1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    fft::DensePolynomial,
    msm::variable_base::VariableBase,
    polycommit::{kzg10, optional_rng::OptionalRng, PCError},
    srs::{UniversalProver, UniversalVerifier},
    AlgebraicSponge,
};
use hashbrown::HashMap;
use itertools::Itertools;
use snarkvm_curves::traits::{AffineCurve, PairingCurve, PairingEngine, ProjectiveCurve};
use snarkvm_fields::{One, Zero};

use anyhow::{bail, Result};
use core::{convert::TryInto, marker::PhantomData, ops::Mul};
use rand_core::{RngCore, SeedableRng};
use std::{
    borrow::Borrow,
    collections::{BTreeMap, BTreeSet},
};

mod data_structures;
pub use data_structures::*;

mod polynomial;
pub use polynomial::*;

/// Polynomial commitment based on [\[KZG10\]][kzg], with degree enforcement and
/// batching taken from [[MBKM19, “Sonic”]][sonic] (more precisely, their
/// counterparts in [[Gabizon19, “AuroraLight”]][al] that avoid negative G1 powers).
/// The (optional) hiding property of the commitment scheme follows the approach
/// described in [[CHMMVW20, “Marlin”]][marlin].
///
/// [kzg]: http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
/// [sonic]: https://eprint.iacr.org/2019/099
/// [al]: https://eprint.iacr.org/2019/601
/// [marlin]: https://eprint.iacr.org/2019/1047
#[derive(Clone, Debug)]
pub struct SonicKZG10<E: PairingEngine, S: AlgebraicSponge<E::Fq, 2>> {
    _engine: PhantomData<(E, S)>,
}

impl<E: PairingEngine, S: AlgebraicSponge<E::Fq, 2>> SonicKZG10<E, S> {
    pub fn load_srs(max_degree: usize) -> Result<UniversalParams<E>, PCError> {
        kzg10::KZG10::load_srs(max_degree).map_err(Into::into)
    }

    pub fn trim(
        pp: &UniversalParams<E>,
        supported_degree: usize,
        supported_lagrange_sizes: impl IntoIterator<Item = usize>,
        supported_hiding_bound: usize,
        enforced_degree_bounds: Option<&[usize]>,
    ) -> Result<(CommitterKey<E>, UniversalVerifier<E>)> {
        let trim_time = start_timer!(|| "Trimming public parameters");
        let max_degree = pp.max_degree();

        let enforced_degree_bounds = enforced_degree_bounds.map(|bounds| {
            let mut v = bounds.to_vec();
            v.sort_unstable();
            v.dedup();
            v
        });

        let (shifted_powers_of_beta_g, shifted_powers_of_beta_times_gamma_g) = if let Some(enforced_degree_bounds) =
            enforced_degree_bounds.as_ref()
        {
            if enforced_degree_bounds.is_empty() {
                (None, None)
            } else {
                let highest_enforced_degree_bound = *enforced_degree_bounds.last().unwrap();
                if highest_enforced_degree_bound > supported_degree {
                    bail!(
                        "The highest enforced degree bound {highest_enforced_degree_bound} is larger than the supported degree {supported_degree}"
                    );
                }

                let lowest_shift_degree = max_degree - highest_enforced_degree_bound;

                let shifted_ck_time = start_timer!(|| format!(
                    "Constructing `shifted_powers_of_beta_g` of size {}",
                    max_degree - lowest_shift_degree + 1
                ));

                let shifted_powers_of_beta_g = pp.powers_of_beta_g(lowest_shift_degree, pp.max_degree() + 1)?.to_vec();
                let mut shifted_powers_of_beta_times_gamma_g = BTreeMap::new();
                // Also add degree 0.
                for degree_bound in enforced_degree_bounds {
                    let shift_degree = max_degree - degree_bound;
                    let mut powers_for_degree_bound = Vec::with_capacity((max_degree + 2).saturating_sub(shift_degree));
                    for i in 0..=supported_hiding_bound + 1 {
                        // We have an additional degree in `powers_of_beta_times_gamma_g` beyond `powers_of_beta_g`.
                        if shift_degree + i < max_degree + 2 {
                            powers_for_degree_bound.push(pp.powers_of_beta_times_gamma_g()[&(shift_degree + i)]);
                        }
                    }
                    shifted_powers_of_beta_times_gamma_g.insert(*degree_bound, powers_for_degree_bound);
                }

                end_timer!(shifted_ck_time);

