use crate::fft::{multicore::Worker, SparsePolynomial};
use snarkvm_errors::serialization::SerializationError;
use snarkvm_models::curves::{batch_inversion, FpParameters, PrimeField};
use snarkvm_utilities::serialize::*;
use rand::Rng;
use rayon::prelude::*;
use std::fmt;
#[derive(Copy, Clone, Hash, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct EvaluationDomain<F: PrimeField> {
pub size: u64,
pub log_size_of_group: u32,
pub size_as_field_element: F,
pub size_inv: F,
pub group_gen: F,
pub group_gen_inv: F,
pub generator_inv: F,
}
impl<F: PrimeField> fmt::Debug for EvaluationDomain<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Multiplicative subgroup of size {}", self.size)
}
}
impl<F: PrimeField> EvaluationDomain<F> {
fn calculate_chunk_size(size: usize) -> usize {
match size / rayon::current_num_threads() {
0 => 1,
chunk_size => chunk_size,
}
}
pub fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F {
let mut t = F::rand(rng);
while self.evaluate_vanishing_polynomial(t).is_zero() {
t = F::rand(rng);
}
t
}
pub fn new(num_coeffs: usize) -> Option<Self> {
let size = num_coeffs.next_power_of_two() as u64;
let log_size_of_group = size.trailing_zeros();
if log_size_of_group >= F::Parameters::TWO_ADICITY {
return None;
}
let mut group_gen = F::root_of_unity();
for _ in log_size_of_group..F::Parameters::TWO_ADICITY {
group_gen.square_in_place();
}
let size_as_bigint = F::BigInteger::from(size);
let size_as_field_element = F::from_repr(size_as_bigint)?;
let size_inv = size_as_field_element.inverse()?;
Some(EvaluationDomain {
size,
log_size_of_group,
size_as_field_element,
size_inv,
group_gen,
group_gen_inv: group_gen.inverse()?,
generator_inv: F::multiplicative_generator().inverse()?,
})
}
pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize> {
let size = num_coeffs.next_power_of_two();
if size.trailing_zeros() < F::Parameters::TWO_ADICITY {
Some(size)
} else {
None
}
}
pub fn size(&self) -> usize {
self.size as usize
}
pub fn fft(&self, coeffs: &[F]) -> Vec<F> {
let mut coeffs = coeffs.to_vec();
self.fft_in_place(&mut coeffs);
coeffs
}
pub fn fft_in_place(&self, coeffs: &mut Vec<F>) {
coeffs.resize(self.size(), F::zero());
best_fft(coeffs, &Worker::new(), self.group_gen, self.log_size_of_group)
}
pub fn ifft(&self, evals: &[F]) -> Vec<F> {
let mut evals = evals.to_vec();
self.ifft_in_place(&mut evals);
evals
}
#[inline]
pub fn ifft_in_place(&self, evals: &mut Vec<F>) {
evals.resize(self.size(), F::zero());
best_fft(evals, &Worker::new(), self.group_gen_inv, self.log_size_of_group);
evals.par_iter_mut().for_each(|val| *val *= &self.size_inv);
}
fn distribute_powers(coeffs: &mut Vec<F>, g: F) {
Worker::new().scope(coeffs.len(), |scope, chunk| {
for (i, v) in coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move |_| {
let mut u = g.pow(&[(i * chunk) as u64]);
for v in v.iter_mut() {
*v *= &u;
u *= &g;
}
});
}
});
}
pub fn coset_fft(&self, coeffs: &[F]) -> Vec<F> {
let mut coeffs = coeffs.to_vec();
self.coset_fft_in_place(&mut coeffs);
coeffs
}
pub fn coset_fft_in_place(&self, coeffs: &mut Vec<F>) {
Self::distribute_powers(coeffs, F::multiplicative_generator());
self.fft_in_place(coeffs);
}
pub fn coset_ifft(&self, evals: &[F]) -> Vec<F> {
let mut evals = evals.to_vec();
self.coset_ifft_in_place(&mut evals);
evals
}
pub fn coset_ifft_in_place(&self, evals: &mut Vec<F>) {
self.ifft_in_place(evals);
Self::distribute_powers(evals, self.generator_inv);
}
pub fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F> {
let size = self.size as usize;
let t_size = tau.pow(&[self.size]);
let one = F::one();
if t_size.is_one() {
let mut u = vec![F::zero(); size];
let mut omega_i = one;
for x in u.iter_mut().take(size) {
if omega_i == tau {
*x = one;
break;
}
omega_i *= &self.group_gen;
}
u
} else {
let mut l = (t_size - &one) * &self.size_inv;
let mut r = one;
let mut u = vec![F::zero(); size];
let mut ls = vec![F::zero(); size];
for i in 0..size {
u[i] = tau - &r;
ls[i] = l;
l *= &self.group_gen;
r *= &self.group_gen;
}
batch_inversion(u.as_mut_slice());
u.par_iter_mut().zip(ls).for_each(|(tau_minus_r, l)| {
*tau_minus_r = l * tau_minus_r;
});
u
}
}
pub fn vanishing_polynomial(&self) -> SparsePolynomial<F> {
let coeffs = vec![(0, -F::one()), (self.size(), F::one())];
SparsePolynomial::from_coefficients_vec(coeffs)
}
pub fn evaluate_vanishing_polynomial(&self, tau: F) -> F {
tau.pow(&[self.size]) - &F::one()
