = count;
        other.left += count;
        chunk
    }

    /// Construct a new chunk and populate it by taking `count` items from the
    /// back of `other`.
    ///
    /// Time: O(n) for the number of items moved
    pub fn from_back(other: &mut Self, count: usize) -> Self {
        let other_len = other.len();
        debug_assert!(count <= other_len);
        let mut chunk = Self::new();
        unsafe { Chunk::force_copy_to(other.right - count, 0, count, other, &mut chunk) };
        chunk.right = count;
        other.right -= count;
        chunk
    }

    /// Get the length of the chunk.
    #[inline]
    pub fn len(&self) -> usize {
        self.right - self.left
    }

    /// Test if the chunk is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.left == self.right
    }

    /// Test if the chunk is at capacity.
    #[inline]
    pub fn is_full(&self) -> bool {
        self.left == 0 && self.right == Self::CAPACITY
    }

    #[inline]
    unsafe fn ptr(&self, index: usize) -> *const A {
        (&self.data as *const _ as *const A).add(index)
    }

    /// It has no bounds checks
    #[inline]
    unsafe fn mut_ptr(&mut self, index: usize) -> *mut A {
        (&mut self.data as *mut _ as *mut A).add(index)
    }

    /// Copy the value at an index, discarding ownership of the copied value
    #[inline]
    unsafe fn force_read(index: usize, chunk: &mut Self) -> A {
        chunk.ptr(index).read()
    }

    /// Write a value at an index without trying to drop what's already there.
    /// It has no bounds checks.
    #[inline]
    unsafe fn force_write(index: usize, value: A, chunk: &mut Self) {
        chunk.mut_ptr(index).write(value)
    }

    /// Copy a range within a chunk
    #[inline]
    unsafe fn force_copy(from: usize, to: usize, count: usize, chunk: &mut Self) {
        if count > 0 {
            ptr::copy(chunk.ptr(from), chunk.mut_ptr(to), count)
        }
    }

    /// Write values from iterator into range starting at write_index.
    ///
    /// Will overwrite values at the relevant range without dropping even in case the values were
    /// already initialized (it is expected they are empty). Does not update the left or right
    /// index.
    ///
    /// # Safety
    ///
    /// Range checks must already have been performed.
    ///
    /// # Panics
    ///
    /// If the iterator panics, the chunk becomes conceptually empty and will leak any previous
    /// elements (even the ones outside the range).
    #[inline]
    unsafe fn write_from_iter<I>(mut write_index: usize, iter: I, chunk: &mut Self)
    where
        I: ExactSizeIterator<Item = A>,
    {
        // Panic safety. We make the array conceptually empty, so we never ever drop anything that
        // is unitialized. We do so because we expect to be called when there's a potential "hole"
        // in the array that makes the space for the new elements to be written. We return it back
        // to original when everything goes fine, but leak any elements on panic. This is bad, but
        // better than dropping non-existing stuff.
        //
        // Should we worry about some better panic recovery than this?
        let left = replace(&mut chunk.left, 0);
        let right = replace(&mut chunk.right, 0);
        let len = iter.len();
        let expected_end = write_index + len;
        for value in iter.take(len) {
            Chunk::force_write(write_index, value, chunk);
            write_index += 1;
        }
        // Oops, we have a hole in here now. That would be bad, give up.
        assert_eq!(
            expected_end, write_index,
            "ExactSizeIterator yielded fewer values than advertised",
        );
        chunk.left = left;
        chunk.right = right;
    }

    /// Copy a range between chunks
    #[inline]
    unsafe fn force_copy_to(
        from: usize,
        to: usize,
        count: usize,
        chunk: &mut Self,
        other: &mut Self,
    ) {
        if count > 0 {
            ptr::copy_nonoverlapping(chunk.ptr(from), other.mut_ptr(to), count)
        }
    }

    /// Push an item to the front of the chunk.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(1) if there's room at the front, O(n) otherwise
    pub fn push_front(&mut self, value: A) {
        if self.is_full() {
            panic!("Chunk::push_front: can't push to full chunk");
        }
        if self.is_empty() {
            self.left = N::USIZE;
            self.right = N::USIZE;
        } else if self.left == 0 {
            self.left = N::USIZE - self.right;
            unsafe { Chunk::force_copy(0, self.left, self.right, self) };
            self.right = N::USIZE;
        }
        self.left -= 1;
        unsafe { Chunk::force_write(self.left, value, self) }
    }

