1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Here we construct a polynomial commitment that enables users to commit to a
//! single polynomial `p`, and then later provide an evaluation proof that
//! convinces verifiers that a claimed value `v` is the true evaluation of `p`
//! at a chosen point `x`. Our construction follows the template of the construction
//! proposed by Kate, Zaverucha, and Goldberg ([KZG11](http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf)).
//! This construction achieves extractability in the algebraic group model (AGM).

use crate::{
    fft::{DensePolynomial, Polynomial},
    msm::VariableBase,
    polycommit::PCError,
};
use snarkvm_curves::traits::{AffineCurve, PairingCurve, PairingEngine, ProjectiveCurve};
use snarkvm_fields::{One, PrimeField, Zero};
use snarkvm_utilities::{cfg_iter, cfg_iter_mut, rand::Uniform, BitIteratorBE};

use anyhow::{anyhow, ensure, Result};
use core::{marker::PhantomData, ops::Mul};
use itertools::Itertools;
use rand_core::RngCore;

#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

mod data_structures;
pub use data_structures::*;

use super::sonic_pc::LabeledPolynomialWithBasis;

#[derive(Debug, PartialEq, Eq)]
pub enum KZGDegreeBounds {
    All,
    Varuna,
    List(Vec<usize>),
    None,
}

impl KZGDegreeBounds {
    pub fn get_list<F: PrimeField>(&self, max_degree: usize) -> Vec<usize> {
        match self {
            KZGDegreeBounds::All => (0..max_degree).collect(),
            KZGDegreeBounds::Varuna => {
                // In Varuna, the degree bounds are all of the forms `domain_size - 2`.
                // Consider that we are using radix-2 FFT,
                // there are only a few possible domain sizes and therefore degree bounds.
                //
                // We do not consider mixed-radix FFT for simplicity, as the curves that we
                // are using have very high two-arity.

                let mut radix_2_possible_domain_sizes = vec![];

                let mut cur = 2usize;
                while cur - 2 <= max_degree {
                    radix_2_possible_domain_sizes.push(cur - 2);
                    cur *= 2;
                }

                radix_2_possible_domain_sizes
            }
            KZGDegreeBounds::List(v) => v.clone(),
            KZGDegreeBounds::None => vec![],
        }
    }
}

/// `KZG10` is an implementation of the polynomial commitment scheme of
/// [Kate, Zaverucha and Goldbgerg][kzg10]
///
/// [kzg10]: http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
#[derive(Clone, Debug)]
pub struct KZG10<E: PairingEngine>(PhantomData<E>);

impl<E: PairingEngine> KZG10<E> {
    /// Constructs public parameters when given as input the maximum degree `degree`
    /// for the polynomial commitment scheme.
    pub fn load_srs(max_degree: usize) -> Result<UniversalParams<E>, PCError> {
        let params = UniversalParams::load()?;
        params.download_powers_for(0..(max_degree + 1))?;
        Ok(params)
    }

    /// Outputs a commitment to `polynomial`.
    pub fn commit(
        powers: &Powers<E>,
        polynomial: &Polynomial<'_, E::Fr>,
        hiding_bound: Option<usize>,
        rng: Option<&mut dyn RngCore>,
    ) -> Result<(KZGCommitment<E>, KZGRandomness<E>), PCError> {
        Self::check_degree_is_too_large(polynomial.degree(), powers.size())?;

        let commit_time = start_timer!(|| format!(
            "Committing to polynomial of degree {} with hiding_bound: {:?}",
            polynomial.degree(),
            hiding_bound,
        ));

        let mut commitment = match polynomial {
            Polynomial::Dense(polynomial) => {
                let (num_leading_zeros, plain_coeffs) = skip_leading_zeros_and_convert_to_bigints(polynomial);

                let bases = &powers.powers_of_beta_g[num_leading_zeros..(num_leading_zeros + plain_coeffs.len())];

                let msm_time = start_timer!(|| "MSM to compute commitment to plaintext poly");
                let commitment = VariableBase::msm(bases, &plain_coeffs);
                end_timer!(msm_time);

                commitment
            }
            Polynomial::Sparse(polynomial) => polynomial
                .coeffs()
                .map(|(i, coeff)| {
                    powers.powers_of_beta_g[*i].mul_bits(BitIteratorBE::new_without_leading_zeros(coeff.to_bigint()))
                })
                .sum(),
        };