                (Some(shifted_powers_of_beta_g), Some(shifted_powers_of_beta_times_gamma_g))
            }
        } else {
            (None, None)
        };

        let powers_of_beta_g = pp.powers_of_beta_g(0, supported_degree + 1)?.to_vec();
        let powers_of_beta_times_gamma_g = (0..=(supported_hiding_bound + 1))
            .map(|i| {
                pp.powers_of_beta_times_gamma_g()
                    .get(&i)
                    .copied()
                    .ok_or(PCError::HidingBoundToolarge { hiding_poly_degree: supported_hiding_bound, num_powers: 0 })
            })
            .collect::<Result<Vec<_>, _>>()?;

        let mut lagrange_bases_at_beta_g = BTreeMap::new();
        for size in supported_lagrange_sizes {
            let lagrange_time = start_timer!(|| format!("Constructing `lagrange_bases` of size {size}"));
            if !size.is_power_of_two() {
                bail!("The Lagrange basis size ({size}) is not a power of two")
            }
            if size > pp.max_degree() + 1 {
                bail!("The Lagrange basis size ({size}) is larger than the supported degree ({})", pp.max_degree() + 1)
            }
            let domain = crate::fft::EvaluationDomain::new(size).unwrap();
            let lagrange_basis_at_beta_g = pp.lagrange_basis(domain)?;
            assert!(lagrange_basis_at_beta_g.len().is_power_of_two());
            lagrange_bases_at_beta_g.insert(domain.size(), lagrange_basis_at_beta_g);
            end_timer!(lagrange_time);
        }

        let ck = CommitterKey {
            powers_of_beta_g,
            lagrange_bases_at_beta_g,
            powers_of_beta_times_gamma_g,
            shifted_powers_of_beta_g,
            shifted_powers_of_beta_times_gamma_g,
            enforced_degree_bounds,
        };

        let vk = pp.to_universal_verifier()?;

        end_timer!(trim_time);
        Ok((ck, vk))
    }

    /// Outputs a commitments to `polynomials`.
    ///
    /// If `polynomials[i].is_hiding()`, then the `i`-th commitment is hiding
    /// up to `polynomials.hiding_bound()` queries.
    ///
    /// `rng` should not be `None` if `polynomials[i].is_hiding() == true` for any `i`.
    ///
    /// If for some `i`, `polynomials[i].is_hiding() == false`, then the
    /// corresponding randomness is `Randomness<E>::empty()`.
    ///
    /// If for some `i`, `polynomials[i].degree_bound().is_some()`, then that
    /// polynomial will have the corresponding degree bound enforced.
    #[allow(clippy::type_complexity)]
    #[allow(clippy::format_push_string)]
    pub fn commit<'b>(
        universal_prover: &UniversalProver<E>,
        ck: &CommitterUnionKey<E>,
        polynomials: impl IntoIterator<Item = LabeledPolynomialWithBasis<'b, E::Fr>>,
        rng: Option<&mut dyn RngCore>,
    ) -> Result<(Vec<LabeledCommitment<Commitment<E>>>, Vec<Randomness<E>>), PCError> {
        let rng = &mut OptionalRng(rng);
        let commit_time = start_timer!(|| "Committing to polynomials");
        let mut labeled_comms: Vec<LabeledCommitment<Commitment<E>>> = Vec::new();
        let mut randomness: Vec<Randomness<E>> = Vec::new();

