slice_dst/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#![warn(missing_docs, missing_debug_implementations)]
#![no_std]
//! Support for custom slice-based DSTs.
//!
//! By handling allocation manually, we can manually allocate the `Box` for a custom DST.
//! So long as the size lines up with what it should be, once the metadata is created,
//! Rust actually already handles the DSTs it already supports perfectly well, safely!
//! Setting them up is the hard part, which this crate handles for you.
//!
//! # Examples
//!
//! We have a tree structure! Each node holds some data and its children array.
//! In normal Rust, you would probably typically implement it something like this:
//!
//! ```rust
//! # use std::sync::Arc;
//! struct Node {
//! data: &'static str,
//! children: Vec<Arc<Node>>,
//! }
//!
//! let a = Node { data: "a", children: vec![] };
//! let b = Node { data: "b", children: vec![] };
//! let c = Node { data: "c", children: vec![] };
//! let abc = Node { data: "abc", children: vec![a.into(), b.into(), c.into()] };
//! ```
//!
//! With this setup, the memory layout looks vaguely like the following diagram:
//!
//! ```text
//! +--------------+
//! |Node |
//! +---->|data: "a" |
//! +------------+ +---------------+ | |children: none|
//! |Node | |Vec<Arc<Node>> | | +--------------+
//! |data: "abc" | |[0]: +--------------+ |Node |
//! |children: +----->|[1]: +------------------->|data: "b" |
//! +------------+ |[2]: +--------------+ |children: none|
//! +---------------| | +--------------+
//! | |Node |
//! +---->|data: "c" |
//! |children: none|
//! +--------------+
//! ```
//!
//! With this crate, however, the children array can be stored inline with the node's data:
//!
//! ```rust
//! # use std::{iter, sync::Arc}; use slice_dst::*;
//! struct Node(Arc<SliceWithHeader<&'static str, Node>>);
//!
//! let a = Node(SliceWithHeader::new("a", None));
//! let b = Node(SliceWithHeader::new("b", None));
//! let c = Node(SliceWithHeader::new("c", None));
//! // this vec is just an easy way to get an ExactSizeIterator
//! let abc = Node(SliceWithHeader::new("abc", vec![a, b, c]));
//! ```
//!
//! ```text
//! +-----------+
//! +-------------+ |Node |
//! |Node | +---->|length: 0 |
//! |length: 3 | | |header: "a"|
//! |header: "abc"| | +-----------+
//! |slice: [0]: +-----+ |Node |
//! | [1]: +---------->|length: 0 |
//! | [2]: +-----+ |header: "b"|
//! +-------------+ | +-----------+
//! | |Node |
//! +---->|length: 0 |
//! |header: "c"|
//! +------------
//! ```
//!
//! The exact times you will want to use this rather than just standard types varries.
//! This is mostly useful when space optimization is very important.
//! This is still useful when using an arena: it reduces the allocations in the arena
//! in exchange for moving node payloads to the heap alongside the children array.
//!
//! # But how?
//!
//! This is possible because of the following key building blocks:
//!
//! - `Box`'s [memory layout][boxed-memory-layout] is defined and uses the
//! [global allocator][std::alloc::Global], and is allowed to be manually allocated.
//! - [Array layout][array-layout] and [slice layout][slice-layout] are defined.
//! - [`#[repr(C)]`][repr-c-layout] allows us to make compound types with defined layout.
//! - We can turn an opaque pointer into a slice fat pointer with
//! [`ptr::slice_from_raw_parts`][slice_from_raw_parts].
//! - We can cast a slice pointer to a pointer to our compound type
//! in order to keep the correct fat pointer metadata.
//!
//! So with these guarantees, we can "just" manually allocate some space, initialize it
//! for some custom `repr(C)` structure, and convert it into a `Box`. From that point,
//! `Box` handles managing the memory, including deallocation or moving it into another
//! smart pointer, such as `Arc`.
//!
//! [boxed-memory-layout]: <https://doc.rust-lang.org/stable/std/boxed/index.html#memory-layout>
//! [array-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#array-layout>
//! [slice-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#slice-layout>
//! [repr-c-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#reprc-structs>
//! [std::alloc::Global]: <https://doc.rust-lang.org/stable/std/alloc/index.html#the-global_allocator-attribute>
//!
//! [`SliceDst`] defines the capabilities required of the pointee type. It must be able to
//! turn a trailing slice length into a [`Layout`] for the whole pointee, and it must provide
//! a way to turn a untyped slice pointer `*mut [()]` into a correctly typed pointer.
//!
//! The functions [`alloc_slice_dst`] and [`alloc_slice_dst_in`] provide a way
//! to allocate space for a `SliceDst` type via the global allocator.
