1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    fft::{DensePolynomial, EvaluationDomain},
    AlgebraicSponge,
};
use snarkvm_curves::{AffineCurve, PairingCurve, PairingEngine, ProjectiveCurve};
use snarkvm_fields::{ConstraintFieldError, ToConstraintField, Zero};
use snarkvm_parameters::testnet3::PowersOfG;
use snarkvm_utilities::{
    borrow::Cow,
    error,
    io::{Read, Write},
    serialize::{CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate},
    FromBytes,
    ToBytes,
    ToMinimalBits,
};

use crate::srs::{UniversalProver, UniversalVerifier};
use anyhow::Result;
use core::ops::{Add, AddAssign};
use parking_lot::RwLock;
use rand_core::RngCore;
use std::{collections::BTreeMap, io, ops::Range, sync::Arc};

/// `UniversalParams` are the universal parameters for the KZG10 scheme.
#[derive(Clone, Debug)]
pub struct UniversalParams<E: PairingEngine> {
    /// Group elements of the form `{ \beta^i G }`, where `i` ranges from 0 to `degree`,
    /// and group elements of the form `{ \beta^i \gamma G }`, where `i` ranges from 0 to `degree`.
    /// This struct provides an abstraction over the powers which are located on-disk
    /// to reduce memory usage.
    powers: Arc<RwLock<PowersOfG<E>>>,
    /// The generator of G2.
    pub h: E::G2Affine,
    /// The generator of G2, prepared for use in pairings.
    pub prepared_h: <E::G2Affine as PairingCurve>::Prepared,
    /// \beta times the above generator of G2, prepared for use in pairings.
    pub prepared_beta_h: <E::G2Affine as PairingCurve>::Prepared,
}

impl<E: PairingEngine> UniversalParams<E> {
    pub fn load() -> Result<Self> {
        let powers = Arc::new(RwLock::new(PowersOfG::<E>::load()?));
        let h = E::G2Affine::prime_subgroup_generator();
        let prepared_h = h.prepare();
        let prepared_beta_h = powers.read().beta_h().prepare();

        Ok(Self { powers, h, prepared_h, prepared_beta_h })
    }

    pub fn download_powers_for(&self, range: Range<usize>) -> Result<()> {
        self.powers.write().download_powers_for(range)
    }

    pub fn lagrange_basis(&self, domain: EvaluationDomain<E::Fr>) -> Result<Vec<E::G1Affine>> {
        let basis = domain
            .ifft(&self.powers_of_beta_g(0, domain.size())?.iter().map(|e| (*e).to_projective()).collect::<Vec<_>>());
        Ok(E::G1Projective::batch_normalization_into_affine(basis))
    }

    pub fn power_of_beta_g(&self, index: usize) -> Result<E::G1Affine> {
        self.powers.write().power_of_beta_g(index)
    }

    pub fn powers_of_beta_g(&self, lower: usize, upper: usize) -> Result<Vec<E::G1Affine>> {
        Ok(self.powers.write().powers_of_beta_g(lower..upper)?.to_vec())
    }

    pub fn powers_of_beta_times_gamma_g(&self) -> Arc<BTreeMap<usize, E::G1Affine>> {
        self.powers.read().powers_of_beta_gamma_g()
    }

    pub fn beta_h(&self) -> E::G2Affine {
        self.powers.read().beta_h()
    }

    pub fn max_degree(&self) -> usize {
        self.powers.read().max_num_powers() - 1
    }

    pub fn to_universal_prover(&self) -> Result<UniversalProver<E>> {
        Ok(UniversalProver::<E> { max_degree: self.max_degree(), _unused: None })
    }

    pub fn to_universal_verifier(&self) -> Result<UniversalVerifier<E>> {
        let g = self.power_of_beta_g(0)?;
        let h = self.h;
        let beta_h = self.beta_h();
        let gamma_g = self.powers_of_beta_times_gamma_g()[&0];
        let prepared_h = self.prepared_h.clone();
        let prepared_beta_h = self.prepared_beta_h.clone();