        let mut pool = snarkvm_utilities::ExecutionPool::<Result<_, _>>::new();
        for p in polynomials {
            let seed = rng.0.as_mut().map(|r| {
                let mut seed = [0u8; 32];
                r.fill_bytes(&mut seed);
                seed
            });

            kzg10::KZG10::<E>::check_degrees_and_bounds(
                universal_prover.max_degree,
                ck.enforced_degree_bounds.as_deref(),
                p.clone(),
            )?;
            let degree_bound = p.degree_bound();
            let hiding_bound = p.hiding_bound();
            let label = p.label().to_string();

            pool.add_job(move || {
                let mut rng = seed.map(rand::rngs::StdRng::from_seed);
                add_to_trace!(|| "PC::Commit", || format!(
                    "Polynomial {} of degree {}, degree bound {:?}, and hiding bound {:?}",
                    label,
                    p.degree(),
                    degree_bound,
                    hiding_bound,
                ));

                #[allow(clippy::or_fun_call)]
                let (comm, rand) = p
                    .sum()
                    .map(move |p| {
                        let rng_ref = rng.as_mut().map(|s| s as _);
                        match p {
                            PolynomialWithBasis::Lagrange { evaluations } => {
                                let domain = crate::fft::EvaluationDomain::new(evaluations.evaluations.len()).unwrap();
                                let lagrange_basis = ck
                                    .lagrange_basis(domain)
                                    .ok_or(PCError::UnsupportedLagrangeBasisSize(domain.size()))?;
                                assert!(domain.size().is_power_of_two());
                                assert!(lagrange_basis.size().is_power_of_two());
                                kzg10::KZG10::commit_lagrange(
                                    &lagrange_basis,
                                    &evaluations.evaluations,
                                    hiding_bound,
                                    rng_ref,
                                )
                            }
                            PolynomialWithBasis::Monomial { polynomial, degree_bound } => {
                                let powers = if let Some(degree_bound) = degree_bound {
                                    ck.shifted_powers_of_beta_g(degree_bound).unwrap()
                                } else {
                                    ck.powers()
                                };

                                kzg10::KZG10::commit(&powers, &polynomial, hiding_bound, rng_ref)
                            }
                        }
                    })
                    .collect::<Result<Vec<_>, _>>()?
                    .into_iter()
                    .fold((E::G1Projective::zero(), Randomness::empty()), |mut a, b| {
                        a.0.add_assign_mixed(&b.0.0);
                        a.1 += (E::Fr::one(), &b.1);
                        a
                    });
                let comm = kzg10::KZGCommitment(comm.to_affine());

                Ok((LabeledCommitment::new(label.to_string(), comm, degree_bound), rand))
            });
        }
        let results: Vec<Result<_, PCError>> = pool.execute_all();
        for result in results {
            let (comm, rand) = result?;
            labeled_comms.push(comm);
            randomness.push(rand);
        }

        end_timer!(commit_time);
        Ok((labeled_comms, randomness))
    }

    pub fn combine_for_open<'a>(
        universal_prover: &UniversalProver<E>,
        ck: &CommitterUnionKey<E>,
        labeled_polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        rands: impl IntoIterator<Item = &'a Randomness<E>>,
        fs_rng: &mut S,
    ) -> Result<(DensePolynomial<E::Fr>, Randomness<E>), PCError>
    where
        Randomness<E>: 'a,
        Commitment<E>: 'a,
    {
        Ok(Self::combine_polynomials(labeled_polynomials.into_iter().zip_eq(rands).map(|(p, r)| {
            let enforced_degree_bounds: Option<&[usize]> = ck.enforced_degree_bounds.as_deref();

            kzg10::KZG10::<E>::check_degrees_and_bounds(universal_prover.max_degree, enforced_degree_bounds, p)
                .unwrap();
            let challenge = fs_rng.squeeze_short_nonnative_field_element::<E::Fr>();
            (challenge, p.polynomial().to_dense(), r)
        })))
    }