        let mut randomness = KZGRandomness::empty();
        if let Some(hiding_degree) = hiding_bound {
            let mut rng = rng.ok_or(PCError::MissingRng)?;
            let sample_random_poly_time =
                start_timer!(|| format!("Sampling a random polynomial of degree {hiding_degree}"));

            randomness = KZGRandomness::rand(hiding_degree, false, &mut rng);
            Self::check_hiding_bound(
                randomness.blinding_polynomial.degree(),
                powers.powers_of_beta_times_gamma_g.len(),
            )?;
            end_timer!(sample_random_poly_time);
        }

        let random_ints = convert_to_bigints(&randomness.blinding_polynomial.coeffs);
        let msm_time = start_timer!(|| "MSM to compute commitment to random poly");
        let random_commitment =
            VariableBase::msm(&powers.powers_of_beta_times_gamma_g, random_ints.as_slice()).to_affine();
        end_timer!(msm_time);

        commitment.add_assign_mixed(&random_commitment);

        end_timer!(commit_time);
        Ok((KZGCommitment(commitment.into()), randomness))
    }

    /// Outputs a commitment to `polynomial`.
    pub fn commit_lagrange(
        lagrange_basis: &LagrangeBasis<E>,
        evaluations: &[E::Fr],
        hiding_bound: Option<usize>,
        rng: Option<&mut dyn RngCore>,
    ) -> Result<(KZGCommitment<E>, KZGRandomness<E>), PCError> {
        Self::check_degree_is_too_large(evaluations.len() - 1, lagrange_basis.size())?;
        assert_eq!(
            evaluations.len().checked_next_power_of_two().ok_or(PCError::LagrangeBasisSizeIsTooLarge)?,
            lagrange_basis.size()
        );

        let commit_time = start_timer!(|| format!(
            "Committing to polynomial of degree {} with hiding_bound: {:?}",
            evaluations.len() - 1,
            hiding_bound,
        ));

        let evaluations = evaluations.iter().map(|e| e.to_bigint()).collect::<Vec<_>>();
        let msm_time = start_timer!(|| "MSM to compute commitment to plaintext poly");
        let mut commitment = VariableBase::msm(&lagrange_basis.lagrange_basis_at_beta_g, &evaluations);
        end_timer!(msm_time);

        let mut randomness = KZGRandomness::empty();
        if let Some(hiding_degree) = hiding_bound {
            let mut rng = rng.ok_or(PCError::MissingRng)?;
            let sample_random_poly_time =
                start_timer!(|| format!("Sampling a random polynomial of degree {hiding_degree}"));

            randomness = KZGRandomness::rand(hiding_degree, false, &mut rng);
            Self::check_hiding_bound(
                randomness.blinding_polynomial.degree(),
                lagrange_basis.powers_of_beta_times_gamma_g.len(),
            )?;
            end_timer!(sample_random_poly_time);
        }

        let random_ints = convert_to_bigints(&randomness.blinding_polynomial.coeffs);
        let msm_time = start_timer!(|| "MSM to compute commitment to random poly");
        let random_commitment =
            VariableBase::msm(&lagrange_basis.powers_of_beta_times_gamma_g, random_ints.as_slice()).to_affine();
        end_timer!(msm_time);

        commitment.add_assign_mixed(&random_commitment);

        end_timer!(commit_time);
        Ok((KZGCommitment(commitment.into()), randomness))
    }

    /// Compute witness polynomial.
    ///
    /// The witness polynomial w(x) the quotient of the division (p(x) - p(z)) / (x - z)
    /// Observe that this quotient does not change with z because
    /// p(z) is the remainder term. We can therefore omit p(z) when computing the quotient.
    pub fn compute_witness_polynomial(
        polynomial: &DensePolynomial<E::Fr>,
        point: E::Fr,
        randomness: &KZGRandomness<E>,
    ) -> Result<(DensePolynomial<E::Fr>, Option<DensePolynomial<E::Fr>>), PCError> {
        let divisor = DensePolynomial::from_coefficients_vec(vec![-point, E::Fr::one()]);

        let witness_time = start_timer!(|| "Computing witness polynomial");
        let witness_polynomial = polynomial / &divisor;
        end_timer!(witness_time);

        let random_witness_polynomial = if randomness.is_hiding() {
            let random_p = &randomness.blinding_polynomial;

            let witness_time = start_timer!(|| "Computing random witness polynomial");
            let random_witness_polynomial = random_p / &divisor;
            end_timer!(witness_time);
            Some(random_witness_polynomial)
        } else {
            None
        };