}
pub fn elements(&self) -> Elements<F> {
Elements {
cur_elem: F::one(),
cur_pow: 0,
domain: *self,
}
}
pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [F]) {
let i = self
.evaluate_vanishing_polynomial(F::multiplicative_generator())
.inverse()
.unwrap();
Worker::new().scope(evals.len(), |scope, chunk| {
for evals in evals.chunks_mut(chunk) {
scope.spawn(move |_| evals.iter_mut().for_each(|eval| *eval *= &i));
}
});
}
pub fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize {
assert!(self.size() >= other.size());
let period = self.size() / other.size();
if index < other.size() {
index * period
} else {
let i = index - other.size();
let x = period - 1;
i + (i / x) + 1
}
}
#[must_use]
pub fn mul_polynomials_in_evaluation_domain(&self, self_evals: &[F], other_evals: &[F]) -> Vec<F> {
assert_eq!(self_evals.len(), other_evals.len());
let mut result = self_evals.to_vec();
let chunk_size = Self::calculate_chunk_size(self.size());
result
.par_chunks_mut(chunk_size)
.zip(other_evals.par_chunks(chunk_size))
.for_each(|(a, b)| {
for (a, b) in a.iter_mut().zip(b) {
*a *= b;
}
});
result
}
}
fn best_fft<F: PrimeField>(a: &mut [F], worker: &Worker, omega: F, log_n: u32) {
let log_cpus = worker.log_num_cpus();
if log_n <= log_cpus {
serial_fft(a, omega, log_n);
} else {
parallel_fft(a, worker, omega, log_n, log_cpus);
}
}
#[allow(clippy::many_single_char_names)]
pub(crate) fn serial_fft<F: PrimeField>(a: &mut [F], omega: F, log_n: u32) {
#[inline]
fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
let n = a.len() as u32;
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
a.swap(rk as usize, k as usize);
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2 * m)) as u64]);
let mut k = 0;
while k < n {
let mut w = F::one();
for j in 0..m {
let mut t = a[(k + j + m) as usize];
t *= &w;
let mut tmp = a[(k + j) as usize];
tmp -= &t;
a[(k + j + m) as usize] = tmp;
a[(k + j) as usize] += &t;
w.mul_assign(&w_m);
}
k += 2 * m;
}
m *= 2;
}
}
pub(crate) fn parallel_fft<F: PrimeField>(a: &mut [F], worker: &Worker, omega: F, log_n: u32, log_cpus: u32) {
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![F::zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
worker.scope(0, |scope, _| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
scope.spawn(move |_| {
let omega_j = omega.pow(&[j as u64]);
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
let mut elt = F::one();
for (i, x) in tmp.iter_mut().enumerate().take(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t *= &elt;
*x += &t;
elt *= &omega_step;
}
elt *= &omega_j;
}
serial_fft(tmp, new_omega, log_new_n);
});
}
});
worker.scope(a.len(), |scope, chunk| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
scope.spawn(move |_| {
let mut idx = idx * chunk;
let mask = (1 << log_cpus) - 1;
for a in a {
*a = tmp[idx & mask][idx >> log_cpus];
idx += 1;
}
});
}
});
}
pub struct Elements<F: PrimeField> {
cur_elem: F,
cur_pow: u64,
domain: EvaluationDomain<F>,
}
impl<F: PrimeField> Iterator for Elements<F> {
type Item = F;
fn next(&mut self) -> Option<F> {
if self.cur_pow == self.domain.size {
None
} else {
let cur_elem = self.cur_elem;
self.cur_elem *= &self.domain.group_gen;
self.cur_pow += 1;
Some(cur_elem)
}
}
}
#[cfg(test)]
mod tests {
use crate::fft::EvaluationDomain;
use snarkvm_curves::bls12_377::Fr;
use snarkvm_models::curves::{Field, Zero};
use rand::{thread_rng, Rng};
#[test]
fn vanishing_polynomial_evaluation() {
let rng = &mut thread_rng();
for coeffs in 0..10 {
let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
let z = domain.vanishing_polynomial();
for _ in 0..100 {
let point = rng.gen();
assert_eq!(z.evaluate(point), domain.evaluate_vanishing_polynomial(point))
}
}
}
#[test]
fn vanishing_polynomial_vanishes_on_domain() {
for coeffs in 0..1000 {
let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
let z = domain.vanishing_polynomial();
for point in domain.elements() {
assert!(z.evaluate(point).is_zero())
}
}
}
#[test]
fn size_of_elements() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::<Fr>::new(size).unwrap();
let domain_size = domain.size();
assert_eq!(domain_size, domain.elements().count());
}
}
#[test]
fn elements_contents() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::<Fr>::new(size).unwrap();
for (i, element) in domain.elements().enumerate() {
assert_eq!(element, domain.group_gen.pow([i as u64]));
}
}
}
}