    /// On input a list of labeled polynomials and a query set, `open` outputs a proof of evaluation
    /// of the polynomials at the points in the query set.
    pub fn batch_open<'a>(
        universal_prover: &UniversalProver<E>,
        ck: &CommitterUnionKey<E>,
        labeled_polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        query_set: &QuerySet<E::Fr>,
        rands: impl IntoIterator<Item = &'a Randomness<E>>,
        fs_rng: &mut S,
    ) -> Result<BatchProof<E>, PCError>
    where
        Randomness<E>: 'a,
        Commitment<E>: 'a,
    {
        let poly_rand_comm: HashMap<_, _> = labeled_polynomials
            .into_iter()
            .zip_eq(rands)
            .zip_eq(commitments.into_iter())
            .map(|((poly, r), comm)| (poly.label(), (poly, r, comm)))
            .collect();

        let open_time = start_timer!(|| format!(
            "Opening {} polynomials at query set of size {}",
            poly_rand_comm.len(),
            query_set.len(),
        ));

        let mut query_to_labels_map = BTreeMap::new();

        for (label, (point_name, point)) in query_set.iter() {
            let labels = query_to_labels_map.entry(point_name).or_insert((point, BTreeSet::new()));
            labels.1.insert(label);
        }

        let mut pool = snarkvm_utilities::ExecutionPool::<_>::with_capacity(query_to_labels_map.len());
        for (_point_name, (&query, labels)) in query_to_labels_map.into_iter() {
            let mut query_polys = Vec::with_capacity(labels.len());
            let mut query_rands = Vec::with_capacity(labels.len());
            let mut query_comms = Vec::with_capacity(labels.len());

            for label in labels {
                let (polynomial, rand, comm) =
                    poly_rand_comm.get(label as &str).ok_or(PCError::MissingPolynomial { label: label.to_string() })?;

                query_polys.push(*polynomial);
                query_rands.push(*rand);
                query_comms.push(*comm);
            }
            let (polynomial, rand) = Self::combine_for_open(universal_prover, ck, query_polys, query_rands, fs_rng)?;
            let _randomizer = fs_rng.squeeze_short_nonnative_field_element::<E::Fr>();

            pool.add_job(move || {
                let proof_time = start_timer!(|| "Creating proof");
                let proof = kzg10::KZG10::open(&ck.powers(), &polynomial, query, &rand);
                end_timer!(proof_time);
                proof
            });
        }
        let batch_proof = pool.execute_all().into_iter().collect::<Result<_, _>>().map(BatchProof);
        end_timer!(open_time);

        batch_proof
    }

    pub fn batch_check<'a>(
        vk: &UniversalVerifier<E>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        query_set: &QuerySet<E::Fr>,
        values: &Evaluations<E::Fr>,
        proof: &BatchProof<E>,
        fs_rng: &mut S,
    ) -> Result<bool, PCError>
    where
        Commitment<E>: 'a,
    {
        let commitments: BTreeMap<_, _> = commitments.into_iter().map(|c| (c.label().to_owned(), c)).collect();
        let batch_check_time = start_timer!(|| format!(
            "Checking {} commitments at query set of size {}",
            commitments.len(),
            query_set.len(),
        ));
        let mut query_to_labels_map = BTreeMap::new();

        for (label, (point_name, point)) in query_set.iter() {
            let labels = query_to_labels_map.entry(point_name).or_insert((point, BTreeSet::new()));
            labels.1.insert(label);
        }

        assert_eq!(proof.0.len(), query_to_labels_map.len());

        let mut randomizer = E::Fr::one();

        let mut combined_comms = BTreeMap::new();
        let mut combined_witness = E::G1Projective::zero();
        let mut combined_adjusted_witness = E::G1Projective::zero();

        for ((_query_name, (query, labels)), p) in query_to_labels_map.into_iter().zip_eq(&proof.0) {
            let mut comms_to_combine: Vec<&'_ LabeledCommitment<_>> = Vec::new();
            let mut values_to_combine = Vec::new();
            for label in labels.into_iter() {
                let commitment =
                    commitments.get(label).ok_or(PCError::MissingPolynomial { label: label.to_string() })?;

                let v_i = values
                    .get(&(label.clone(), *query))
                    .ok_or(PCError::MissingEvaluation { label: label.to_string() })?;

                comms_to_combine.push(commitment);
                values_to_combine.push(*v_i);
            }

