1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use smallvec::SmallVec;
use snarkvm_fields::{PrimeField, ToConstraintField};
use snarkvm_utilities::FromBits;
use core::fmt::Debug;
/// The interface for a cryptographic sponge.
/// A sponge can `absorb` or take in inputs and later `squeeze` or output bytes or field elements.
/// The outputs are dependent on previous `absorb` and `squeeze` calls.
pub trait AlgebraicSponge<F: PrimeField, const RATE: usize>: Clone + Debug {
/// Parameters used by the sponge.
type Parameters;
fn sample_parameters() -> Self::Parameters;
/// Initialize a new instance of the sponge.
fn new_with_parameters(params: &Self::Parameters) -> Self;
/// Initialize a new instance of the sponge.
fn new() -> Self {
let parameters = Self::sample_parameters();
Self::new_with_parameters(¶meters)
}
/// Takes in field elements.
fn absorb_native_field_elements<T: ToConstraintField<F>>(&mut self, elements: &[T]);
/// Takes in field elements.
fn absorb_nonnative_field_elements<Target: PrimeField>(&mut self, elements: impl IntoIterator<Item = Target>);
/// Takes in bytes.
fn absorb_bytes(&mut self, elements: &[u8]) {
let capacity = F::size_in_bits() - 1;
let mut bits = Vec::<bool>::new();
for elem in elements {
bits.append(&mut vec![
elem & 128 != 0,
elem & 64 != 0,
elem & 32 != 0,
elem & 16 != 0,
elem & 8 != 0,
elem & 4 != 0,
elem & 2 != 0,
elem & 1 != 0,
]);
}
let elements = bits
.chunks(capacity)
.map(|bits| F::from_bigint(F::BigInteger::from_bits_be(bits).unwrap()).unwrap())
.collect::<SmallVec<[F; 10]>>();
self.absorb_native_field_elements(&elements);
}
/// Takes in field elements.
fn squeeze_native_field_elements(&mut self, num: usize) -> SmallVec<[F; 10]>;
/// Takes out field elements.
fn squeeze_nonnative_field_elements<Target: PrimeField>(&mut self, num: usize) -> SmallVec<[Target; 10]>;
/// Takes out field elements of 168 bits.
fn squeeze_short_nonnative_field_elements<Target: PrimeField>(&mut self, num: usize) -> SmallVec<[Target; 10]>;
/// Takes out a field element of 168 bits.
fn squeeze_short_nonnative_field_element<Target: PrimeField>(&mut self) -> Target {
self.squeeze_short_nonnative_field_elements(1)[0]
}
}
/// The mode structure for duplex sponges
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum DuplexSpongeMode {
/// The sponge is currently absorbing data.
Absorbing {
/// next position of the state to be XOR-ed when absorbing.
next_absorb_index: usize,
},
/// The sponge is currently squeezing data out.
Squeezing {
/// next position of the state to be outputted when squeezing.
next_squeeze_index: usize,
},
}
pub(crate) mod nonnative_params {
/// A macro for computing ceil(log2(x))+1 for a field element x
#[macro_export]
macro_rules! overhead {
($x:expr) => {{
use snarkvm_utilities::ToBits;
let num = $x;
let num_bits = num.to_bigint().to_bits_be();
let mut skipped_bits = 0;
for b in num_bits.iter() {
if *b == false {
skipped_bits += 1;
} else {
break;
}
}
let mut is_power_of_2 = true;
for b in num_bits.iter().skip(skipped_bits + 1) {
if *b == true {
is_power_of_2 = false;
}
}
if is_power_of_2 { num_bits.len() - skipped_bits } else { num_bits.len() - skipped_bits + 1 }
}};
}
/// Parameters for a specific `NonNativeFieldVar` instantiation
#[derive(Clone, Debug)]
pub struct NonNativeFieldParams {
/// The number of limbs (`BaseField` elements) used to represent a `TargetField` element. Highest limb first.
pub num_limbs: usize,
/// The number of bits of the limb
pub bits_per_limb: usize,
}
/// Obtain the parameters from a `ConstraintSystem`'s cache or generate a new one
#[must_use]
pub const fn get_params(
target_field_size: usize,
base_field_size: usize,
optimization_type: OptimizationType,
) -> NonNativeFieldParams {
let (num_of_limbs, limb_size) = find_parameters(base_field_size, target_field_size, optimization_type);
NonNativeFieldParams { num_limbs: num_of_limbs, bits_per_limb: limb_size }
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
/// The type of optimization target for the parameters searching
pub enum OptimizationType {
/// Optimized for constraints
Constraints,
/// Optimized for weight
Weight,
}
/// A function to search for parameters for nonnative field gadgets
pub const fn find_parameters(
base_field_prime_length: usize,
target_field_prime_bit_length: usize,
optimization_type: OptimizationType,
) -> (usize, usize) {
let mut found = false;
let mut min_cost = 0usize;
let mut min_cost_limb_size = 0usize;
let mut min_cost_num_of_limbs = 0usize;
let surfeit = 10;
let mut max_limb_size = (base_field_prime_length - 1 - surfeit - 1) / 2 - 1;
if max_limb_size > target_field_prime_bit_length {
max_limb_size = target_field_prime_bit_length;
}
let mut limb_size = 1;
while limb_size <= max_limb_size {
let num_of_limbs = (target_field_prime_bit_length + limb_size - 1) / limb_size;
let group_size = (base_field_prime_length - 1 - surfeit - 1 - 1 - limb_size + limb_size - 1) / limb_size;
let num_of_groups = (2 * num_of_limbs - 1 + group_size - 1) / group_size;
let mut this_cost = 0;
match optimization_type {
OptimizationType::Constraints => {
this_cost += 2 * num_of_limbs - 1;
}
OptimizationType::Weight => {
this_cost += 6 * num_of_limbs * num_of_limbs;
}
};
match optimization_type {
OptimizationType::Constraints => {
this_cost += target_field_prime_bit_length; // allocation of k
this_cost += target_field_prime_bit_length + num_of_limbs; // allocation of r
//this_cost += 2 * num_of_limbs - 1; // compute kp
this_cost += num_of_groups + (num_of_groups - 1) * (limb_size * 2 + surfeit) + 1;
// equality check
}
OptimizationType::Weight => {
this_cost += target_field_prime_bit_length * 3 + target_field_prime_bit_length; // allocation of k
this_cost += target_field_prime_bit_length * 3 + target_field_prime_bit_length + num_of_limbs; // allocation of r
this_cost += num_of_limbs * num_of_limbs + 2 * (2 * num_of_limbs - 1); // compute kp
this_cost += num_of_limbs
+ num_of_groups
+ 6 * num_of_groups
+ (num_of_groups - 1) * (2 * limb_size + surfeit) * 4
+ 2; // equality check
}
};
if !found || this_cost < min_cost {
found = true;
min_cost = this_cost;
min_cost_limb_size = limb_size;
min_cost_num_of_limbs = num_of_limbs;
}
limb_size += 1;
}
(min_cost_num_of_limbs, min_cost_limb_size)
}
}