use std::{borrow::Borrow, collections::BTreeMap};
use crate::fft::domain::{FFTPrecomputation, IFFTPrecomputation};
use super::*;
use snarkvm_utilities::{cfg_into_iter, cfg_iter, cfg_iter_mut, cfg_reduce_with, ExecutionPool};
#[derive(Default)]
pub struct PolyMultiplier<'a, F: PrimeField> {
polynomials: Vec<(String, Cow<'a, DensePolynomial<F>>)>,
evaluations: Vec<(String, Cow<'a, crate::fft::Evaluations<F>>)>,
fft_precomputation: Option<Cow<'a, FFTPrecomputation<F>>>,
ifft_precomputation: Option<Cow<'a, IFFTPrecomputation<F>>>,
}
impl<'a, F: PrimeField> PolyMultiplier<'a, F> {
#[inline]
pub fn new() -> Self {
Self { polynomials: Vec::new(), evaluations: Vec::new(), fft_precomputation: None, ifft_precomputation: None }
}
#[inline]
pub fn add_precomputation(&mut self, fft_pc: &'a FFTPrecomputation<F>, ifft_pc: &'a IFFTPrecomputation<F>) {
self.fft_precomputation = Some(Cow::Borrowed(fft_pc));
self.ifft_precomputation = Some(Cow::Borrowed(ifft_pc));
}
#[inline]
pub fn add_polynomial(&mut self, poly: DensePolynomial<F>, label: impl ToString) {
self.polynomials.push((label.to_string(), Cow::Owned(poly)))
}
#[inline]
pub fn add_evaluation(&mut self, evals: Evaluations<F>, label: impl ToString) {
self.evaluations.push((label.to_string(), Cow::Owned(evals)))
}
#[inline]
pub fn add_polynomial_ref(&mut self, poly: &'a DensePolynomial<F>, label: impl ToString) {
self.polynomials.push((label.to_string(), Cow::Borrowed(poly)))
}
#[inline]
pub fn add_evaluation_ref(&mut self, evals: &'a Evaluations<F>, label: impl ToString) {
self.evaluations.push((label.to_string(), Cow::Borrowed(evals)))
}
#[allow(unused_mut)]
pub fn multiply(mut self) -> Option<DensePolynomial<F>> {
if self.polynomials.is_empty() && self.evaluations.is_empty() {
Some(DensePolynomial::zero())
} else {
let degree = self.polynomials.iter().map(|(_, p)| p.degree() + 1).sum::<usize>();
let domain = EvaluationDomain::new(degree)?;
if self.evaluations.iter().any(|(_, e)| e.domain() != domain) {
None
} else {
#[cfg(all(feature = "cuda", target_arch = "x86_64"))]
{
let mut poly_slices = Vec::new();
for (_, p) in &self.polynomials {
poly_slices.push(p.coeffs().to_vec());
}
let mut eval_slices = Vec::new();
for (_, e) in &self.evaluations {
eval_slices.push(e.evaluations().to_vec());
}
let gpu_result_vec =
snarkvm_algorithms_cuda::polymul(domain.size(), &poly_slices, &eval_slices, &F::zero());
if let Ok(result) = gpu_result_vec {
return Some(DensePolynomial::from_coefficients_vec(result));
}
}
if self.fft_precomputation.is_none() {
self.fft_precomputation = Some(Cow::Owned(domain.precompute_fft()));
}
if self.ifft_precomputation.is_none() {
self.ifft_precomputation =
Some(Cow::Owned(self.fft_precomputation.as_ref().unwrap().to_ifft_precomputation()));
}
let fft_pc = &self.fft_precomputation.unwrap();
let ifft_pc = &self.ifft_precomputation.unwrap();
let mut pool = ExecutionPool::with_capacity(self.polynomials.len() + self.evaluations.len());
for (_, p) in self.polynomials {
pool.add_job(move || {
let mut p = p.clone().into_owned().coeffs;
p.resize(domain.size(), F::zero());
domain.out_order_fft_in_place_with_pc(&mut p, fft_pc);
p
})
}
for (_, e) in self.evaluations {
pool.add_job(move || {
let mut e = e.clone().into_owned().evaluations;
e.resize(domain.size(), F::zero());
crate::fft::domain::derange(&mut e);
e
})
}
let results = pool.execute_all();
let iter = cfg_into_iter!(results);
let mut result = cfg_reduce_with!(iter, |mut a, b| {
cfg_iter_mut!(a).zip(b).for_each(|(a, b)| *a *= b);
a
})
.unwrap();
domain.out_order_ifft_in_place_with_pc(&mut result, ifft_pc);
Some(DensePolynomial::from_coefficients_vec(result))
}
}
}
pub fn element_wise_arithmetic_4_over_domain<T: Borrow<str>>(
mut self,
domain: EvaluationDomain<F>,
labels: [T; 4],
f: impl Fn(F, F, F, F) -> F + Sync,
) -> Option<DensePolynomial<F>> {
if self.fft_precomputation.is_none() {
self.fft_precomputation = Some(Cow::Owned(domain.precompute_fft()));
}
if self.ifft_precomputation.is_none() {
self.ifft_precomputation =
Some(Cow::Owned(self.fft_precomputation.as_ref().unwrap().to_ifft_precomputation()));
}
let fft_pc = self.fft_precomputation.as_ref().unwrap();
let mut pool = ExecutionPool::with_capacity(self.polynomials.len() + self.evaluations.len());
for (l, p) in self.polynomials {
pool.add_job(move || {
let mut p = p.clone().into_owned().coeffs;
p.resize(domain.size(), F::zero());
domain.out_order_fft_in_place_with_pc(&mut p, fft_pc);
(l, p)
})
}
for (l, e) in self.evaluations {
pool.add_job(move || {
let mut e = e.clone().into_owned().evaluations;
e.resize(domain.size(), F::zero());
crate::fft::domain::derange(&mut e);
(l, e)
})
}
let p = pool.execute_all().into_iter().collect::<BTreeMap<_, _>>();
assert_eq!(p.len(), 4);
let mut result = cfg_iter!(p[labels[0].borrow()])
.zip(&p[labels[1].borrow()])
.zip(&p[labels[2].borrow()])
.zip(&p[labels[3].borrow()])
.map(|(((a, b), c), d)| f(*a, *b, *c, *d))
.collect::<Vec<_>>();
drop(p);
domain.out_order_ifft_in_place_with_pc(&mut result, &self.ifft_precomputation.unwrap());
Some(DensePolynomial::from_coefficients_vec(result))
}
}