1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::fft::{DenseOrSparsePolynomial, DensePolynomial, EvaluationDomain, Evaluations};
use snarkvm_errors::serialization::SerializationError;
use snarkvm_models::curves::{Field, PrimeField};
use snarkvm_utilities::serialize::*;
use std::fmt;
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct SparsePolynomial<F: Field> {
pub coeffs: Vec<(usize, F)>,
}
impl<F: Field> fmt::Debug for SparsePolynomial<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
for (i, coeff) in self.coeffs.iter().filter(|(_, c)| !c.is_zero()) {
if *i == 0 {
write!(f, "\n{:?}", coeff)?;
} else if *i == 1 {
write!(f, " + \n{:?} * x", coeff)?;
} else {
write!(f, " + \n{:?} * x^{}", coeff, i)?;
}
}
Ok(())
}
}
impl<F: Field> SparsePolynomial<F> {
pub fn zero() -> Self {
Self { coeffs: Vec::new() }
}
pub fn is_zero(&self) -> bool {
self.coeffs.is_empty() || self.coeffs.iter().all(|(_, c)| c.is_zero())
}
pub fn from_coefficients_slice(coeffs: &[(usize, F)]) -> Self {
Self::from_coefficients_vec(coeffs.to_vec())
}
pub fn from_coefficients_vec(mut coeffs: Vec<(usize, F)>) -> Self {
while coeffs.last().map_or(false, |(_, c)| c.is_zero()) {
coeffs.pop();
}
assert!(coeffs.last().map_or(true, |(_, c)| !c.is_zero()));
Self { coeffs }
}
pub fn degree(&self) -> usize {
if self.is_zero() {
0
} else {
assert!(self.coeffs.last().map_or(false, |(_, c)| !c.is_zero()));
self.coeffs.last().unwrap().0
}
}
pub fn evaluate(&self, point: F) -> F {
if self.is_zero() {
return F::zero();
}
let mut total = F::zero();
for (i, c) in &self.coeffs {
total += &(*c * &point.pow(&[*i as u64]));
}
total
}
pub fn mul(&self, other: &Self) -> Self {
if self.is_zero() || other.is_zero() {
SparsePolynomial::zero()
} else {
let mut result = std::collections::HashMap::new();
for (i, self_coeff) in self.coeffs.iter() {
for (j, other_coeff) in other.coeffs.iter() {
let cur_coeff = result.entry(i + j).or_insert_with(F::zero);
*cur_coeff += &(*self_coeff * other_coeff);
}
}
let mut result = result.into_iter().collect::<Vec<_>>();
result.sort_by(|a, b| a.0.cmp(&b.0));
SparsePolynomial::from_coefficients_vec(result)
}
}
}
impl<F: PrimeField> SparsePolynomial<F> {
pub fn evaluate_over_domain_by_ref(&self, domain: EvaluationDomain<F>) -> Evaluations<F> {
let poly: DenseOrSparsePolynomial<'_, F> = self.into();
DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
}
pub fn evaluate_over_domain(self, domain: EvaluationDomain<F>) -> Evaluations<F> {
let poly: DenseOrSparsePolynomial<'_, F> = self.into();
DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
}
}
impl<F: Field> Into<DensePolynomial<F>> for SparsePolynomial<F> {
fn into(self) -> DensePolynomial<F> {
let mut other = vec![F::zero(); self.degree() + 1];
for (i, coeff) in self.coeffs {
other[i] = coeff;
}
DensePolynomial::from_coefficients_vec(other)
}
}
#[cfg(test)]
mod tests {
use crate::fft::{DensePolynomial, EvaluationDomain, SparsePolynomial};
use snarkvm_curves::bls12_377::Fr;
use snarkvm_models::curves::One;
#[test]
fn evaluate_over_domain() {
for size in 2..10 {
let domain_size = 1 << size;
let domain = EvaluationDomain::new(domain_size).unwrap();
let two = Fr::one() + &Fr::one();
let sparse_poly = SparsePolynomial::from_coefficients_vec(vec![(0, two), (1, two)]);
let evals1 = sparse_poly.evaluate_over_domain_by_ref(domain);
let dense_poly: DensePolynomial<Fr> = sparse_poly.into();
let evals2 = dense_poly.clone().evaluate_over_domain(domain);
assert_eq!(evals1.clone().interpolate(), evals2.clone().interpolate());
assert_eq!(evals1.interpolate(), dense_poly);
assert_eq!(evals2.interpolate(), dense_poly);
}
}
}