//!
//! [`AllocSliceDst`] types are owning heap pointers that can create a new slice DST.
//! They take an initialization routine that is responsible for initializing the
//! uninitialized allocated place, and do the ceremony required to allocate the place
//! and turn it into the proper type by delgating to `SliceDst` and `alloc_slice_dst`.
//! They also handle panic/unwind safety of the initialization routine and prevent
//! leaking of the allocated place due to an initialization panic.
//!
//! [`TryAllocSliceDst`] is the potentially fallible initialization version.
//!
//! All of these pieces are the glue, but [`SliceWithHeader`] and [`StrWithHeader`]
//! put the pieces together into a safe package. They take a header and an iterator
//! (or copyable slice) and put together all of the pieces to allocate a dynamically
//! sized custom type.
//!
//! Additionaly, though not strictly required, these types store the slice length inline.
//! This gives them the ability to reconstruct pointers from fully type erased pointers
#![cfg_attr(feature = "erasable", doc = "via the [`Erasable`] trait")]
//! .
// All hail Chairity!
// The one who saves our sanity -
// blessing us with Clarity.
// Queen of popularity.
// When haboo becomes a rarity -
// we thank Yoba for Chairity.
// https://twitch.tv/thehaboo
extern crate alloc;
#[cfg(has_ptr_slice_from_raw_parts)]
use core::ptr::slice_from_raw_parts_mut as slice_from_raw_parts;
#[cfg(not(has_ptr_slice_from_raw_parts))]
use core::slice::from_raw_parts_mut as slice_from_raw_parts;
#[cfg(feature = "erasable")]
use erasable::{Erasable, ErasedPtr};
use {
alloc::{
alloc::{alloc, dealloc, handle_alloc_error},
boxed::Box,
rc::Rc,
sync::Arc,
},
core::{alloc::Layout, mem::ManuallyDrop, ptr},
};
/// A custom slice-based dynamically sized type.
///
/// Unless you are making a custom slice DST that needs to pack its length extremely well,
/// then you should just use [`SliceWithHeader`] instead.
pub unsafe trait SliceDst {
/// Get the layout of the slice-containing type with the given slice length.
fn layout_for(len: usize) -> Layout;
/// Add the type onto an untyped pointer.
///
/// This is used to add the type on during allocation.
/// This function is required because otherwise Rust cannot
/// guarantee that the metadata on both sides of the cast lines up.
///
/// # Safety
///
/// The implementation _must not_ dereference the input pointer.
/// This function is safe because it must work for all input pointers,
/// without asserting the pointer's validity of any kind, express or implied,
/// including but not limited to the validities of alignment, fitness for
/// dereferencing and nullity.
///
/// In practice, this means that the implementation should just be a pointer cast.
fn retype(ptr: ptr::NonNull<[()]>) -> ptr::NonNull<Self>;
}
unsafe impl<T> SliceDst for [T] {
fn layout_for(len: usize) -> Layout {
layout_polyfill::layout_array::<T>(len).unwrap()
}
fn retype(ptr: ptr::NonNull<[()]>) -> ptr::NonNull<Self> {
unsafe { ptr::NonNull::new_unchecked(ptr.as_ptr() as *mut _) }
}
}
/// Allocate a slice-based DST with the [global allocator][`alloc()`].
///
/// The returned pointer is owned and completely uninitialized;
/// you are required to initialize it correctly.
///
/// If the type to be allocated has zero size,
/// then an arbitrary aligned dangling nonnull pointer is returned.
pub fn alloc_slice_dst<S: ?Sized + SliceDst>(len: usize) -> ptr::NonNull<S> {
alloc_slice_dst_in(|it| it, len)
}
/// Allocate a slice-based DST with the [global allocator][`alloc()`] within some container.
///
/// The returned pointer is owned and completely uninitialized;
/// you are required to initialize it correctly.
///
/// Note that while this function returns a `ptr::NonNull<S>`,
/// the pointer is to the allocation as specified by `container(S::layout(len))`,
/// so if you want/need a pointer to `S`, you will need to offset it.
///
/// If the layout to be allocated has zero size,
/// then an arbitrary aligned dangling nonnull pointer is returned.
pub fn alloc_slice_dst_in<S: ?Sized + SliceDst, F>(container: F, len: usize) -> ptr::NonNull<S>
where
F: FnOnce(Layout) -> Layout,
{
let layout = container(S::layout_for(len));
unsafe {
let ptr = if layout.size() == 0 {
// Do not allocate in the ZST case! CAD97/pointer-utils#23
ptr::NonNull::new(layout.align() as *mut ())
} else {
ptr::NonNull::new(alloc(layout) as *mut ())
}
.unwrap_or_else(|| handle_alloc_error(layout));
let ptr = ptr::NonNull::new_unchecked(slice_from_raw_parts(ptr.as_ptr(), len));
S::retype(ptr)
}
}
/// Types that can allocate a custom slice DST within them.