            Self::accumulate_elems(
                &mut combined_comms,
                &mut combined_witness,
                &mut combined_adjusted_witness,
                vk,
                comms_to_combine.into_iter(),
                *query,
                values_to_combine.into_iter(),
                p,
                Some(randomizer),
                fs_rng,
            );

            randomizer = fs_rng.squeeze_short_nonnative_field_element::<E::Fr>();
        }

        let result = Self::check_elems(vk, combined_comms, combined_witness, combined_adjusted_witness);
        end_timer!(batch_check_time);
        result
    }

    pub fn open_combinations<'a>(
        universal_prover: &UniversalProver<E>,
        ck: &CommitterUnionKey<E>,
        linear_combinations: impl IntoIterator<Item = &'a LinearCombination<E::Fr>>,
        polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        query_set: &QuerySet<E::Fr>,
        rands: impl IntoIterator<Item = &'a Randomness<E>>,
        fs_rng: &mut S,
    ) -> Result<BatchLCProof<E>, PCError>
    where
        Randomness<E>: 'a,
        Commitment<E>: 'a,
    {
        let label_map = polynomials
            .into_iter()
            .zip_eq(rands)
            .zip_eq(commitments)
            .map(|((p, r), c)| (p.label(), (p, r, c)))
            .collect::<BTreeMap<_, _>>();

        let mut lc_polynomials = Vec::new();
        let mut lc_randomness = Vec::new();
        let mut lc_commitments = Vec::new();
        let mut lc_info = Vec::new();

        for lc in linear_combinations {
            let lc_label = lc.label().to_string();
            let mut poly = DensePolynomial::zero();
            let mut degree_bound = None;
            let mut hiding_bound = None;

            let mut randomness = Randomness::empty();
            let mut coeffs_and_comms = Vec::new();

            let num_polys = lc.len();
            for (coeff, label) in lc.iter().filter(|(_, l)| !l.is_one()) {
                let label: &String = label.try_into().expect("cannot be one!");
                let &(cur_poly, cur_rand, cur_comm) =
                    label_map.get(label as &str).ok_or(PCError::MissingPolynomial { label: label.to_string() })?;
                if num_polys == 1 && cur_poly.degree_bound().is_some() {
                    assert!(coeff.is_one(), "Coefficient must be one for degree-bounded equations");
                    degree_bound = cur_poly.degree_bound();
                } else if cur_poly.degree_bound().is_some() {
                    return Err(PCError::EquationHasDegreeBounds(lc_label));
                }
                // Some(_) > None, always.
                hiding_bound = core::cmp::max(hiding_bound, cur_poly.hiding_bound());
                poly += (*coeff, cur_poly.polynomial());
                randomness += (*coeff, cur_rand);
                coeffs_and_comms.push((*coeff, cur_comm.commitment()));
            }

            let lc_poly = LabeledPolynomial::new(lc_label.clone(), poly, degree_bound, hiding_bound);
            lc_polynomials.push(lc_poly);
            lc_randomness.push(randomness);
            lc_commitments.push(Self::combine_commitments(coeffs_and_comms));
            lc_info.push((lc_label, degree_bound));
        }

        let comms = Self::normalize_commitments(lc_commitments);
        let lc_commitments = lc_info
            .into_iter()
            .zip_eq(comms)
            .map(|((label, d), c)| LabeledCommitment::new(label, c, d))
            .collect::<Vec<_>>();

        let proof = Self::batch_open(
            universal_prover,
            ck,
            lc_polynomials.iter(),
            lc_commitments.iter(),
            query_set,
            lc_randomness.iter(),
            fs_rng,
        )?;

