use crate::r1cs::Variable;
use snarkvm_fields::Field;
use std::{
cmp::Ordering,
ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub},
};
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct LinearCombination<F: Field>(pub Vec<(Variable, F)>);
impl<F: Field> AsRef<[(Variable, F)]> for LinearCombination<F> {
#[inline]
fn as_ref(&self) -> &[(Variable, F)] {
&self.0
}
}
impl<F: Field> From<(F, Variable)> for LinearCombination<F> {
#[inline]
fn from((coeff, var): (F, Variable)) -> Self {
LinearCombination(vec![(var, coeff)])
}
}
impl<F: Field> From<Variable> for LinearCombination<F> {
#[inline]
fn from(var: Variable) -> Self {
LinearCombination(vec![(var, F::one())])
}
}
impl<F: Field> LinearCombination<F> {
#[inline]
pub fn zero() -> LinearCombination<F> {
LinearCombination(Vec::new())
}
#[inline]
pub fn replace_in_place(&mut self, other: Self) {
self.0.clear();
self.0.extend_from_slice(&other.0)
}
#[inline]
pub fn negate_in_place(&mut self) {
self.0.iter_mut().for_each(|(_, coeff)| *coeff = -(*coeff));
}
#[inline]
pub fn double_in_place(&mut self) {
self.0.iter_mut().for_each(|(_, coeff)| {
coeff.double_in_place();
});
}
#[inline]
pub fn get_var_loc(&self, search_var: &Variable) -> Result<usize, usize> {
if self.0.len() < 6 {
let mut found_index = 0;
for (i, (var, _)) in self.0.iter().enumerate() {
if var >= search_var {
found_index = i;
break;
} else {
found_index += 1;
}
}
if self.0.get(found_index).map(|x| &x.0 == search_var).unwrap_or_default() {
Ok(found_index)
} else {
Err(found_index)
}
} else {
self.0.binary_search_by_key(search_var, |&(cur_var, _)| cur_var)
}
}
}
impl<F: Field> Add<(F, Variable)> for LinearCombination<F> {
type Output = Self;
#[inline]
fn add(mut self, coeff_var: (F, Variable)) -> Self {
self += coeff_var;
self
}
}
impl<F: Field> AddAssign<(F, Variable)> for LinearCombination<F> {
#[inline]
fn add_assign(&mut self, (coeff, var): (F, Variable)) {
match self.get_var_loc(&var) {
Ok(found) => self.0[found].1 += &coeff,
Err(not_found) => self.0.insert(not_found, (var, coeff)),
}
}
}
impl<F: Field> Sub<(F, Variable)> for LinearCombination<F> {
type Output = Self;
#[inline]
fn sub(self, (coeff, var): (F, Variable)) -> Self {
self + (-coeff, var)
}
}
impl<F: Field> Neg for LinearCombination<F> {
type Output = Self;
#[inline]
fn neg(mut self) -> Self {
self.negate_in_place();
self
}
}
impl<F: Field> Mul<F> for LinearCombination<F> {
type Output = Self;
#[inline]
fn mul(mut self, scalar: F) -> Self {
self *= scalar;
self
}
}
impl<F: Field> MulAssign<F> for LinearCombination<F> {
#[inline]
fn mul_assign(&mut self, scalar: F) {
self.0.iter_mut().for_each(|(_, coeff)| *coeff *= &scalar);
}
}
impl<F: Field> Add<Variable> for LinearCombination<F> {
type Output = Self;
#[inline]
fn add(self, other: Variable) -> LinearCombination<F> {
self + (F::one(), other)
}
}
impl<F: Field> Sub<Variable> for LinearCombination<F> {
type Output = LinearCombination<F>;
#[inline]
fn sub(self, other: Variable) -> LinearCombination<F> {
self - (F::one(), other)
}
}
fn op_impl<F: Field, F1, F2>(
cur: &LinearCombination<F>,
other: &LinearCombination<F>,
push_fn: F1,
combine_fn: F2,
) -> LinearCombination<F>
where
F1: Fn(F) -> F,
F2: Fn(F, F) -> F,
{
let mut new_vec = Vec::with_capacity(cur.0.len() + other.0.len());
let mut i = 0;
let mut j = 0;
while i < cur.0.len() && j < other.0.len() {
let self_cur = &cur.0[i];
let other_cur = &other.0[j];
match self_cur.0.cmp(&other_cur.0) {
Ordering::Greater => {
new_vec.push((other_cur.0, push_fn(other_cur.1)));
j += 1;
}
Ordering::Less => {
new_vec.push(*self_cur);
i += 1;
}
Ordering::Equal => {
new_vec.push((self_cur.0, combine_fn(self_cur.1, other_cur.1)));
i += 1;
j += 1;
}
}
}
new_vec.extend_from_slice(&cur.0[i..]);
while j < other.0.len() {
new_vec.push((other.0[j].0, push_fn(other.0[j].1)));
j += 1;
}
LinearCombination(new_vec)
}
impl<F: Field> Add<&LinearCombination<F>> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn add(self, other: &LinearCombination<F>) -> LinearCombination<F> {
if other.0.is_empty() {
return self.clone();
} else if self.0.is_empty() {
return other.clone();
}
op_impl(self, other, |coeff| coeff, |cur_coeff, other_coeff| cur_coeff + other_coeff)
}
}
impl<F: Field> Add<LinearCombination<F>> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn add(self, other: LinearCombination<F>) -> LinearCombination<F> {
if self.0.is_empty() {
return other;
} else if other.0.is_empty() {
return self.clone();
}
op_impl(self, &other, |coeff| coeff, |cur_coeff, other_coeff| cur_coeff + other_coeff)
}
}
impl<'a, F: Field> Add<&'a LinearCombination<F>> for LinearCombination<F> {
type Output = LinearCombination<F>;
fn add(self, other: &'a LinearCombination<F>) -> LinearCombination<F> {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
return other.clone();
}
op_impl(&self, other, |coeff| coeff, |cur_coeff, other_coeff| cur_coeff + other_coeff)