    /// Push an item to the back of the chunk.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(1) if there's room at the back, O(n) otherwise
    pub fn push_back(&mut self, value: A) {
        if self.is_full() {
            panic!("Chunk::push_back: can't push to full chunk");
        }
        if self.is_empty() {
            self.left = 0;
            self.right = 0;
        } else if self.right == N::USIZE {
            unsafe { Chunk::force_copy(self.left, 0, self.len(), self) };
            self.right = N::USIZE - self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_write(self.right, value, self) }
        self.right += 1;
    }

    /// Pop an item off the front of the chunk.
    ///
    /// Panics if the chunk is empty.
    ///
    /// Time: O(1)
    pub fn pop_front(&mut self) -> A {
        if self.is_empty() {
            panic!("Chunk::pop_front: can't pop from empty chunk");
        } else {
            let value = unsafe { Chunk::force_read(self.left, self) };
            self.left += 1;
            value
        }
    }

    /// Pop an item off the back of the chunk.
    ///
    /// Panics if the chunk is empty.
    ///
    /// Time: O(1)
    pub fn pop_back(&mut self) -> A {
        if self.is_empty() {
            panic!("Chunk::pop_back: can't pop from empty chunk");
        } else {
            self.right -= 1;
            unsafe { Chunk::force_read(self.right, self) }
        }
    }

    /// Discard all items up to but not including `index`.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items dropped
    pub fn drop_left(&mut self, index: usize) {
        if index > 0 {
            unsafe { ptr::drop_in_place(&mut self[..index]) }
            self.left += index;
        }
    }

    /// Discard all items from `index` onward.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items dropped
    pub fn drop_right(&mut self, index: usize) {
        if index != self.len() {
            unsafe { ptr::drop_in_place(&mut self[index..]) }
            self.right = self.left + index;
        }
    }

    /// Split a chunk into two, the original chunk containing
    /// everything up to `index` and the returned chunk containing
    /// everything from `index` onwards.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(n) for the number of items in the new chunk
    pub fn split_off(&mut self, index: usize) -> Self {
        if index > self.len() {
            panic!("Chunk::split_off: index out of bounds");
        }
        if index == self.len() {
            return Self::new();
        }
        let mut right_chunk = Self::new();
        let start = self.left + index;
        let len = self.right - start;
        unsafe { Chunk::force_copy_to(start, 0, len, self, &mut right_chunk) };
        right_chunk.right = len;
        self.right = start;
        right_chunk
    }

    /// Remove all items from `other` and append them to the back of `self`.
    ///
    /// Panics if the capacity of the chunk is exceeded.
    ///
    /// Time: O(n) for the number of items moved
    pub fn append(&mut self, other: &mut Self) {
        let self_len = self.len();
        let other_len = other.len();
        if self_len + other_len > N::USIZE {
            panic!("Chunk::append: chunk size overflow");
        }
        if self.right + other_len > N::USIZE {
            unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
            self.right -= self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_copy_to(other.left, self.right, other_len, other, self) };
        self.right += other_len;
        other.left = 0;
        other.right = 0;
    }

    /// Remove `count` items from the front of `other` and append them to the
    /// back of `self`.
    ///
    /// Panics if `self` doesn't have `count` items left, or if `other` has
    /// fewer than `count` items.
    ///
    /// Time: O(n) for the number of items moved
    pub fn drain_from_front(&mut self, other: &mut Self, count: usize) {
        let self_len = self.len();
        let other_len = other.len();
        assert!(self_len + count <= N::USIZE);
        assert!(other_len >= count);
        if self.right + count > N::USIZE {
            unsafe { Chunk::force_copy(self.left, 0, self_len, self) };
            self.right -= self.left;
            self.left = 0;
        }
        unsafe { Chunk::force_copy_to(other.left, self.right, count, other, self) };
        self.right += count;
        other.left += count;
    }