        Ok(BatchLCProof { proof, evaluations: None })
    }

    /// Checks that `values` are the true evaluations at `query_set` of the polynomials
    /// committed in `labeled_commitments`.
    pub fn check_combinations<'a>(
        vk: &UniversalVerifier<E>,
        linear_combinations: impl IntoIterator<Item = &'a LinearCombination<E::Fr>>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        query_set: &QuerySet<E::Fr>,
        evaluations: &Evaluations<E::Fr>,
        proof: &BatchLCProof<E>,
        fs_rng: &mut S,
    ) -> Result<bool, PCError>
    where
        Commitment<E>: 'a,
    {
        let BatchLCProof { proof, .. } = proof;
        let label_comm_map = commitments.into_iter().map(|c| (c.label(), c)).collect::<BTreeMap<_, _>>();

        let mut lc_commitments = Vec::new();
        let mut lc_info = Vec::new();
        let mut evaluations = evaluations.clone();

        let lc_processing_time = start_timer!(|| "Combining commitments");
        for lc in linear_combinations {
            let lc_label = lc.label().to_string();
            let num_polys = lc.len();

            let mut degree_bound = None;
            let mut coeffs_and_comms = Vec::new();

            for (coeff, label) in lc.iter() {
                if label.is_one() {
                    for ((label, _), ref mut eval) in evaluations.iter_mut() {
                        if label == &lc_label {
                            **eval -= coeff;
                        }
                    }
                } else {
                    let label: &String = label.try_into().unwrap();
                    let &cur_comm = label_comm_map
                        .get(label as &str)
                        .ok_or(PCError::MissingPolynomial { label: label.to_string() })?;

                    if num_polys == 1 && cur_comm.degree_bound().is_some() {
                        assert!(coeff.is_one(), "Coefficient must be one for degree-bounded equations");
                        degree_bound = cur_comm.degree_bound();
                    } else if cur_comm.degree_bound().is_some() {
                        return Err(PCError::EquationHasDegreeBounds(lc_label));
                    }
                    coeffs_and_comms.push((*coeff, cur_comm.commitment()));
                }
            }
            let lc_time = start_timer!(|| format!("Combining {num_polys} commitments for {lc_label}"));
            lc_commitments.push(Self::combine_commitments(coeffs_and_comms));
            end_timer!(lc_time);
            lc_info.push((lc_label, degree_bound));
        }
        end_timer!(lc_processing_time);

        let combined_comms_norm_time = start_timer!(|| "Normalizing commitments");
        let comms = Self::normalize_commitments(lc_commitments);
        let lc_commitments = lc_info
            .into_iter()
            .zip_eq(comms)
            .map(|((label, d), c)| LabeledCommitment::new(label, c, d))
            .collect::<Vec<_>>();
        end_timer!(combined_comms_norm_time);

        Self::batch_check(vk, &lc_commitments, query_set, &evaluations, proof, fs_rng)
    }
}

impl<E: PairingEngine, S: AlgebraicSponge<E::Fq, 2>> SonicKZG10<E, S> {
    fn combine_polynomials<'a, B: Borrow<DensePolynomial<E::Fr>>>(
        coeffs_polys_rands: impl IntoIterator<Item = (E::Fr, B, &'a Randomness<E>)>,
    ) -> (DensePolynomial<E::Fr>, Randomness<E>) {
        let mut combined_poly = DensePolynomial::zero();
        let mut combined_rand = Randomness::empty();
        for (coeff, poly, rand) in coeffs_polys_rands {
            let poly = poly.borrow();
            if coeff.is_one() {
                combined_poly += poly;
                combined_rand += rand;
            } else {
                combined_poly += (coeff, poly);
                combined_rand += (coeff, rand);
            }
        }
        (combined_poly, combined_rand)
    }