///
/// # Implementation note
///
/// For most types, [`TryAllocSliceDst`] should be the implementation primitive.
/// This trait can then be implemented in terms of `TryAllocSliceDst`:
///
/// ```rust
/// # use {slice_dst::*, std::ptr};
/// # struct Container<T: ?Sized>(Box<T>);
/// # unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Container<S> {
/// # unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
/// # where I: FnOnce(ptr::NonNull<S>) -> Result<(), E>
/// # { unimplemented!() }
/// # }
/// unsafe impl<S: ?Sized + SliceDst> AllocSliceDst<S> for Container<S> {
/// unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
/// where
/// I: FnOnce(ptr::NonNull<S>),
/// {
/// enum Void {} // or never (!) once it is stable
/// #[allow(clippy::unit_arg)]
/// let init = |ptr| Ok::<(), Void>(init(ptr));
/// match Self::try_new_slice_dst(len, init) {
/// Ok(a) => a,
/// Err(void) => match void {},
/// }
/// }
/// }
/// ```
///
/// This is not a blanket impl due to coherence rules; if the blanket impl were present,
/// it would be impossible to implement `AllocSliceDst` instead of `TryAllocSliceDst`.
pub unsafe trait AllocSliceDst<S: ?Sized + SliceDst> {
/// Create a new custom slice DST.
///
/// # Safety
///
/// `init` must properly initialize the object behind the pointer.
/// `init` receives a fully uninitialized pointer and must not read anything before writing.
unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
where
I: FnOnce(ptr::NonNull<S>);
}
// FUTURE: export? Would need better generic support.
macro_rules! impl_alloc_by_try_alloc {
($T:ident) => {
unsafe impl<S: ?Sized + SliceDst> $crate::AllocSliceDst<S> for $T<S> {
unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
where
I: FnOnce(::core::ptr::NonNull<S>),
{
enum Void {}
#[allow(clippy::unit_arg)]
let init = |ptr| ::core::result::Result::<(), Void>::Ok(init(ptr));
match <Self as $crate::TryAllocSliceDst<S>>::try_new_slice_dst(len, init) {
Ok(a) => a,
Err(void) => match void {},
}
}
}
};
}
/// Types that can allocate a custom slice DST within them,
/// given a fallible initialization function.
pub unsafe trait TryAllocSliceDst<S: ?Sized + SliceDst>: AllocSliceDst<S> + Sized {
/// Create a new custom slice DST with a fallible initialization function.
///
/// # Safety
///
/// `init` must properly initialize the object behind the pointer.
/// `init` receives a fully uninitialized pointer and must not read anything before writing.
///
/// If the initialization closure panics or returns an error,
/// the allocated place will be deallocated but not dropped.
/// To clean up the partially initialized type, we suggest
/// proxying creation through scope guarding types.
unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
where
I: FnOnce(ptr::NonNull<S>) -> Result<(), E>;
}
// SAFETY: Box is guaranteed to be allocatable by GlobalAlloc.
impl_alloc_by_try_alloc!(Box);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Box<S> {
unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
where
I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
{
struct RawBox<S: ?Sized + SliceDst>(ptr::NonNull<S>, Layout);
impl<S: ?Sized + SliceDst> RawBox<S> {
unsafe fn new(len: usize) -> Self {
let layout = S::layout_for(len);
RawBox(alloc_slice_dst(len), layout)
}
unsafe fn finalize(self) -> Box<S> {
let this = ManuallyDrop::new(self);
Box::from_raw(this.0.as_ptr())
}
}
impl<S: ?Sized + SliceDst> Drop for RawBox<S> {
fn drop(&mut self) {
unsafe {
dealloc(self.0.as_ptr().cast(), self.1);
}
}
}
let ptr = RawBox::new(len);
init(ptr.0)?;
Ok(ptr.finalize())
}
}
// SAFETY: just delegates to `Box`'s implementation (for now?)
impl_alloc_by_try_alloc!(Rc);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Rc<S> {
unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
where
I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
{
Box::try_new_slice_dst(len, init).map(Into::into)
}
}
// SAFETY: just delegates to `Box`'s implementation (for now?)
impl_alloc_by_try_alloc!(Arc);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Arc<S> {
unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
where
I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
{
Box::try_new_slice_dst(len, init).map(Into::into)
}
}
pub(crate) mod layout_polyfill;
mod provided_types;
pub use provided_types::{SliceWithHeader, StrWithHeader};