        Ok(UniversalVerifier {
            vk: VerifierKey::<E> { g, gamma_g, h, beta_h, prepared_h, prepared_beta_h },
            prepared_negative_powers_of_beta_h: self.powers.read().prepared_negative_powers_of_beta_h(),
        })
    }
}

impl<E: PairingEngine> FromBytes for UniversalParams<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        // Deserialize `powers`.
        let powers = Arc::new(RwLock::new(PowersOfG::read_le(&mut reader)?));

        // Deserialize `h`.
        let h: E::G2Affine = FromBytes::read_le(&mut reader)?;

        // Deserialize `prepared_h`.
        let prepared_h: <E::G2Affine as PairingCurve>::Prepared = FromBytes::read_le(&mut reader)?;

        // Deserialize `prepared_beta_h`.
        let prepared_beta_h: <E::G2Affine as PairingCurve>::Prepared = FromBytes::read_le(&mut reader)?;

        Ok(Self { powers, h, prepared_h, prepared_beta_h })
    }
}

impl<E: PairingEngine> ToBytes for UniversalParams<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        // Serialize powers.
        self.powers.read().write_le(&mut writer)?;

        // Serialize `h`.
        self.h.write_le(&mut writer)?;

        // Serialize `prepared_h`.
        self.prepared_h.write_le(&mut writer)?;

        // Serialize `prepared_beta_h`.
        self.prepared_beta_h.write_le(&mut writer)?;

        Ok(())
    }
}

/// `Powers` is used to commit to and create evaluation proofs for a given polynomial.
#[derive(Clone, Debug, Default, Hash)]
pub struct Powers<'a, E: PairingEngine> {
    /// Group elements of the form `β^i G`, for different values of `i`.
    pub powers_of_beta_g: Cow<'a, [E::G1Affine]>,
    /// Group elements of the form `β^i γG`, for different values of `i`.
    pub powers_of_beta_times_gamma_g: Cow<'a, [E::G1Affine]>,
}

impl<E: PairingEngine> Powers<'_, E> {
    /// The number of powers in `self`.
    pub fn size(&self) -> usize {
        self.powers_of_beta_g.len()
    }
}
/// `LagrangeBasis` is used to commit to and create evaluation proofs for a given polynomial.
#[derive(Clone, Debug, Hash)]
pub struct LagrangeBasis<'a, E: PairingEngine> {
    /// Group elements of the form `β^i G`, for different values of `i`.
    pub lagrange_basis_at_beta_g: Cow<'a, [E::G1Affine]>,
    /// Group elements of the form `β^i γG`, for different values of `i`.
    pub powers_of_beta_times_gamma_g: Cow<'a, [E::G1Affine]>,
    /// Domain representing the multiplicative subgroup the powers
    /// in `self.lagrange_basis_at_beta_g` are defined over.
    pub domain: EvaluationDomain<E::Fr>,
}

impl<E: PairingEngine> LagrangeBasis<'_, E> {
    /// The number of powers in `self`.
    pub fn size(&self) -> usize {
        self.lagrange_basis_at_beta_g.len()
    }
}

/// `VerifierKey` is used to check evaluation proofs for a given commitment.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct VerifierKey<E: PairingEngine> {
    /// The generator of G1.
    pub g: E::G1Affine,
    /// The generator of G1 that is used for making a commitment hiding.
    pub gamma_g: E::G1Affine,
    /// The generator of G2.
    pub h: E::G2Affine,
    /// \beta times the above generator of G2.
    pub beta_h: E::G2Affine,
    /// The generator of G2, prepared for use in pairings.
    pub prepared_h: <E::G2Affine as PairingCurve>::Prepared,
    /// \beta times the above generator of G2, prepared for use in pairings.
    pub prepared_beta_h: <E::G2Affine as PairingCurve>::Prepared,
}

impl<E: PairingEngine> CanonicalSerialize for VerifierKey<E> {
    fn serialize_with_mode<W: Write>(&self, mut writer: W, compress: Compress) -> Result<(), SerializationError> {
        self.g.serialize_with_mode(&mut writer, compress)?;
        self.gamma_g.serialize_with_mode(&mut writer, compress)?;
        self.h.serialize_with_mode(&mut writer, compress)?;
        self.beta_h.serialize_with_mode(&mut writer, compress)?;
        Ok(())
    }