    /// MSM for `commitments` and `coeffs`
    fn combine_commitments<'a>(
        coeffs_and_comms: impl IntoIterator<Item = (E::Fr, &'a Commitment<E>)>,
    ) -> E::G1Projective {
        let (scalars, bases): (Vec<_>, Vec<_>) = coeffs_and_comms.into_iter().map(|(f, c)| (f.into(), c.0)).unzip();
        VariableBase::msm(&bases, &scalars)
    }

    fn normalize_commitments(commitments: Vec<E::G1Projective>) -> impl Iterator<Item = Commitment<E>> {
        let comms = E::G1Projective::batch_normalization_into_affine(commitments);
        comms.into_iter().map(|c| kzg10::KZGCommitment(c))
    }
}

impl<E: PairingEngine, S: AlgebraicSponge<E::Fq, 2>> SonicKZG10<E, S> {
    #[allow(clippy::too_many_arguments)]
    fn accumulate_elems<'a>(
        combined_comms: &mut BTreeMap<Option<usize>, E::G1Projective>,
        combined_witness: &mut E::G1Projective,
        combined_adjusted_witness: &mut E::G1Projective,
        vk: &UniversalVerifier<E>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        point: E::Fr,
        values: impl IntoIterator<Item = E::Fr>,
        proof: &kzg10::KZGProof<E>,
        randomizer: Option<E::Fr>,
        fs_rng: &mut S,
    ) {
        let acc_time = start_timer!(|| "Accumulating elements");
        // Keeps track of running combination of values
        let mut combined_values = E::Fr::zero();

        // Iterates through all of the commitments and accumulates common degree_bound elements in a BTreeMap
        for (labeled_comm, value) in commitments.into_iter().zip_eq(values) {
            let acc_timer = start_timer!(|| format!("Accumulating {}", labeled_comm.label()));
            let curr_challenge = fs_rng.squeeze_short_nonnative_field_element::<E::Fr>();

            combined_values += &(value * curr_challenge);

            let comm = labeled_comm.commitment();
            let degree_bound = labeled_comm.degree_bound();

            // Applying opening challenge and randomness (used in batch_checking)
            let coeff = randomizer.unwrap_or_else(E::Fr::one) * curr_challenge;
            let comm_with_challenge: E::G1Projective = comm.0.mul(coeff);

            // Accumulate values in the BTreeMap
            *combined_comms.entry(degree_bound).or_insert_with(E::G1Projective::zero) += &comm_with_challenge;
            end_timer!(acc_timer);
        }

        // Push expected results into list of elems. Power will be the negative of the expected power
        let mut bases = vec![vk.vk.g, -proof.w];
        let mut coeffs = vec![combined_values, point];
        if let Some(random_v) = proof.random_v {
            bases.push(vk.vk.gamma_g);
            coeffs.push(random_v);
        }
        *combined_witness += if let Some(randomizer) = randomizer {
            coeffs.iter_mut().for_each(|c| *c *= randomizer);
            proof.w.mul(randomizer)
        } else {
            proof.w.to_projective()
        };
        let coeffs = coeffs.into_iter().map(|c| c.into()).collect::<Vec<_>>();
        *combined_adjusted_witness += VariableBase::msm(&bases, &coeffs);
        end_timer!(acc_time);
    }