        Ok((witness_polynomial, random_witness_polynomial))
    }

    pub(crate) fn open_with_witness_polynomial(
        powers: &Powers<E>,
        point: E::Fr,
        randomness: &KZGRandomness<E>,
        witness_polynomial: &DensePolynomial<E::Fr>,
        hiding_witness_polynomial: Option<&DensePolynomial<E::Fr>>,
    ) -> Result<KZGProof<E>, PCError> {
        Self::check_degree_is_too_large(witness_polynomial.degree(), powers.size())?;
        let (num_leading_zeros, witness_coeffs) = skip_leading_zeros_and_convert_to_bigints(witness_polynomial);

        let bases = &powers.powers_of_beta_g[num_leading_zeros..(num_leading_zeros + witness_coeffs.len())];

        let witness_comm_time = start_timer!(|| "Computing commitment to witness polynomial");
        let mut w = VariableBase::msm(bases, &witness_coeffs);
        end_timer!(witness_comm_time);

        let random_v = if let Some(hiding_witness_polynomial) = hiding_witness_polynomial {
            let blinding_p = &randomness.blinding_polynomial;
            let blinding_eval_time = start_timer!(|| "Evaluating random polynomial");
            let blinding_evaluation = blinding_p.evaluate(point);
            end_timer!(blinding_eval_time);

            let random_witness_coeffs = convert_to_bigints(&hiding_witness_polynomial.coeffs);
            let witness_comm_time = start_timer!(|| "Computing commitment to random witness polynomial");
            w += &VariableBase::msm(&powers.powers_of_beta_times_gamma_g, &random_witness_coeffs);
            end_timer!(witness_comm_time);
            Some(blinding_evaluation)
        } else {
            None
        };

        Ok(KZGProof { w: w.to_affine(), random_v })
    }

    /// On input a polynomial `p` in Lagrange basis, and a point `point`,
    /// outputs an evaluation proof for the same.
    pub fn open_lagrange(
        lagrange_basis: &LagrangeBasis<E>,
        domain_elements: &[E::Fr],
        evaluations: &[E::Fr],
        point: E::Fr,
        evaluation_at_point: E::Fr,
    ) -> Result<KZGProof<E>> {
        Self::check_degree_is_too_large(evaluations.len() - 1, lagrange_basis.size())?;
        // Ensure that the point is not in the domain
        if lagrange_basis.domain.evaluate_vanishing_polynomial(point).is_zero() {
            Err(anyhow!("Point cannot be in the domain"))?;
        }
        if evaluations.len().checked_next_power_of_two().ok_or_else(|| anyhow!("Evaluations length is too large"))?
            != lagrange_basis.size()
        {
            Err(anyhow!("`evaluations.len()` must equal `domain.size()`"))?;
        }

        let mut divisor_evals = cfg_iter!(domain_elements).map(|&e| e - point).collect::<Vec<_>>();
        snarkvm_fields::batch_inversion(&mut divisor_evals);
        ensure!(divisor_evals.len() == evaluations.len());
        cfg_iter_mut!(divisor_evals).zip_eq(evaluations).for_each(|(divisor_eval, &eval)| {
            *divisor_eval *= eval - evaluation_at_point;
        });
        let (witness_comm, _) = Self::commit_lagrange(lagrange_basis, &divisor_evals, None, None)?;

        Ok(KZGProof { w: witness_comm.0, random_v: None })
    }

    /// On input a polynomial `p` and a point `point`, outputs a proof for the same.
    pub fn open(
        powers: &Powers<E>,
        polynomial: &DensePolynomial<E::Fr>,
        point: E::Fr,
        rand: &KZGRandomness<E>,
    ) -> Result<KZGProof<E>, PCError> {
        Self::check_degree_is_too_large(polynomial.degree(), powers.size())?;
        let open_time = start_timer!(|| format!("Opening polynomial of degree {}", polynomial.degree()));

        let witness_time = start_timer!(|| "Computing witness polynomials");
        let (witness_poly, hiding_witness_poly) = Self::compute_witness_polynomial(polynomial, point, rand)?;
        end_timer!(witness_time);