    /// Remove `count` items from the back of `other` and append them to the
    /// front of `self`.
    ///
    /// Panics if `self` doesn't have `count` items left, or if `other` has
    /// fewer than `count` items.
    ///
    /// Time: O(n) for the number of items moved
    pub fn drain_from_back(&mut self, other: &mut Self, count: usize) {
        let self_len = self.len();
        let other_len = other.len();
        assert!(self_len + count <= N::USIZE);
        assert!(other_len >= count);
        if self.left < count {
            unsafe { Chunk::force_copy(self.left, N::USIZE - self_len, self_len, self) };
            self.left = N::USIZE - self_len;
            self.right = N::USIZE;
        }
        unsafe { Chunk::force_copy_to(other.right - count, self.left - count, count, other, self) };
        self.left -= count;
        other.right -= count;
    }

    /// Update the value at index `index`, returning the old value.
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// Time: O(1)
    pub fn set(&mut self, index: usize, value: A) -> A {
        replace(&mut self[index], value)
    }

    /// Insert a new value at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the chunk is full.
    ///
    /// Time: O(n) for the number of elements shifted
    pub fn insert(&mut self, index: usize, value: A) {
        if self.is_full() {
            panic!("Chunk::insert: chunk is full");
        }
        if index > self.len() {
            panic!("Chunk::insert: index out of bounds");
        }
        let real_index = index + self.left;
        let left_size = index;
        let right_size = self.right - real_index;
        if self.right == N::USIZE || (self.left > 0 && left_size < right_size) {
            unsafe {
                Chunk::force_copy(self.left, self.left - 1, left_size, self);
                Chunk::force_write(real_index - 1, value, self);
            }
            self.left -= 1;
        } else {
            unsafe {
                Chunk::force_copy(real_index, real_index + 1, right_size, self);
                Chunk::force_write(real_index, value, self);
            }
            self.right += 1;
        }
    }

    /// Insert a new value into the chunk in sorted order.
    ///
    /// This assumes every element of the chunk is already in sorted order.
    /// If not, the value will still be inserted but the ordering is not
    /// guaranteed.
    ///
    /// Time: O(log n) to find the insert position, then O(n) for the number
    /// of elements shifted.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use std::iter::FromIterator;
    /// # use sized_chunks::Chunk;
    /// # use typenum::U64;
    /// let mut chunk = Chunk::<i32, U64>::from_iter(0..5);
    /// chunk.insert_ordered(3);
    /// assert_eq!(&[0, 1, 2, 3, 3, 4], chunk.as_slice());
    /// ```
    pub fn insert_ordered(&mut self, value: A)
    where
        A: Ord,
    {
        if self.is_full() {
            panic!("Chunk::insert: chunk is full");
        }
        match self.binary_search(&value) {
            Ok(index) => self.insert(index, value),
            Err(index) => self.insert(index, value),
        }
    }

    /// Insert multiple values at index `index`, shifting all the following values
    /// to the right.
    ///
    /// Panics if the index is out of bounds or the chunk doesn't have room for
    /// all the values.
    ///
    /// Time: O(m+n) where m is the number of elements inserted and n is the number
    /// of elements following the insertion index. Calling `insert`
    /// repeatedly would be O(m*n).
    pub fn insert_from<Iterable, I>(&mut self, index: usize, iter: Iterable)
    where
        Iterable: IntoIterator<Item = A, IntoIter = I>,
        I: ExactSizeIterator<Item = A>,
    {
        let iter = iter.into_iter();
        let insert_size = iter.len();
        if self.len() + insert_size > Self::CAPACITY {
            panic!(
                "Chunk::insert_from: chunk cannot fit {} elements",
                insert_size
            );
        }
        if index > self.len() {
            panic!("Chunk::insert_from: index out of bounds");
        }
        let real_index = index + self.left;
        let left_size = index;
        let right_size = self.right - real_index;
        if self.right == N::USIZE || (self.left >= insert_size && left_size < right_size) {
            unsafe {
                Chunk::force_copy(self.left, self.left - insert_size, left_size, self);
                let write_index = real_index - insert_size;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.left -= insert_size;
        } else if self.left == 0 || (self.right + insert_size <= Self::CAPACITY) {
            unsafe {
                Chunk::force_copy(real_index, real_index + insert_size, right_size, self);
                let write_index = real_index;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.right += insert_size;
        } else {
            unsafe {
                Chunk::force_copy(self.left, 0, left_size, self);
                Chunk::force_copy(real_index, left_size + insert_size, right_size, self);
                let write_index = left_size;
                Chunk::write_from_iter(write_index, iter, self);
            }
            self.right -= self.left;
            self.right += insert_size;
            self.left = 0;
        }
    }