    fn serialized_size(&self, compress: Compress) -> usize {
        self.g.serialized_size(compress)
            + self.gamma_g.serialized_size(compress)
            + self.h.serialized_size(compress)
            + self.beta_h.serialized_size(compress)
    }
}

impl<E: PairingEngine> CanonicalDeserialize for VerifierKey<E> {
    fn deserialize_with_mode<R: Read>(
        mut reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        let g = CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        let gamma_g = CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        let h: E::G2Affine = CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        let beta_h: E::G2Affine = CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        let prepared_h = h.prepare();
        let prepared_beta_h = beta_h.prepare();
        Ok(VerifierKey { g, gamma_g, h, beta_h, prepared_h, prepared_beta_h })
    }
}

impl<E: PairingEngine> Valid for VerifierKey<E> {
    fn check(&self) -> Result<(), SerializationError> {
        Valid::check(&self.g)?;
        Valid::check(&self.gamma_g)?;
        Valid::check(&self.h)?;
        Valid::check(&self.beta_h)?;
        Ok(())
    }

    fn batch_check<'a>(batch: impl Iterator<Item = &'a Self> + Send) -> Result<(), SerializationError>
    where
        Self: 'a,
    {
        let batch: Vec<_> = batch.collect();
        Valid::batch_check(batch.iter().map(|v| &v.g))?;
        Valid::batch_check(batch.iter().map(|v| &v.gamma_g))?;
        Valid::batch_check(batch.iter().map(|v| &v.h))?;
        Valid::batch_check(batch.iter().map(|v| &v.beta_h))?;
        Ok(())
    }
}

impl<E: PairingEngine> FromBytes for VerifierKey<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        CanonicalDeserialize::deserialize_compressed(&mut reader)
            .map_err(|_| error("could not deserialize VerifierKey"))
    }
}

impl<E: PairingEngine> ToBytes for VerifierKey<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(self, &mut writer)
            .map_err(|_| error("could not serialize VerifierKey"))
    }
}

/// `KZGCommitment` commits to a polynomial. It is output by `KZG10::commit`.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash, CanonicalSerialize, CanonicalDeserialize)]
pub struct KZGCommitment<E: PairingEngine>(
    /// The commitment is a group element.
    pub E::G1Affine,
);

impl<E: PairingEngine> FromBytes for KZGCommitment<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        CanonicalDeserialize::deserialize_compressed(&mut reader)
            .map_err(|_| error("could not deserialize KZGCommitment"))
    }
}

impl<E: PairingEngine> ToBytes for KZGCommitment<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(self, &mut writer)
            .map_err(|_| error("could not serialize KZGCommitment"))
    }
}

impl<E: PairingEngine> ToMinimalBits for KZGCommitment<E> {
    fn to_minimal_bits(&self) -> Vec<bool> {
        self.0.to_minimal_bits()
    }
}

impl<E: PairingEngine> KZGCommitment<E> {
    #[inline]
    pub fn empty() -> Self {
        KZGCommitment(E::G1Affine::zero())
    }

    pub fn has_degree_bound(&self) -> bool {
        false
    }

    pub fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool {
        self.0.is_in_correct_subgroup_assuming_on_curve()
    }
}

impl<E: PairingEngine> ToConstraintField<E::Fq> for KZGCommitment<E> {
    fn to_field_elements(&self) -> Result<Vec<E::Fq>, ConstraintFieldError> {
        self.0.to_field_elements()
    }
}