        let proof =
            Self::open_with_witness_polynomial(powers, point, rand, &witness_poly, hiding_witness_poly.as_ref());

        end_timer!(open_time);
        proof
    }

    /// Verifies that `value` is the evaluation at `point` of the polynomial
    /// committed inside `commitment`.
    pub fn check(
        vk: &VerifierKey<E>,
        commitment: &KZGCommitment<E>,
        point: E::Fr,
        value: E::Fr,
        proof: &KZGProof<E>,
    ) -> Result<bool, PCError> {
        let check_time = start_timer!(|| "Checking evaluation");
        let mut inner = commitment.0.to_projective() - vk.g.to_projective().mul(value);
        if let Some(random_v) = proof.random_v {
            inner -= &vk.gamma_g.mul(random_v);
        }
        let lhs = E::pairing(inner, vk.h);

        let inner = vk.beta_h.to_projective() - vk.h.mul(point);
        let rhs = E::pairing(proof.w, inner);

        end_timer!(check_time, || format!("Result: {}", lhs == rhs));
        Ok(lhs == rhs)
    }

    /// Check that each `proof_i` in `proofs` is a valid proof of evaluation for
    /// `commitment_i` at `point_i`.
    pub fn batch_check<R: RngCore>(
        vk: &VerifierKey<E>,
        commitments: &[KZGCommitment<E>],
        points: &[E::Fr],
        values: &[E::Fr],
        proofs: &[KZGProof<E>],
        rng: &mut R,
    ) -> Result<bool> {
        let check_time = start_timer!(|| format!("Checking {} evaluation proofs", commitments.len()));
        let g = vk.g.to_projective();
        let gamma_g = vk.gamma_g.to_projective();

        let mut total_c = <E::G1Projective>::zero();
        let mut total_w = <E::G1Projective>::zero();

        let combination_time = start_timer!(|| "Combining commitments and proofs");
        let mut randomizer = E::Fr::one();
        // Instead of multiplying g and gamma_g in each turn, we simply accumulate
        // their coefficients and perform a final multiplication at the end.
        let mut g_multiplier = E::Fr::zero();
        let mut gamma_g_multiplier = E::Fr::zero();
        ensure!(commitments.len() == points.len());
        ensure!(commitments.len() == values.len());
        ensure!(commitments.len() == proofs.len());
        for (((c, z), v), proof) in commitments.iter().zip_eq(points).zip_eq(values).zip_eq(proofs) {
            let w = proof.w;
            let mut temp = w.mul(*z);
            temp.add_assign_mixed(&c.0);
            let c = temp;
            g_multiplier += &(randomizer * v);
            if let Some(random_v) = proof.random_v {
                gamma_g_multiplier += &(randomizer * random_v);
            }
            total_c += &c.mul(randomizer);
            total_w += &w.mul(randomizer);
            // We don't need to sample randomizers from the full field,
            // only from 128-bit strings.
            randomizer = u128::rand(rng).into();
        }
        total_c -= &g.mul(g_multiplier);
        total_c -= &gamma_g.mul(gamma_g_multiplier);
        end_timer!(combination_time);

        let to_affine_time = start_timer!(|| "Converting results to affine for pairing");
        let affine_points = E::G1Projective::batch_normalization_into_affine(vec![-total_w, total_c]);
        let (total_w, total_c) = (affine_points[0], affine_points[1]);
        end_timer!(to_affine_time);

        let pairing_time = start_timer!(|| "Performing product of pairings");
        let result = E::product_of_pairings(
            [(&total_w.prepare(), &vk.prepared_beta_h), (&total_c.prepare(), &vk.prepared_h)].iter().copied(),
        )
        .is_one();
        end_timer!(pairing_time);
        end_timer!(check_time, || format!("Result: {result}"));
        Ok(result)
    }

    pub(crate) fn check_degree_is_too_large(degree: usize, num_powers: usize) -> Result<(), PCError> {
        let num_coefficients = degree + 1;
        if num_coefficients > num_powers {
            Err(PCError::TooManyCoefficients { num_coefficients, num_powers })
        } else {
            Ok(())
        }
    }