    /// Remove the value at index `index`, shifting all the following values to
    /// the left.
    ///
    /// Returns the removed value.
    ///
    /// Panics if the index is out of bounds.
    ///
    /// Time: O(n) for the number of items shifted
    pub fn remove(&mut self, index: usize) -> A {
        if index >= self.len() {
            panic!("Chunk::remove: index out of bounds");
        }
        let real_index = index + self.left;
        let value = unsafe { Chunk::force_read(real_index, self) };
        let left_size = index;
        let right_size = self.right - real_index - 1;
        if left_size < right_size {
            unsafe { Chunk::force_copy(self.left, self.left + 1, left_size, self) };
            self.left += 1;
        } else {
            unsafe { Chunk::force_copy(real_index + 1, real_index, right_size, self) };
            self.right -= 1;
        }
        value
    }

    /// Construct an iterator that drains values from the front of the chunk.
    pub fn drain(&mut self) -> Drain<'_, A, N> {
        Drain { chunk: self }
    }

    /// Discard the contents of the chunk.
    ///
    /// Time: O(n)
    pub fn clear(&mut self) {
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
        self.left = 0;
        self.right = 0;
    }

    /// Get a reference to the contents of the chunk as a slice.
    pub fn as_slice(&self) -> &[A] {
        unsafe {
            from_raw_parts(
                (&self.data as *const MaybeUninit<N::SizedType> as *const A).add(self.left),
                self.len(),
            )
        }
    }

    /// Get a reference to the contents of the chunk as a mutable slice.
    pub fn as_mut_slice(&mut self) -> &mut [A] {
        unsafe {
            from_raw_parts_mut(
                (&mut self.data as *mut MaybeUninit<N::SizedType> as *mut A).add(self.left),
                self.len(),
            )
        }
    }
}

impl<A, N> Default for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<A, N, I> Index<I> for Chunk<A, N>
where
    I: SliceIndex<[A]>,
    N: ChunkLength<A>,
{
    type Output = I::Output;
    fn index(&self, index: I) -> &Self::Output {
        self.as_slice().index(index)
    }
}

impl<A, N, I> IndexMut<I> for Chunk<A, N>
where
    I: SliceIndex<[A]>,
    N: ChunkLength<A>,
{
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        self.as_mut_slice().index_mut(index)
    }
}

impl<A, N> Debug for Chunk<A, N>
where
    A: Debug,
    N: ChunkLength<A>,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        f.write_str("Chunk")?;
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<A, N> Hash for Chunk<A, N>
where
    A: Hash,
    N: ChunkLength<A>,
{
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        for item in self {
            item.hash(hasher)
        }
    }
}

impl<A, N, Slice> PartialEq<Slice> for Chunk<A, N>
where
    Slice: Borrow<[A]>,
    A: PartialEq,
    N: ChunkLength<A>,
{
    fn eq(&self, other: &Slice) -> bool {
        self.as_slice() == other.borrow()
    }
}

impl<A, N> Eq for Chunk<A, N>
where
    A: Eq,
    N: ChunkLength<A>,
{
}

impl<A, N> PartialOrd for Chunk<A, N>
where
    A: PartialOrd,
    N: ChunkLength<A>,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

impl<A, N> Ord for Chunk<A, N>
where
    A: Ord,
    N: ChunkLength<A>,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