}
}
impl<F: Field> Add<LinearCombination<F>> for LinearCombination<F> {
type Output = Self;
fn add(self, other: Self) -> Self {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
return other;
}
op_impl(&self, &other, |coeff| coeff, |cur_coeff, other_coeff| cur_coeff + other_coeff)
}
}
impl<F: Field> Sub<&LinearCombination<F>> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, other: &LinearCombination<F>) -> LinearCombination<F> {
if other.0.is_empty() {
let cur = self.clone();
return cur;
} else if self.0.is_empty() {
let mut other = other.clone();
other.negate_in_place();
return other;
}
op_impl(self, other, |coeff| -coeff, |cur_coeff, other_coeff| cur_coeff - other_coeff)
}
}
impl<'a, F: Field> Sub<&'a LinearCombination<F>> for LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, other: &'a LinearCombination<F>) -> LinearCombination<F> {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
let mut other = other.clone();
other.negate_in_place();
return other;
}
op_impl(&self, other, |coeff| -coeff, |cur_coeff, other_coeff| cur_coeff - other_coeff)
}
}
impl<F: Field> Sub<LinearCombination<F>> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, mut other: LinearCombination<F>) -> LinearCombination<F> {
if self.0.is_empty() {
other.negate_in_place();
return other;
} else if other.0.is_empty() {
return self.clone();
}
op_impl(self, &other, |coeff| -coeff, |cur_coeff, other_coeff| cur_coeff - other_coeff)
}
}
impl<F: Field> Sub<LinearCombination<F>> for LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, mut other: LinearCombination<F>) -> LinearCombination<F> {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
other.negate_in_place();
return other;
}
op_impl(&self, &other, |coeff| -coeff, |cur_coeff, other_coeff| cur_coeff - other_coeff)
}
}
impl<F: Field> Add<(F, &LinearCombination<F>)> for &LinearCombination<F> {
type Output = LinearCombination<F>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, (mul_coeff, other): (F, &LinearCombination<F>)) -> LinearCombination<F> {
if other.0.is_empty() {
return self.clone();
} else if self.0.is_empty() {
let mut other = other.clone();
other.mul_assign(mul_coeff);
return other;
}
op_impl(self, other, |coeff| mul_coeff * coeff, |cur_coeff, other_coeff| cur_coeff + (mul_coeff * other_coeff))
}
}
impl<'a, F: Field> Add<(F, &'a LinearCombination<F>)> for LinearCombination<F> {
type Output = LinearCombination<F>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, (mul_coeff, other): (F, &'a LinearCombination<F>)) -> LinearCombination<F> {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
let mut other = other.clone();
other.mul_assign(mul_coeff);
return other;
}
op_impl(&self, other, |coeff| mul_coeff * coeff, |cur_coeff, other_coeff| cur_coeff + (mul_coeff * other_coeff))
}
}
impl<F: Field> Add<(F, LinearCombination<F>)> for &LinearCombination<F> {
type Output = LinearCombination<F>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, (mul_coeff, mut other): (F, LinearCombination<F>)) -> LinearCombination<F> {
if other.0.is_empty() {
return self.clone();
} else if self.0.is_empty() {
other.mul_assign(mul_coeff);
return other;
}
op_impl(self, &other, |coeff| mul_coeff * coeff, |cur_coeff, other_coeff| cur_coeff + (mul_coeff * other_coeff))
}
}
impl<F: Field> Add<(F, Self)> for LinearCombination<F> {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, (mul_coeff, other): (F, Self)) -> Self {
if other.0.is_empty() {
return self;
} else if self.0.is_empty() {
let mut other = other;
other.mul_assign(mul_coeff);
return other;
}
op_impl(
&self,
&other,
|coeff| mul_coeff * coeff,
|cur_coeff, other_coeff| cur_coeff + (mul_coeff * other_coeff),
)
}
}
impl<F: Field> Sub<(F, &LinearCombination<F>)> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, (coeff, other): (F, &LinearCombination<F>)) -> LinearCombination<F> {
self + (-coeff, other)
}
}
impl<'a, F: Field> Sub<(F, &'a LinearCombination<F>)> for LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, (coeff, other): (F, &'a LinearCombination<F>)) -> LinearCombination<F> {
self + (-coeff, other)
}
}
impl<F: Field> Sub<(F, LinearCombination<F>)> for &LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, (coeff, other): (F, LinearCombination<F>)) -> LinearCombination<F> {
self + (-coeff, other)
}
}
impl<F: Field> Sub<(F, LinearCombination<F>)> for LinearCombination<F> {
type Output = LinearCombination<F>;
fn sub(self, (coeff, other): (F, LinearCombination<F>)) -> LinearCombination<F> {
self + (-coeff, other)
}
}
#[cfg(test)]
mod tests {
use crate::r1cs::Index;
use super::*;
use snarkvm_curves::bls12_377::Fr;
#[test]
fn linear_combination_append() {
let mut combo = LinearCombination::<Fr>::zero();
for i in 0..100u64 {
combo += (i.into(), Variable::new_unchecked(Index::Public(0)));
}
assert_eq!(combo.0.len(), 1);
}
}