/// `KZGRandomness` hides the polynomial inside a commitment. It is output by `KZG10::commit`.
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash, CanonicalSerialize, CanonicalDeserialize)]
pub struct KZGRandomness<E: PairingEngine> {
    /// For KZG10, the commitment randomness is a random polynomial.
    pub blinding_polynomial: DensePolynomial<E::Fr>,
}
impl<E: PairingEngine> FromBytes for KZGRandomness<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        CanonicalDeserialize::deserialize_compressed(&mut reader)
            .map_err(|_| error("could not deserialize KZGRandomness"))
    }
}

impl<E: PairingEngine> ToBytes for KZGRandomness<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(self, &mut writer)
            .map_err(|_| error("could not serialize KZGRandomness"))
    }
}

impl<E: PairingEngine> KZGRandomness<E> {
    /// Does `self` provide any hiding properties to the corresponding commitment?
    /// `self.is_hiding() == true` only if the underlying polynomial is non-zero.
    #[inline]
    pub fn is_hiding(&self) -> bool {
        !self.blinding_polynomial.is_zero()
    }

    /// What is the degree of the hiding polynomial for a given hiding bound?
    #[inline]
    pub fn calculate_hiding_polynomial_degree(hiding_bound: usize) -> usize {
        hiding_bound + 1
    }
}

impl<E: PairingEngine> KZGRandomness<E> {
    pub fn empty() -> Self {
        Self { blinding_polynomial: DensePolynomial::zero() }
    }

    pub fn rand<R: RngCore>(hiding_bound: usize, _: bool, rng: &mut R) -> Self {
        let mut randomness = KZGRandomness::empty();
        let hiding_poly_degree = Self::calculate_hiding_polynomial_degree(hiding_bound);
        randomness.blinding_polynomial = DensePolynomial::rand(hiding_poly_degree, rng);
        randomness
    }
}

impl<'a, E: PairingEngine> Add<&'a KZGRandomness<E>> for KZGRandomness<E> {
    type Output = Self;

    #[inline]
    fn add(mut self, other: &'a Self) -> Self {
        self.blinding_polynomial += &other.blinding_polynomial;
        self
    }
}

impl<'a, E: PairingEngine> Add<(E::Fr, &'a KZGRandomness<E>)> for KZGRandomness<E> {
    type Output = Self;

    #[inline]
    fn add(mut self, other: (E::Fr, &'a KZGRandomness<E>)) -> Self {
        self += other;
        self
    }
}

impl<'a, E: PairingEngine> AddAssign<&'a KZGRandomness<E>> for KZGRandomness<E> {
    #[inline]
    fn add_assign(&mut self, other: &'a Self) {
        self.blinding_polynomial += &other.blinding_polynomial;
    }
}

impl<'a, E: PairingEngine> AddAssign<(E::Fr, &'a KZGRandomness<E>)> for KZGRandomness<E> {
    #[inline]
    fn add_assign(&mut self, (f, other): (E::Fr, &'a KZGRandomness<E>)) {
        self.blinding_polynomial += (f, &other.blinding_polynomial);
    }
}

/// `KZGProof` is an evaluation proof that is output by `KZG10::open`.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash, CanonicalSerialize, CanonicalDeserialize)]
pub struct KZGProof<E: PairingEngine> {
    /// This is a commitment to the witness polynomial; see [\[KZG10\]][kzg] for more details.
    ///
    /// [kzg]: http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
    pub w: E::G1Affine,
    /// This is the evaluation of the random polynomial at the point for which
    /// the evaluation proof was produced.
    pub random_v: Option<E::Fr>,
}

impl<E: PairingEngine> KZGProof<E> {
    pub fn absorb_into_sponge(&self, sponge: &mut impl AlgebraicSponge<E::Fq, 2>) {
        sponge.absorb_native_field_elements(&self.w.to_field_elements().unwrap());
        if let Some(random_v) = self.random_v {
            sponge.absorb_nonnative_field_elements([random_v]);
        }
    }
}

impl<E: PairingEngine> FromBytes for KZGProof<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        CanonicalDeserialize::deserialize_compressed(&mut reader).map_err(|_| error("could not deserialize KZG proof"))
    }
}

impl<E: PairingEngine> ToBytes for KZGProof<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(self, &mut writer).map_err(|_| error("could not serialize KZG proof"))
    }
}

impl<E: PairingEngine> KZGProof<E> {
    pub fn is_hiding(&self) -> bool {
        self.random_v.is_some()
    }
}