1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
//! Implements a mirrored memory buffer.
use super::*;
/// Number of required memory allocation units to hold `bytes`.
fn no_required_allocation_units(bytes: usize) -> usize {
let ag = allocation_granularity();
let r = ((bytes + ag - 1) / ag).max(1);
let r = if r % 2 == 0 { r } else { r + 1 };
debug_assert!(r * ag >= bytes);
debug_assert!(r % 2 == 0);
r
}
/// Mirrored memory buffer of length `len`.
///
/// The buffer elements in range `[0, len/2)` are mirrored into the range
/// `[len/2, len)`.
pub struct Buffer<T> {
/// Pointer to the first element in the buffer.
ptr: NonNull<T>,
/// Length of the buffer:
///
/// * it is NOT always a multiple of 2
/// * the elements in range `[0, len/2)` are mirrored into the range
/// `[len/2, len)`.
len: usize,
}
impl<T> Buffer<T> {
/// Number of elements in the buffer.
pub fn len(&self) -> usize {
self.len
}
/// Is the buffer empty?
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Pointer to the first element in the buffer.
pub unsafe fn ptr(&self) -> *mut T {
self.ptr.as_ptr()
}
/// Interprets contents as a slice.
///
/// Warning: Some memory might be uninitialized.
pub unsafe fn as_slice(&self) -> &[T] {
slice::from_raw_parts(self.ptr.as_ptr(), self.len())
}
/// Interprets contents as a mut slice.
///
/// Warning: Some memory might be uninitialized.
pub unsafe fn as_mut_slice(&mut self) -> &mut [T] {
slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len())
}
/// Interprets content as a slice and access the `i`-th element.
///
/// Warning: The memory of the `i`-th element might be uninitialized.
pub unsafe fn get(&self, i: usize) -> &T {
&self.as_slice()[i]
}
/// Interprets content as a mut slice and access the `i`-th element.
///
/// Warning: The memory of the `i`-th element might be uninitialized.
pub unsafe fn get_mut(&mut self, i: usize) -> &mut T {
&mut self.as_mut_slice()[i]
}
fn empty_len() -> usize {
if mem::size_of::<T>() == 0 {
isize::max_value() as usize * 2
} else {
0
}
}
/// Creates a new empty `Buffer`.
pub fn new() -> Self {
// Here `ptr` is initialized to a magic value but `len == 0`
// will ensure that it is never dereferenced in this state.
Self {
ptr: NonNull::dangling(),
len: Self::empty_len(),
}
}
/// Creates a new empty `Buffer` from a `ptr` and a `len`.
///
/// # Panics
///
/// If `ptr` is null.
pub unsafe fn from_raw_parts(ptr: *mut T, len: usize) -> Self {
assert!(len % 2 == 0);
assert!(!ptr.is_null());
if mem::size_of::<T>() == 0 {
debug_assert_eq!(len, Self::empty_len());
}
Self {
ptr: NonNull::new_unchecked(ptr),
len,
}
}
/// Total number of bytes in the buffer.
pub fn size_in_bytes(len: usize) -> usize {
let v = no_required_allocation_units(len * mem::size_of::<T>())
* allocation_granularity();
debug_assert!(
v >= len * mem::size_of::<T>(),
"len: {}, so<T>: {}, v: {}",
len,
mem::size_of::<T>(),
v
);
v
}
/// Create a mirrored buffer containing `len` `T`s where the first half of
/// the buffer is mirrored into the second half.
pub fn uninitialized(len: usize) -> Result<Self, AllocError> {
// Zero-sized types:
if mem::size_of::<T>() == 0 {
return Ok(Self {
ptr: NonNull::dangling(),
len: Self::empty_len(),
});
}
// The alignment requirements of `T` must be smaller than the
// allocation granularity.
assert!(mem::align_of::<T>() <= allocation_granularity());
// To split the buffer in two halfs the number of elements must be a
// multiple of two, and greater than zero to be able to mirror
// something.
