1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A polynomial represented in evaluations form.

use crate::fft::{DensePolynomial, EvaluationDomain};
#[cfg(feature = "serial")]
use itertools::Itertools;
#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

use snarkvm_fields::PrimeField;
use snarkvm_utilities::{cfg_iter, cfg_iter_mut, serialize::*};

use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};

use super::domain::IFFTPrecomputation;

/// Stores a polynomial in evaluation form.
#[derive(Clone, PartialEq, Eq, Hash, Debug, CanonicalSerialize, CanonicalDeserialize)]
pub struct Evaluations<F: PrimeField> {
    /// The evaluations of a polynomial over the domain `D`
    pub evaluations: Vec<F>,
    #[doc(hidden)]
    domain: EvaluationDomain<F>,
}

impl<F: PrimeField> Evaluations<F> {
    /// Construct `Self` from evaluations and a domain.
    pub fn from_vec_and_domain(mut evaluations: Vec<F>, domain: EvaluationDomain<F>) -> Self {
        // Pad evaluations to ensure we can always evaluate
        evaluations.resize(domain.size(), F::zero());
        Self { evaluations, domain }
    }

    /// Interpolate a polynomial from a list of evaluations
    pub fn interpolate_by_ref(&self) -> DensePolynomial<F> {
        DensePolynomial::from_coefficients_vec(self.domain.ifft(&self.evaluations))
    }

    /// Interpolate a polynomial from a list of evaluations
    pub fn interpolate_with_pc_by_ref(&self, pc: &IFFTPrecomputation<F>) -> DensePolynomial<F> {
        let mut evals = self.evaluations.clone();
        evals.resize(self.domain.size(), F::zero());
        self.domain.in_order_ifft_in_place_with_pc(&mut evals, pc);
        DensePolynomial::from_coefficients_vec(evals)
    }

    /// Interpolate a polynomial from a list of evaluations
    pub fn interpolate(self) -> DensePolynomial<F> {
        let Self { evaluations: mut evals, domain } = self;
        domain.ifft_in_place(&mut evals);
        DensePolynomial::from_coefficients_vec(evals)
    }

    /// Interpolate a polynomial from a list of evaluations
    pub fn interpolate_with_pc(self, pc: &IFFTPrecomputation<F>) -> DensePolynomial<F> {
        let Self { evaluations: mut evals, domain } = self;
        evals.resize(self.domain.size(), F::zero());
        domain.in_order_ifft_in_place_with_pc(&mut evals, pc);
        DensePolynomial::from_coefficients_vec(evals)
    }

    /// Returns the evaluations of `self`.
    pub fn evaluations(&self) -> &[F] {
        &self.evaluations
    }

    pub fn domain(&self) -> EvaluationDomain<F> {
        self.domain
    }

    pub fn evaluate(&self, point: &F) -> F {
        let coeffs = self.domain.evaluate_all_lagrange_coefficients(*point);
        self.evaluate_with_coeffs(&coeffs)
    }

    pub fn evaluate_with_coeffs(&self, lagrange_coefficients_at_point: &[F]) -> F {
        cfg_iter!(self.evaluations).zip_eq(lagrange_coefficients_at_point).map(|(a, b)| *a * b).sum()
    }
}

impl<F: PrimeField> std::ops::Index<usize> for Evaluations<F> {
    type Output = F;

    fn index(&self, index: usize) -> &F {
        &self.evaluations[index]
    }
}

impl<'a, 'b, F: PrimeField> Mul<&'a Evaluations<F>> for &'b Evaluations<F> {
    type Output = Evaluations<F>;

    #[inline]
    fn mul(self, other: &'a Evaluations<F>) -> Evaluations<F> {
        let mut result = self.clone();
        result *= other;
        result
    }
}

impl<'a, F: PrimeField> MulAssign<&'a Evaluations<F>> for Evaluations<F> {
    #[inline]
    fn mul_assign(&mut self, other: &'a Evaluations<F>) {
        assert_eq!(self.domain, other.domain, "domains are unequal");
        cfg_iter_mut!(self.evaluations).zip_eq(&other.evaluations).for_each(|(a, b)| *a *= b);
    }
}

impl<'a, 'b, F: PrimeField> Add<&'a Evaluations<F>> for &'b Evaluations<F> {
    type Output = Evaluations<F>;

    #[inline]
    fn add(self, other: &'a Evaluations<F>) -> Evaluations<F> {
        let mut result = self.clone();
        result += other;
        result
    }
}

impl<'a, F: PrimeField> AddAssign<&'a Evaluations<F>> for Evaluations<F> {
    #[inline]
    fn add_assign(&mut self, other: &'a Evaluations<F>) {
        assert_eq!(self.domain, other.domain, "domains are unequal");
        cfg_iter_mut!(self.evaluations).zip_eq(&other.evaluations).for_each(|(a, b)| *a += b);
    }
}

impl<'a, 'b, F: PrimeField> Sub<&'a Evaluations<F>> for &'b Evaluations<F> {
    type Output = Evaluations<F>;

    #[inline]
    fn sub(self, other: &'a Evaluations<F>) -> Evaluations<F> {
        let mut result = self.clone();
        result -= other;
        result
    }
}

impl<'a, F: PrimeField> SubAssign<&'a Evaluations<F>> for Evaluations<F> {
    #[inline]
    fn sub_assign(&mut self, other: &'a Evaluations<F>) {
        assert_eq!(self.domain, other.domain, "domains are unequal");
        cfg_iter_mut!(self.evaluations).zip_eq(&other.evaluations).for_each(|(a, b)| *a -= b);
    }
}

impl<'a, 'b, F: PrimeField> Div<&'a Evaluations<F>> for &'b Evaluations<F> {
    type Output = Evaluations<F>;

    #[inline]
    fn div(self, other: &'a Evaluations<F>) -> Evaluations<F> {
        let mut result = self.clone();
        result /= other;
        result
    }
}

impl<'a, F: PrimeField> DivAssign<&'a Evaluations<F>> for Evaluations<F> {
    #[inline]
    fn div_assign(&mut self, other: &'a Evaluations<F>) {
        assert_eq!(self.domain, other.domain, "domains are unequal");
        cfg_iter_mut!(self.evaluations).zip_eq(&other.evaluations).for_each(|(a, b)| *a /= b);
    }
}