    pub(crate) fn check_hiding_bound(hiding_poly_degree: usize, num_powers: usize) -> Result<(), PCError> {
        if hiding_poly_degree == 0 {
            Err(PCError::HidingBoundIsZero)
        } else if hiding_poly_degree >= num_powers {
            // The above check uses `>=` because committing to a hiding poly with
            // degree `hiding_poly_degree` requires `hiding_poly_degree + 1` powers.
            Err(PCError::HidingBoundToolarge { hiding_poly_degree, num_powers })
        } else {
            Ok(())
        }
    }

    pub(crate) fn check_degrees_and_bounds<'a>(
        max_degree: usize,
        enforced_degree_bounds: Option<&[usize]>,
        p: impl Into<LabeledPolynomialWithBasis<'a, E::Fr>>,
    ) -> Result<(), PCError> {
        let p = p.into();
        if let Some(bound) = p.degree_bound() {
            let enforced_degree_bounds = enforced_degree_bounds.ok_or(PCError::UnsupportedDegreeBound(bound))?;

            if enforced_degree_bounds.binary_search(&bound).is_err() {
                Err(PCError::UnsupportedDegreeBound(bound))
            } else if bound < p.degree() || bound > max_degree {
                return Err(PCError::IncorrectDegreeBound {
                    poly_degree: p.degree(),
                    degree_bound: p.degree_bound().unwrap(),
                    max_degree,
                    label: p.label().to_string(),
                });
            } else {
                Ok(())
            }
        } else {
            Ok(())
        }
    }
}

fn skip_leading_zeros_and_convert_to_bigints<F: PrimeField>(p: &DensePolynomial<F>) -> (usize, Vec<F::BigInteger>) {
    if p.coeffs.is_empty() {
        (0, vec![])
    } else {
        let num_leading_zeros = p.coeffs.iter().take_while(|c| c.is_zero()).count();
        let coeffs = if num_leading_zeros == p.coeffs.len() {
            vec![]
        } else {
            convert_to_bigints(&p.coeffs[num_leading_zeros..])
        };
        (num_leading_zeros, coeffs)
    }
}

fn convert_to_bigints<F: PrimeField>(p: &[F]) -> Vec<F::BigInteger> {
    let to_bigint_time = start_timer!(|| "Converting polynomial coeffs to bigints");
    let coeffs = cfg_iter!(p).map(|s| s.to_bigint()).collect::<Vec<_>>();
    end_timer!(to_bigint_time);
    coeffs
}

#[cfg(test)]
mod tests {
    #![allow(non_camel_case_types)]
    #![allow(clippy::needless_borrow)]
    use super::*;
    use snarkvm_curves::bls12_377::{Bls12_377, Fr};
    use snarkvm_utilities::{rand::TestRng, FromBytes, ToBytes};

    use std::borrow::Cow;

    type KZG_Bls12_377 = KZG10<Bls12_377>;

    impl<E: PairingEngine> KZG10<E> {
        /// Specializes the public parameters for a given maximum degree `d` for polynomials
        /// `d` should be less that `pp.max_degree()`.
        pub(crate) fn trim(
            pp: &UniversalParams<E>,
            mut supported_degree: usize,
            hiding_bound: Option<usize>,
        ) -> (Powers<E>, VerifierKey<E>) {
            if supported_degree == 1 {
                supported_degree += 1;
            }
            let powers_of_beta_g = pp.powers_of_beta_g(0, supported_degree + 1).unwrap().to_vec();

            let powers_of_beta_times_gamma_g = if let Some(hiding_bound) = hiding_bound {
                (0..=(hiding_bound + 1)).map(|i| pp.powers_of_beta_times_gamma_g()[&i]).collect()
            } else {
                vec![]
            };

            let powers = Powers {
                powers_of_beta_g: Cow::Owned(powers_of_beta_g),
                powers_of_beta_times_gamma_g: Cow::Owned(powers_of_beta_times_gamma_g),
            };
            let vk = VerifierKey {
                g: pp.power_of_beta_g(0).unwrap(),
                gamma_g: pp.powers_of_beta_times_gamma_g()[&0],
                h: pp.h,
                beta_h: pp.beta_h(),
                prepared_h: pp.prepared_h.clone(),
                prepared_beta_h: pp.prepared_beta_h.clone(),
            };
            (powers, vk)
        }
    }