#[cfg(feature = "std")]
impl<N> io::Write for Chunk<u8, N>
where
    N: ChunkLength<u8>,
{
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let old_len = self.len();
        self.extend(buf.iter().cloned().take(N::USIZE - old_len));
        Ok(self.len() - old_len)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[cfg(feature = "std")]
impl<N: ChunkLength<u8>> std::io::Read for Chunk<u8, N> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let read_size = buf.len().min(self.len());
        if read_size == 0 {
            Ok(0)
        } else {
            for p in buf.iter_mut().take(read_size) {
                *p = self.pop_front();
            }
            Ok(read_size)
        }
    }
}

impl<A, N, T> From<InlineArray<A, T>> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    #[inline]
    fn from(mut array: InlineArray<A, T>) -> Self {
        Self::from(&mut array)
    }
}

impl<'a, A, N, T> From<&'a mut InlineArray<A, T>> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn from(array: &mut InlineArray<A, T>) -> Self {
        // The first capacity comparison is to help optimize it out
        assert!(
            InlineArray::<A, T>::CAPACITY <= Self::CAPACITY || array.len() <= Self::CAPACITY,
            "CAPACITY too small"
        );
        let mut out = Self::new();
        out.left = 0;
        out.right = array.len();
        unsafe {
            ptr::copy_nonoverlapping(array.data(), out.mut_ptr(0), out.right);
            *array.len_mut() = 0;
        }
        out
    }
}

impl<A, N> Borrow<[A]> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn borrow(&self) -> &[A] {
        self.as_slice()
    }
}

impl<A, N> BorrowMut<[A]> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn borrow_mut(&mut self) -> &mut [A] {
        self.as_mut_slice()
    }
}

impl<A, N> AsRef<[A]> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn as_ref(&self) -> &[A] {
        self.as_slice()
    }
}

impl<A, N> AsMut<[A]> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn as_mut(&mut self) -> &mut [A] {
        self.as_mut_slice()
    }
}

impl<A, N> Deref for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    type Target = [A];

    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<A, N> DerefMut for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<A, N> FromIterator<A> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    fn from_iter<I>(it: I) -> Self
    where
        I: IntoIterator<Item = A>,
    {
        let mut chunk = Self::new();
        for item in it {
            chunk.push_back(item);
        }
        chunk
    }
}

impl<'a, A, N> IntoIterator for &'a Chunk<A, N>
where
    N: ChunkLength<A>,
{
    type Item = &'a A;
    type IntoIter = SliceIter<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, A, N> IntoIterator for &'a mut Chunk<A, N>
where
    N: ChunkLength<A>,
{
    type Item = &'a mut A;
    type IntoIter = SliceIterMut<'a, A>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<A, N> Extend<A> for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    /// Append the contents of the iterator to the back of the chunk.
    ///
    /// Panics if the chunk exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = A>,
    {
        for item in it {
            self.push_back(item);
        }
    }
}

impl<'a, A, N> Extend<&'a A> for Chunk<A, N>
where
    A: 'a + Copy,
    N: ChunkLength<A>,
{
    /// Append the contents of the iterator to the back of the chunk.
    ///
    /// Panics if the chunk exceeds its capacity.
    ///
    /// Time: O(n) for the length of the iterator
    fn extend<I>(&mut self, it: I)
    where
        I: IntoIterator<Item = &'a A>,
    {
        for item in it {
            self.push_back(*item);
        }
    }
}

impl<A, N> IntoIterator for Chunk<A, N>
where
    N: ChunkLength<A>,
{
    type Item = A;
    type IntoIter = Iter<A, N>;

    fn into_iter(self) -> Self::IntoIter {
        Iter { chunk: self }
    }
}

#[cfg(test)]
#[rustfmt::skip]
mod test {
    use super::*;
    use typenum::{U0, U1, U2, U3, U5};

    #[test]
    #[should_panic(expected = "Chunk::push_back: can't push to full chunk")]
    fn issue_11_testcase1d() {
        let mut chunk = Chunk::<usize, U2>::pair(123, 456);
        chunk.push_back(789);
    }

