1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Work with sparse and dense polynomials.

use crate::fft::{EvaluationDomain, Evaluations};
use snarkvm_fields::{Field, PrimeField};
use snarkvm_utilities::{cfg_iter_mut, serialize::*, SerializationError};
use Polynomial::*;

use anyhow::{ensure, Result};
use std::{borrow::Cow, convert::TryInto};

#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

mod dense;
pub use dense::DensePolynomial;

mod sparse;
pub use sparse::SparsePolynomial;

mod multiplier;
pub use multiplier::*;

/// Represents either a sparse polynomial or a dense one.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Polynomial<'a, F: Field> {
    /// Represents the case where `self` is a sparse polynomial
    Sparse(Cow<'a, SparsePolynomial<F>>),
    /// Represents the case where `self` is a dense polynomial
    Dense(Cow<'a, DensePolynomial<F>>),
}

impl<'a, F: Field> CanonicalSerialize for Polynomial<'a, F> {
    fn serialize_with_mode<W: Write>(&self, writer: W, compress: Compress) -> Result<(), SerializationError> {
        match self {
            Sparse(p) => {
                let p: DensePolynomial<F> = p.clone().into_owned().into();
                CanonicalSerialize::serialize_with_mode(&p.coeffs, writer, compress)
            }
            Dense(p) => CanonicalSerialize::serialize_with_mode(&p.coeffs, writer, compress),
        }
    }

    fn serialized_size(&self, mode: Compress) -> usize {
        match self {
            Sparse(p) => {
                let p: DensePolynomial<F> = p.clone().into_owned().into();
                p.serialized_size(mode)
            }
            Dense(p) => p.serialized_size(mode),
        }
    }
}

impl<'a, F: Field> Valid for Polynomial<'a, F> {
    fn check(&self) -> Result<(), SerializationError> {
        // Check that the polynomial contains a trailing zero coefficient.
        let has_trailing_zero = match self {
            Sparse(p) => p.coeffs().last().map(|(_, c)| c.is_zero()),
            Dense(p) => p.coeffs.last().map(|c| c.is_zero()),
        };
        // Fail if the trailing coefficient is zero.
        match has_trailing_zero {
            Some(true) => Err(SerializationError::InvalidData),
            Some(false) | None => Ok(()),
        }
    }
}

impl<'a, F: Field> CanonicalDeserialize for Polynomial<'a, F> {
    fn deserialize_with_mode<R: Read>(
        reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        DensePolynomial::<F>::deserialize_with_mode(reader, compress, validate).map(|e| Self::Dense(Cow::Owned(e)))
    }
}

impl<F: Field> From<DensePolynomial<F>> for Polynomial<'_, F> {
    fn from(other: DensePolynomial<F>) -> Self {
        Dense(Cow::Owned(other))
    }
}

impl<'a, F: Field> From<&'a DensePolynomial<F>> for Polynomial<'a, F> {
    fn from(other: &'a DensePolynomial<F>) -> Self {
        Dense(Cow::Borrowed(other))
    }
}

impl<F: Field> From<SparsePolynomial<F>> for Polynomial<'_, F> {
    fn from(other: SparsePolynomial<F>) -> Self {
        Sparse(Cow::Owned(other))
    }
}

impl<'a, F: Field> From<&'a SparsePolynomial<F>> for Polynomial<'a, F> {
    fn from(other: &'a SparsePolynomial<F>) -> Self {
        Sparse(Cow::Borrowed(other))
    }
}

#[allow(clippy::from_over_into)]
impl<F: Field> Into<DensePolynomial<F>> for Polynomial<'_, F> {
    fn into(self) -> DensePolynomial<F> {
        match self {
            Dense(p) => p.into_owned(),
            Sparse(p) => p.into_owned().into(),
        }
    }
}

impl<F: Field> TryInto<SparsePolynomial<F>> for Polynomial<'_, F> {
    type Error = ();

    fn try_into(self) -> Result<SparsePolynomial<F>, ()> {
        match self {
            Sparse(p) => Ok(p.into_owned()),
            _ => Err(()),
        }
    }
}

impl<'a, F: Field> Polynomial<'a, F> {
    /// The zero polynomial.
    pub fn zero() -> Self {
        Sparse(Cow::Owned(SparsePolynomial::zero()))
    }

    /// Checks if the given polynomial is zero.
    pub fn is_zero(&self) -> bool {
        match self {
            Sparse(s) => s.is_zero(),
            Dense(d) => d.is_zero(),
        }
    }

    /// Return the degree of `self.
    pub fn degree(&self) -> usize {
        match self {
            Sparse(s) => s.degree(),
            Dense(d) => d.degree(),
        }
    }

    #[inline]
    pub fn leading_coefficient(&self) -> Option<&F> {
        match self {
            Sparse(p) => p.coeffs().last().map(|(_, c)| c),
            Dense(p) => p.last(),
        }
    }

    #[inline]
    pub fn as_dense(&self) -> Option<&DensePolynomial<F>> {
        match self {
            Dense(p) => Some(p.as_ref()),
            _ => None,
        }
    }