    #[test]
    fn test_kzg10_universal_params_serialization() {
        let degree = 4;
        let pp = KZG_Bls12_377::load_srs(degree).unwrap();

        let pp_bytes = pp.to_bytes_le().unwrap();
        let pp_recovered: UniversalParams<Bls12_377> = FromBytes::read_le(&pp_bytes[..]).unwrap();
        let pp_recovered_bytes = pp_recovered.to_bytes_le().unwrap();

        assert_eq!(&pp_bytes, &pp_recovered_bytes);
    }

    fn end_to_end_test_template<E: PairingEngine>() -> Result<(), PCError> {
        let rng = &mut TestRng::default();
        for _ in 0..100 {
            let mut degree = 0;
            while degree <= 1 {
                degree = usize::rand(rng) % 20;
            }
            let pp = KZG10::<E>::load_srs(degree)?;
            let hiding_bound = Some(1);
            let (ck, vk) = KZG10::trim(&pp, degree, hiding_bound);
            let p = DensePolynomial::rand(degree, rng);
            let (comm, rand) = KZG10::<E>::commit(&ck, &(&p).into(), hiding_bound, Some(rng))?;
            let point = E::Fr::rand(rng);
            let value = p.evaluate(point);
            let proof = KZG10::<E>::open(&ck, &p, point, &rand)?;
            assert!(
                KZG10::<E>::check(&vk, &comm, point, value, &proof)?,
                "proof was incorrect for max_degree = {}, polynomial_degree = {}, hiding_bound = {:?}",
                degree,
                p.degree(),
                hiding_bound,
            );
        }
        Ok(())
    }

    fn linear_polynomial_test_template<E: PairingEngine>() -> Result<(), PCError> {
        let rng = &mut TestRng::default();
        for _ in 0..100 {
            let degree = 50;
            let pp = KZG10::<E>::load_srs(degree)?;
            let hiding_bound = Some(1);
            let (ck, vk) = KZG10::trim(&pp, 2, hiding_bound);
            let p = DensePolynomial::rand(1, rng);
            let (comm, rand) = KZG10::<E>::commit(&ck, &(&p).into(), hiding_bound, Some(rng))?;
            let point = E::Fr::rand(rng);
            let value = p.evaluate(point);
            let proof = KZG10::<E>::open(&ck, &p, point, &rand)?;
            assert!(
                KZG10::<E>::check(&vk, &comm, point, value, &proof)?,
                "proof was incorrect for max_degree = {}, polynomial_degree = {}, hiding_bound = {:?}",
                degree,
                p.degree(),
                hiding_bound,
            );
        }
        Ok(())
    }

    fn batch_check_test_template<E: PairingEngine>() -> Result<(), PCError> {
        let rng = &mut TestRng::default();
        for _ in 0..10 {
            let hiding_bound = Some(1);
            let mut degree = 0;
            while degree <= 1 {
                degree = usize::rand(rng) % 20;
            }
            let pp = KZG10::<E>::load_srs(degree)?;
            let (ck, vk) = KZG10::trim(&pp, degree, hiding_bound);

            let mut comms = Vec::new();
            let mut values = Vec::new();
            let mut points = Vec::new();
            let mut proofs = Vec::new();

            for _ in 0..10 {
                let p = DensePolynomial::rand(degree, rng);
                let (comm, rand) = KZG10::<E>::commit(&ck, &(&p).into(), hiding_bound, Some(rng))?;
                let point = E::Fr::rand(rng);
                let value = p.evaluate(point);
                let proof = KZG10::<E>::open(&ck, &p, point, &rand)?;

                assert!(KZG10::<E>::check(&vk, &comm, point, value, &proof)?);
                comms.push(comm);
                values.push(value);
                points.push(point);
                proofs.push(proof);
            }
            assert!(KZG10::<E>::batch_check(&vk, &comms, &points, &values, &proofs, rng)?);
        }
        Ok(())
    }

    #[test]
    fn test_end_to_end() {
        end_to_end_test_template::<Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_linear_polynomial() {
        linear_polynomial_test_template::<Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_batch_check() {
        batch_check_test_template::<Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn test_degree_is_too_large() {
        let rng = &mut TestRng::default();

        let max_degree = 123;
        let pp = KZG_Bls12_377::load_srs(max_degree).unwrap();
        let (powers, _) = KZG_Bls12_377::trim(&pp, max_degree, None);

        let p = DensePolynomial::<Fr>::rand(max_degree + 1, rng);
        assert!(p.degree() > max_degree);
        assert!(KZG_Bls12_377::check_degree_is_too_large(p.degree(), powers.size()).is_err());
    }
}