1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{borrow::Borrow, collections::BTreeMap};

use crate::fft::domain::{FFTPrecomputation, IFFTPrecomputation};

/// A struct that helps multiply a batch of polynomials
use super::*;
use snarkvm_utilities::{cfg_into_iter, cfg_iter, cfg_iter_mut, cfg_reduce_with, ExecutionPool};

#[derive(Default)]
pub struct PolyMultiplier<'a, F: PrimeField> {
    polynomials: Vec<(String, Cow<'a, DensePolynomial<F>>)>,
    evaluations: Vec<(String, Cow<'a, crate::fft::Evaluations<F>>)>,
    fft_precomputation: Option<Cow<'a, FFTPrecomputation<F>>>,
    ifft_precomputation: Option<Cow<'a, IFFTPrecomputation<F>>>,
}

impl<'a, F: PrimeField> PolyMultiplier<'a, F> {
    #[inline]
    pub fn new() -> Self {
        Self { polynomials: Vec::new(), evaluations: Vec::new(), fft_precomputation: None, ifft_precomputation: None }
    }

    #[inline]
    pub fn add_precomputation(&mut self, fft_pc: &'a FFTPrecomputation<F>, ifft_pc: &'a IFFTPrecomputation<F>) {
        self.fft_precomputation = Some(Cow::Borrowed(fft_pc));
        self.ifft_precomputation = Some(Cow::Borrowed(ifft_pc));
    }

    #[inline]
    pub fn add_polynomial(&mut self, poly: DensePolynomial<F>, label: impl ToString) {
        self.polynomials.push((label.to_string(), Cow::Owned(poly)))
    }

    #[inline]
    pub fn add_evaluation(&mut self, evals: Evaluations<F>, label: impl ToString) {
        self.evaluations.push((label.to_string(), Cow::Owned(evals)))
    }

    #[inline]
    pub fn add_polynomial_ref(&mut self, poly: &'a DensePolynomial<F>, label: impl ToString) {
        self.polynomials.push((label.to_string(), Cow::Borrowed(poly)))
    }

    #[inline]
    pub fn add_evaluation_ref(&mut self, evals: &'a Evaluations<F>, label: impl ToString) {
        self.evaluations.push((label.to_string(), Cow::Borrowed(evals)))
    }

    /// Multiplies all polynomials stored in `self`.
    ///
    /// Returns `None` if any of the stored evaluations are over a domain that's
    /// insufficiently large to interpolate the product, or if `F` does not contain
    /// a sufficiently large subgroup for interpolation.
    #[allow(unused_mut)]
    pub fn multiply(mut self) -> Option<DensePolynomial<F>> {
        if self.polynomials.is_empty() && self.evaluations.is_empty() {
            Some(DensePolynomial::zero())
        } else {
            let degree = self.polynomials.iter().map(|(_, p)| p.degree() + 1).sum::<usize>();
            let domain = EvaluationDomain::new(degree)?;
            if self.evaluations.iter().any(|(_, e)| e.domain() != domain) {
                None
            } else {
                #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
                {
                    let mut poly_slices = Vec::new();
                    for (_, p) in &self.polynomials {
                        poly_slices.push(p.coeffs().to_vec());
                    }
                    let mut eval_slices = Vec::new();
                    for (_, e) in &self.evaluations {
                        eval_slices.push(e.evaluations().to_vec());
                    }

                    let gpu_result_vec =
                        snarkvm_algorithms_cuda::polymul(domain.size(), &poly_slices, &eval_slices, &F::zero());
                    if let Ok(result) = gpu_result_vec {
                        return Some(DensePolynomial::from_coefficients_vec(result));
                    }
                }

                if self.fft_precomputation.is_none() {
                    self.fft_precomputation = Some(Cow::Owned(domain.precompute_fft()));
                }
                if self.ifft_precomputation.is_none() {
                    self.ifft_precomputation =
                        Some(Cow::Owned(self.fft_precomputation.as_ref().unwrap().to_ifft_precomputation()));
                }
                let fft_pc = &self.fft_precomputation.unwrap();
                let ifft_pc = &self.ifft_precomputation.unwrap();
                let mut pool = ExecutionPool::with_capacity(self.polynomials.len() + self.evaluations.len());
                for (_, p) in self.polynomials {
                    pool.add_job(move || {
                        let mut p = p.clone().into_owned().coeffs;
                        p.resize(domain.size(), F::zero());
                        domain.out_order_fft_in_place_with_pc(&mut p, fft_pc);
                        p
                    })
                }
                for (_, e) in self.evaluations {
                    pool.add_job(move || {
                        let mut e = e.clone().into_owned().evaluations;
                        e.resize(domain.size(), F::zero());
                        crate::fft::domain::derange(&mut e);
                        e
                    })
                }
                let results = pool.execute_all();
                let iter = cfg_into_iter!(results);
                let mut result = cfg_reduce_with!(iter, |mut a, b| {
                    cfg_iter_mut!(a).zip(b).for_each(|(a, b)| *a *= b);
                    a
                })
                .unwrap();
                domain.out_order_ifft_in_place_with_pc(&mut result, ifft_pc);
                Some(DensePolynomial::from_coefficients_vec(result))
            }
        }
    }

    pub fn element_wise_arithmetic_4_over_domain<T: Borrow<str>>(
        mut self,
        domain: EvaluationDomain<F>,
        labels: [T; 4],
        f: impl Fn(F, F, F, F) -> F + Sync,
    ) -> Option<DensePolynomial<F>> {
        if self.fft_precomputation.is_none() {
            self.fft_precomputation = Some(Cow::Owned(domain.precompute_fft()));
        }
        if self.ifft_precomputation.is_none() {
            self.ifft_precomputation =
                Some(Cow::Owned(self.fft_precomputation.as_ref().unwrap().to_ifft_precomputation()));
        }
        let fft_pc = self.fft_precomputation.as_ref().unwrap();
        let mut pool = ExecutionPool::with_capacity(self.polynomials.len() + self.evaluations.len());
        for (l, p) in self.polynomials {
            pool.add_job(move || {
                let mut p = p.clone().into_owned().coeffs;
                p.resize(domain.size(), F::zero());
                domain.out_order_fft_in_place_with_pc(&mut p, fft_pc);
                (l, p)
            })
        }
        for (l, e) in self.evaluations {
            pool.add_job(move || {
                let mut e = e.clone().into_owned().evaluations;
                e.resize(domain.size(), F::zero());
                crate::fft::domain::derange(&mut e);
                (l, e)
            })
        }
        let p = pool.execute_all().into_iter().collect::<BTreeMap<_, _>>();
        assert_eq!(p.len(), 4);
        let mut result = cfg_iter!(p[labels[0].borrow()])
            .zip(&p[labels[1].borrow()])
            .zip(&p[labels[2].borrow()])
            .zip(&p[labels[3].borrow()])
            .map(|(((a, b), c), d)| f(*a, *b, *c, *d))
            .collect::<Vec<_>>();
        drop(p);
        domain.out_order_ifft_in_place_with_pc(&mut result, &self.ifft_precomputation.unwrap());
        Some(DensePolynomial::from_coefficients_vec(result))
    }
}