    #[inline]
    pub fn to_dense(&self) -> Cow<'_, DensePolynomial<F>> {
        match self {
            Dense(p) => Cow::Borrowed(p.as_ref()),
            Sparse(p) => Cow::Owned(p.clone().into_owned().into()),
        }
    }

    #[inline]
    pub fn as_dense_mut(&mut self) -> Option<&mut DensePolynomial<F>> {
        match self {
            Dense(p) => Some(p.to_mut()),
            _ => None,
        }
    }

    #[inline]
    pub fn as_sparse(&self) -> Option<&SparsePolynomial<F>> {
        match self {
            Sparse(p) => Some(p.as_ref()),
            _ => None,
        }
    }

    #[inline]
    pub fn into_dense(&self) -> DensePolynomial<F> {
        self.clone().into()
    }

    #[inline]
    pub fn evaluate(&self, point: F) -> F {
        match self {
            Sparse(p) => p.evaluate(point),
            Dense(p) => p.evaluate(point),
        }
    }

    pub fn coeffs(&'a self) -> Box<dyn Iterator<Item = (usize, &'a F)> + 'a> {
        match self {
            Sparse(p) => Box::new(p.coeffs().map(|(c, f)| (*c, f))),
            Dense(p) => Box::new(p.coeffs.iter().enumerate()),
        }
    }

    /// Divide self by another (sparse or dense) polynomial, and returns the quotient and remainder.
    pub fn divide_with_q_and_r(&self, divisor: &Self) -> Result<(DensePolynomial<F>, DensePolynomial<F>)> {
        ensure!(!divisor.is_zero(), "Dividing by zero polynomial is undefined");

        if self.is_zero() {
            Ok((DensePolynomial::zero(), DensePolynomial::zero()))
        } else if self.degree() < divisor.degree() {
            Ok((DensePolynomial::zero(), self.clone().into()))
        } else {
            // Now we know that self.degree() >= divisor.degree();
            let mut quotient = vec![F::zero(); self.degree() - divisor.degree() + 1];
            let mut remainder: DensePolynomial<F> = self.clone().into();
            // Can unwrap here because we know self is not zero.
            let divisor_leading_inv = divisor.leading_coefficient().unwrap().inverse().unwrap();
            while !remainder.is_zero() && remainder.degree() >= divisor.degree() {
                let cur_q_coeff = *remainder.coeffs.last().unwrap() * divisor_leading_inv;
                let cur_q_degree = remainder.degree() - divisor.degree();
                quotient[cur_q_degree] = cur_q_coeff;

                if let Sparse(p) = divisor {
                    for (i, div_coeff) in p.coeffs() {
                        remainder[cur_q_degree + i] -= &(cur_q_coeff * div_coeff);
                    }
                } else if let Dense(p) = divisor {
                    for (i, div_coeff) in p.iter().enumerate() {
                        remainder[cur_q_degree + i] -= &(cur_q_coeff * div_coeff);
                    }
                }

                while let Some(true) = remainder.coeffs.last().map(|c| c.is_zero()) {
                    remainder.coeffs.pop();
                }
            }
            Ok((DensePolynomial::from_coefficients_vec(quotient), remainder))
        }
    }
}

impl<F: PrimeField> Polynomial<'_, F> {
    /// Construct `Evaluations` by evaluating a polynomial over the domain `domain`.
    pub fn evaluate_over_domain(poly: impl Into<Self>, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly = poly.into();
        poly.eval_over_domain_helper(domain)
    }

    fn eval_over_domain_helper(self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        match self {
            Sparse(Cow::Borrowed(s)) => {
                let evals = domain.elements().map(|elem| s.evaluate(elem)).collect();
                Evaluations::from_vec_and_domain(evals, domain)
            }
            Sparse(Cow::Owned(s)) => {
                let evals = domain.elements().map(|elem| s.evaluate(elem)).collect();
                Evaluations::from_vec_and_domain(evals, domain)
            }
            Dense(Cow::Borrowed(d)) => {
                if d.degree() >= domain.size() {
                    d.coeffs
                        .chunks(domain.size())
                        .map(|d| Evaluations::from_vec_and_domain(domain.fft(d), domain))
                        .fold(Evaluations::from_vec_and_domain(vec![F::zero(); domain.size()], domain), |mut acc, e| {
                            cfg_iter_mut!(acc.evaluations).zip(e.evaluations).for_each(|(a, e)| *a += e);
                            acc
                        })
                } else {
                    Evaluations::from_vec_and_domain(domain.fft(&d.coeffs), domain)
                }
            }
            Dense(Cow::Owned(mut d)) => {
                if d.degree() >= domain.size() {
                    d.coeffs
                        .chunks(domain.size())
                        .map(|d| Evaluations::from_vec_and_domain(domain.fft(d), domain))
                        .fold(Evaluations::from_vec_and_domain(vec![F::zero(); domain.size()], domain), |mut acc, e| {
                            cfg_iter_mut!(acc.evaluations).zip(e.evaluations).for_each(|(a, e)| *a += e);
                            acc
                        })
                } else {
                    domain.fft_in_place(&mut d.coeffs);
                    Evaluations::from_vec_and_domain(d.coeffs, domain)
                }
            }
        }
    }
}