1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A sparse polynomial represented in coefficient form.

use crate::fft::{EvaluationDomain, Evaluations, Polynomial};
use snarkvm_fields::{Field, PrimeField};
use snarkvm_utilities::serialize::*;

use std::{collections::BTreeMap, fmt};

/// Stores a sparse polynomial in coefficient form.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
#[must_use]
pub struct SparsePolynomial<F: Field> {
    /// The coefficient a_i of `x^i` is stored as (i, a_i) in `self.coeffs`.
    /// the entries in `self.coeffs` are sorted in increasing order of `i`.
    coeffs: BTreeMap<usize, F>,
}

impl<F: Field> fmt::Debug for SparsePolynomial<F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        for (i, coeff) in self.coeffs.iter().filter(|(_, c)| !c.is_zero()) {
            if *i == 0 {
                write!(f, "\n{coeff:?}")?;
            } else if *i == 1 {
                write!(f, " + \n{coeff:?} * x")?;
            } else {
                write!(f, " + \n{coeff:?} * x^{i}")?;
            }
        }
        Ok(())
    }
}

impl<F: Field> SparsePolynomial<F> {
    /// Returns the zero polynomial.
    pub fn zero() -> Self {
        Self { coeffs: BTreeMap::new() }
    }

    /// Checks if the given polynomial is zero.
    pub fn is_zero(&self) -> bool {
        self.coeffs.is_empty() || self.coeffs.iter().all(|(_, c)| c.is_zero())
    }

    /// Constructs a new polynomial from a list of coefficients.
    pub fn from_coefficients_slice(coeffs: &[(usize, F)]) -> Self {
        Self::from_coefficients(coeffs.iter().copied())
    }

    /// Constructs a new polynomial from a list of coefficients.
    pub fn from_coefficients(coeffs: impl IntoIterator<Item = (usize, F)>) -> Self {
        let coeffs: BTreeMap<_, _> = coeffs.into_iter().filter(|(_, c)| !c.is_zero()).collect();
        Self { coeffs }
    }

    pub fn coeffs(&self) -> impl Iterator<Item = (&usize, &F)> {
        self.coeffs.iter()
    }

    /// Returns the degree of the polynomial.
    pub fn degree(&self) -> usize {
        if self.is_zero() {
            0
        } else {
            let last = self.coeffs.iter().max();
            assert!(last.map_or(false, |(_, c)| !c.is_zero()));
            *last.unwrap().0
        }
    }

    /// Evaluates `self` at the given `point` in the field.
    pub fn evaluate(&self, point: F) -> F {
        if self.is_zero() {
            return F::zero();
        }
        let mut total = F::zero();
        for (i, c) in &self.coeffs {
            total += *c * point.pow([*i as u64]);
        }
        total
    }

    /// Perform a naive n^2 multiplication of `self` by `other`.
    pub fn mul(&self, other: &Self) -> Self {
        if self.is_zero() || other.is_zero() {
            SparsePolynomial::zero()
        } else {
            let mut result = std::collections::BTreeMap::new();
            for (i, self_coeff) in self.coeffs.iter() {
                for (j, other_coeff) in other.coeffs.iter() {
                    let cur_coeff = result.entry(i + j).or_insert_with(F::zero);
                    *cur_coeff += *self_coeff * other_coeff;
                }
            }
            SparsePolynomial::from_coefficients(result)
        }
    }
}

impl<F: PrimeField> SparsePolynomial<F> {
    /// Evaluate `self` over `domain`.
    pub fn evaluate_over_domain_by_ref(&self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly: Polynomial<'_, F> = self.into();
        Polynomial::<F>::evaluate_over_domain(poly, domain)
        // unimplemented!("current implementation does not produce evals in correct order")
    }

    /// Evaluate `self` over `domain`.
    pub fn evaluate_over_domain(self, domain: EvaluationDomain<F>) -> Evaluations<F> {
        let poly: Polynomial<'_, F> = self.into();
        Polynomial::<F>::evaluate_over_domain(poly, domain)
        // unimplemented!("current implementation does not produce evals in correct order")
    }
}
impl<F: PrimeField> core::ops::MulAssign<F> for SparsePolynomial<F> {
    fn mul_assign(&mut self, other: F) {
        if other.is_zero() {
            *self = Self::zero()
        } else {
            for coeff in self.coeffs.values_mut() {
                *coeff *= other;
            }
        }
    }
}

impl<'a, F: PrimeField> core::ops::Mul<F> for &'a SparsePolynomial<F> {
    type Output = SparsePolynomial<F>;

    fn mul(self, other: F) -> Self::Output {
        let mut result = self.clone();
        result *= other;
        result
    }
}

impl<'a, F: PrimeField> core::ops::AddAssign<&'a Self> for SparsePolynomial<F> {
    fn add_assign(&mut self, other: &'a Self) {
        let mut result = other.clone();
        for (i, coeff) in self.coeffs.iter() {
            let cur_coeff = result.coeffs.entry(*i).or_insert_with(F::zero);
            *cur_coeff += coeff;
        }
        *self = Self::from_coefficients(result.coeffs.into_iter().filter(|(_, f)| !f.is_zero()));
    }
}

impl<'a, F: PrimeField> core::ops::AddAssign<(F, &'a Self)> for SparsePolynomial<F> {
    fn add_assign(&mut self, (f, other): (F, &'a Self)) {
        let mut result = other.clone();
        for (i, coeff) in self.coeffs.iter() {
            let cur_coeff = result.coeffs.entry(*i).or_insert_with(F::zero);
            *cur_coeff += f * coeff;
        }
        *self = Self::from_coefficients(result.coeffs.into_iter().filter(|(_, f)| !f.is_zero()))
    }
}

#[cfg(test)]
mod tests {
    use crate::fft::{DensePolynomial, EvaluationDomain, SparsePolynomial};
    use snarkvm_curves::bls12_377::Fr;
    use snarkvm_fields::One;

    #[test]
    fn evaluate_over_domain() {
        for size in 2..10 {
            let domain_size = 1 << size;
            let domain = EvaluationDomain::new(domain_size).unwrap();
            let two = Fr::one() + Fr::one();
            let sparse_poly = SparsePolynomial::from_coefficients(vec![(0, two), (1, two)]);
            let evals1 = sparse_poly.evaluate_over_domain_by_ref(domain);

            let dense_poly: DensePolynomial<Fr> = sparse_poly.into();
            let evals2 = dense_poly.clone().evaluate_over_domain(domain);
            assert_eq!(evals1.clone().interpolate(), evals2.clone().interpolate());
            assert_eq!(evals1.interpolate(), dense_poly);
            assert_eq!(evals2.interpolate(), dense_poly);
        }
    }
}