    #[test]
    #[should_panic(expected = "CAPACITY too small")]
    fn issue_11_testcase2a() {
        let mut from = InlineArray::<u8, [u8; 256]>::new();
        from.push(1);

        let _ = Chunk::<u8, U0>::from(from);
    }

    #[test]
    fn issue_11_testcase2b() {
        let mut from = InlineArray::<u8, [u8; 256]>::new();
        from.push(1);

        let _ = Chunk::<u8, U1>::from(from);
    }

    struct DropDetector(u32);

    impl DropDetector {
        fn new(num: u32) -> Self {
            DropDetector(num)
        }
    }

    impl Drop for DropDetector {
        fn drop(&mut self) {
            assert!(self.0 == 42 || self.0 == 43);
        }
    }

    impl Clone for DropDetector {
        fn clone(&self) -> Self {
            if self.0 == 42 {
                panic!("panic on clone")
            }
            DropDetector::new(self.0)
        }
    }

    /// This is for miri to catch
    #[test]
    fn issue_11_testcase3a() {
        let mut chunk = Chunk::<DropDetector, U3>::new();
        chunk.push_back(DropDetector::new(42));
        chunk.push_back(DropDetector::new(42));
        chunk.push_back(DropDetector::new(43));
        let _ = chunk.pop_front();

        let _ = std::panic::catch_unwind(|| {
            let _ = chunk.clone();
        });
    }

    struct PanickingIterator {
        current: u32,
        panic_at: u32,
        len: usize,
    }

    impl Iterator for PanickingIterator {
        type Item = DropDetector;

        fn next(&mut self) -> Option<Self::Item> {
            let num = self.current;

            if num == self.panic_at {
                panic!("panicking index")
            }

            self.current += 1;
            Some(DropDetector::new(num))
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.len, Some(self.len))
        }
    }

    impl ExactSizeIterator for PanickingIterator {}

    #[test]
    fn issue_11_testcase3b() {
        let _ = std::panic::catch_unwind(|| {
            let mut chunk = Chunk::<DropDetector, U5>::new();
            chunk.push_back(DropDetector::new(1));
            chunk.push_back(DropDetector::new(2));
            chunk.push_back(DropDetector::new(3));

            chunk.insert_from(
                1,
                PanickingIterator {
                    current: 1,
                    panic_at: 1,
                    len: 1,
                },
            );
        });
    }

    struct FakeSizeIterator { reported: usize, actual: usize }
    impl Iterator for FakeSizeIterator {
        type Item = u8;
        fn next(&mut self) -> Option<Self::Item> {
            if self.actual == 0 {
                None
            } else {
                self.actual -= 1;
                Some(1)
            }
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (self.reported, Some(self.reported))
        }
    }

    impl ExactSizeIterator for FakeSizeIterator {
        fn len(&self) -> usize {
            self.reported
        }
    }

    #[test]
    fn iterator_too_long() {
        let mut chunk = Chunk::<u8, U5>::new();
        chunk.push_back(0);
        chunk.push_back(1);
        chunk.push_back(2);
        chunk.insert_from(1, FakeSizeIterator { reported: 1, actual: 10 });

        let mut chunk = Chunk::<u8, U5>::new();
        chunk.push_back(1);
        chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });

        let mut chunk = Chunk::<u8, U5>::new();
        chunk.insert_from(0, FakeSizeIterator { reported: 1, actual: 10 });
    }

    #[test]
    #[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
    fn iterator_too_short1() {
        let mut chunk = Chunk::<u8, U5>::new();
        chunk.push_back(0);
        chunk.push_back(1);
        chunk.push_back(2);
        chunk.insert_from(1, FakeSizeIterator { reported: 2, actual: 0 });
    }

    #[test]
    #[should_panic(expected = "ExactSizeIterator yielded fewer values than advertised")]
    fn iterator_too_short2() {
        let mut chunk = Chunk::<u8, U5>::new();
        chunk.push_back(1);
        chunk.insert_from(1, FakeSizeIterator { reported: 4, actual: 2 });
    }

    #[test]
    fn is_full() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            assert_eq!(false, chunk.is_full());
            chunk.push_back(i);
        }
        assert_eq!(true, chunk.is_full());
    }

    #[test]
    fn push_back_front() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 12..20 {
            chunk.push_back(i);
        }
        assert_eq!(8, chunk.len());
        for i in (0..12).rev() {
            chunk.push_front(i);
        }
        assert_eq!(20, chunk.len());
        for i in 20..32 {
            chunk.push_back(i);
        }
        assert_eq!(32, chunk.len());
        let right: Vec<i32> = chunk.into_iter().collect();
        let left: Vec<i32> = (0..32).collect();
        assert_eq!(left, right);
    }