    #[allow(clippy::type_complexity)]
    fn check_elems(
        vk: &UniversalVerifier<E>,
        combined_comms: BTreeMap<Option<usize>, E::G1Projective>,
        combined_witness: E::G1Projective,
        combined_adjusted_witness: E::G1Projective,
    ) -> Result<bool, PCError> {
        let check_time = start_timer!(|| "Checking elems");
        let mut g1_projective_elems = Vec::with_capacity(combined_comms.len() + 2);
        let mut g2_prepared_elems = Vec::with_capacity(combined_comms.len() + 2);

        for (degree_bound, comm) in combined_comms.into_iter() {
            let shift_power = if let Some(degree_bound) = degree_bound {
                // Find the appropriate prepared shift for the degree bound.
                vk.prepared_negative_powers_of_beta_h
                    .get(&degree_bound)
                    .cloned()
                    .ok_or(PCError::UnsupportedDegreeBound(degree_bound))?
            } else {
                vk.vk.prepared_h.clone()
            };

            g1_projective_elems.push(comm);
            g2_prepared_elems.push(shift_power);
        }

        g1_projective_elems.push(-combined_adjusted_witness);
        g2_prepared_elems.push(vk.vk.prepared_h.clone());

        g1_projective_elems.push(-combined_witness);
        g2_prepared_elems.push(vk.vk.prepared_beta_h.clone());

        let g1_prepared_elems_iter = E::G1Projective::batch_normalization_into_affine(g1_projective_elems)
            .into_iter()
            .map(|a| a.prepare())
            .collect::<Vec<_>>();

        let g1_g2_prepared = g1_prepared_elems_iter.iter().zip_eq(g2_prepared_elems.iter());
        let is_one: bool = E::product_of_pairings(g1_g2_prepared).is_one();
        end_timer!(check_time);
        Ok(is_one)
    }
}

#[cfg(test)]
mod tests {
    #![allow(non_camel_case_types)]

    use super::{CommitterKey, SonicKZG10};
    use crate::{crypto_hash::PoseidonSponge, polycommit::test_templates::*};
    use snarkvm_curves::bls12_377::{Bls12_377, Fq};
    use snarkvm_utilities::{rand::TestRng, FromBytes, ToBytes};

    use rand::distributions::Distribution;

    type Sponge = PoseidonSponge<Fq, 2, 1>;
    type PC_Bls12_377 = SonicKZG10<Bls12_377, Sponge>;

    #[test]
    fn test_committer_key_serialization() {
        let rng = &mut TestRng::default();
        let max_degree = rand::distributions::Uniform::from(8..=64).sample(rng);
        let supported_degree = rand::distributions::Uniform::from(1..=max_degree).sample(rng);

        let lagrange_size = |d: usize| if d.is_power_of_two() { d } else { d.next_power_of_two() >> 1 };

        let pp = PC_Bls12_377::load_srs(max_degree).unwrap();

        let (ck, _vk) = PC_Bls12_377::trim(&pp, supported_degree, [lagrange_size(supported_degree)], 0, None).unwrap();

        let ck_bytes = ck.to_bytes_le().unwrap();
        let ck_recovered: CommitterKey<Bls12_377> = FromBytes::read_le(&ck_bytes[..]).unwrap();
        let ck_recovered_bytes = ck_recovered.to_bytes_le().unwrap();

        assert_eq!(&ck_bytes, &ck_recovered_bytes);
    }

    #[test]
    fn test_single_poly() {
        single_poly_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_quadratic_poly_degree_bound_multiple_queries() {
        quadratic_poly_degree_bound_multiple_queries_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_linear_poly_degree_bound() {
        linear_poly_degree_bound_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_single_poly_degree_bound() {
        single_poly_degree_bound_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_single_poly_degree_bound_multiple_queries() {
        single_poly_degree_bound_multiple_queries_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_two_polys_degree_bound_single_query() {
        two_polys_degree_bound_single_query_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_full_end_to_end() {
        full_end_to_end_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn test_single_equation() {
        single_equation_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn test_two_equation() {
        two_equation_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn test_two_equation_degree_bound() {
        two_equation_degree_bound_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn test_full_end_to_end_equation() {
        full_end_to_end_equation_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    #[should_panic]
    fn test_bad_degree_bound() {
        bad_degree_bound_test::<Bls12_377, Sponge>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn test_lagrange_commitment() {
        crate::polycommit::test_templates::lagrange_test_template::<Bls12_377, Sponge>()
            .expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }
}