if len == 0 {
return Ok(Self::new());
}
assert!(len % 2 == 0);
// How much memory we need:
let alloc_size = Self::size_in_bytes(len);
debug_assert!(alloc_size > 0);
debug_assert!(alloc_size % 2 == 0);
debug_assert!(alloc_size % allocation_granularity() == 0);
debug_assert!(alloc_size >= len * mem::size_of::<T>());
let ptr = allocate_mirrored(alloc_size)?;
Ok(Self {
ptr: unsafe { NonNull::new_unchecked(ptr as *mut T) },
len: alloc_size / mem::size_of::<T>(),
// Note: len is not a multiple of two: debug_assert!(len % 2 == 0);
})
}
}
impl<T> Drop for Buffer<T> {
fn drop(&mut self) {
if mem::size_of::<T>() == 0 {
debug_assert_eq!(self.len, Self::empty_len());
return;
}
if self.is_empty() {
return;
}
let buffer_size_in_bytes = Self::size_in_bytes(self.len());
let first_half_ptr = self.ptr.as_ptr() as *mut u8;
unsafe { deallocate_mirrored(first_half_ptr, buffer_size_in_bytes) };
}
}
impl<T> Clone for Buffer<T>
where
T: Clone,
{
fn clone(&self) -> Self {
unsafe {
let mid = self.len() / 2;
let mut c = Self::uninitialized(self.len())
.expect("allocating a new mirrored buffer failed");
let (from, _) = self.as_slice().split_at(mid);
{
let (to, _) = c.as_mut_slice().split_at_mut(mid);
to[..mid].clone_from_slice(&from[..mid]);
}
c
}
}
}
impl<T> Default for Buffer<T> {
fn default() -> Self {
Self::new()
}
}
// Safe because it is possible to free this from a different thread
unsafe impl<T> Send for Buffer<T> where T: Send {}
// Safe because this doesn't use any kind of interior mutability.
unsafe impl<T> Sync for Buffer<T> where T: Sync {}
#[cfg(test)]
mod tests {
use super::*;
fn is_send_sync<T>() -> bool
where
T: Send + Sync,
{
true
}
#[test]
fn buffer_send_sync() {
assert!(is_send_sync::<Buffer<usize>>());
}
#[test]
fn test_new() {
let a = Buffer::<u64>::new();
assert!(a.is_empty());
}
fn test_alloc(size: usize) {
unsafe {
let mut a = Buffer::<u64>::uninitialized(size).unwrap();
let sz = a.len();
assert!(sz >= size);
assert_eq!(
sz,
Buffer::<u64>::size_in_bytes(size) / mem::size_of::<u64>()
);
for i in 0..sz / 2 {
*a.get_mut(i) = i as u64;
}
let (first_half_mut, second_half_mut) =
a.as_mut_slice().split_at_mut(sz / 2);
let mut c = 0;
for (i, j) in first_half_mut.iter().zip(second_half_mut) {
assert_eq!(i, j);
c += 1;
}
assert_eq!(c, sz / 2);
}
}
#[test]
fn allocations() {
let elements_per_alloc_unit =
allocation_granularity() / mem::size_of::<u64>();
let sizes = [
8,
elements_per_alloc_unit / 2,
elements_per_alloc_unit,
elements_per_alloc_unit * 4,
];
for &i in &sizes {
test_alloc(i);
}
}
#[test]
fn no_alloc_units_required() {
// Up to the allocation unit size we always need two allocation units
assert_eq!(
no_required_allocation_units(allocation_granularity() / 4),
2
);
assert_eq!(
no_required_allocation_units(allocation_granularity() / 2),
2
);
assert_eq!(no_required_allocation_units(allocation_granularity()), 2);
// For sizes larger than the allocation units we always round up to the
// next even number of allocation units:
assert_eq!(
no_required_allocation_units(allocation_granularity() + 1),
2
);
assert_eq!(
no_required_allocation_units(2 * allocation_granularity()),
2
);
assert_eq!(
no_required_allocation_units(3 * allocation_granularity()),
4
);
assert_eq!(
no_required_allocation_units(4 * allocation_granularity()),
4
);
assert_eq!(
no_required_allocation_units(5 * allocation_granularity()),
6
);
}
}