    #[test]
    fn push_and_pop() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        for i in 0..64 {
            assert_eq!(i, chunk.pop_front());
        }
        for i in 0..64 {
            chunk.push_front(i);
        }
        for i in 0..64 {
            assert_eq!(i, chunk.pop_back());
        }
    }

    #[test]
    fn drop_left() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..6 {
            chunk.push_back(i);
        }
        chunk.drop_left(3);
        let vec: Vec<i32> = chunk.into_iter().collect();
        assert_eq!(vec![3, 4, 5], vec);
    }

    #[test]
    fn drop_right() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..6 {
            chunk.push_back(i);
        }
        chunk.drop_right(3);
        let vec: Vec<i32> = chunk.into_iter().collect();
        assert_eq!(vec![0, 1, 2], vec);
    }

    #[test]
    fn split_off() {
        let mut left = Chunk::<_, U64>::new();
        for i in 0..6 {
            left.push_back(i);
        }
        let right = left.split_off(3);
        let left_vec: Vec<i32> = left.into_iter().collect();
        let right_vec: Vec<i32> = right.into_iter().collect();
        assert_eq!(vec![0, 1, 2], left_vec);
        assert_eq!(vec![3, 4, 5], right_vec);
    }

    #[test]
    fn append() {
        let mut left = Chunk::<_, U64>::new();
        for i in 0..32 {
            left.push_back(i);
        }
        let mut right = Chunk::<_, U64>::new();
        for i in (32..64).rev() {
            right.push_front(i);
        }
        left.append(&mut right);
        let out_vec: Vec<i32> = left.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn ref_iter() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<&i32> = chunk.iter().collect();
        let should_vec_p: Vec<i32> = (0..64).collect();
        let should_vec: Vec<&i32> = should_vec_p.iter().collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn mut_ref_iter() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<&mut i32> = chunk.iter_mut().collect();
        let mut should_vec_p: Vec<i32> = (0..64).collect();
        let should_vec: Vec<&mut i32> = should_vec_p.iter_mut().collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn consuming_iter() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_middle() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..32 {
            chunk.push_back(i);
        }
        for i in 33..64 {
            chunk.push_back(i);
        }
        chunk.insert(32, 32);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_back() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..63 {
            chunk.push_back(i);
        }
        chunk.insert(63, 63);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn insert_front() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 1..64 {
            chunk.push_front(64 - i);
        }
        chunk.insert(0, 0);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    #[test]
    fn remove_value() {
        let mut chunk = Chunk::<_, U64>::new();
        for i in 0..64 {
            chunk.push_back(i);
        }
        chunk.remove(32);
        let out_vec: Vec<i32> = chunk.into_iter().collect();
        let should_vec: Vec<i32> = (0..32).chain(33..64).collect();
        assert_eq!(should_vec, out_vec);
    }

    use crate::tests::DropTest;
    use std::sync::atomic::{AtomicUsize, Ordering};

    #[test]
    fn dropping() {
        let counter = AtomicUsize::new(0);
        {
            let mut chunk: Chunk<DropTest<'_>> = Chunk::new();
            for _i in 0..20 {
                chunk.push_back(DropTest::new(&counter))
            }
            for _i in 0..20 {
                chunk.push_front(DropTest::new(&counter))
            }
            assert_eq!(40, counter.load(Ordering::Relaxed));
            for _i in 0..10 {
                chunk.pop_back();
            }
            assert_eq!(30, counter.load(Ordering::Relaxed));
        }
        assert_eq!(0, counter.load(Ordering::Relaxed));
    }

    #[test]
    #[should_panic(expected = "assertion failed: Self::CAPACITY >= 1")]
    fn unit_on_empty() {
        Chunk::<usize, U0>::unit(1);
    }

    #[test]
    #[should_panic(expected = "assertion failed: Self::CAPACITY >= 2")]
    fn pair_on_empty() {
        Chunk::<usize, U0>::pair(1, 2);
    }
}