1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::{LabeledPolynomial, PolynomialInfo};
use crate::{crypto_hash::sha256::sha256, fft::EvaluationDomain, polycommit::kzg10};
use snarkvm_curves::PairingEngine;
use snarkvm_fields::{ConstraintFieldError, Field, PrimeField, ToConstraintField};
use snarkvm_utilities::{error, serialize::*, FromBytes, ToBytes};

use hashbrown::HashMap;
use std::{
    borrow::{Borrow, Cow},
    collections::{BTreeMap, BTreeSet},
    fmt,
    ops::{AddAssign, MulAssign, SubAssign},
};

/// `UniversalParams` are the universal parameters for the KZG10 scheme.
pub type UniversalParams<E> = kzg10::UniversalParams<E>;

/// `Randomness` is the randomness for the KZG10 scheme.
pub type Randomness<E> = kzg10::KZGRandomness<E>;

/// `Commitment` is the commitment for the KZG10 scheme.
pub type Commitment<E> = kzg10::KZGCommitment<E>;

/// `CommitterKey` is used to commit to, and create evaluation proofs for, a given polynomial.
#[derive(Debug)]
pub struct CommitterKey<E: PairingEngine> {
    /// The key used to commit to polynomials.
    pub powers_of_beta_g: Vec<E::G1Affine>,

    /// The key used to commit to polynomials in Lagrange basis.
    pub lagrange_bases_at_beta_g: BTreeMap<usize, Vec<E::G1Affine>>,

    /// The key used to commit to hiding polynomials.
    pub powers_of_beta_times_gamma_g: Vec<E::G1Affine>,

    /// The powers used to commit to shifted polynomials.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub shifted_powers_of_beta_g: Option<Vec<E::G1Affine>>,

    /// The powers used to commit to shifted hiding polynomials.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub shifted_powers_of_beta_times_gamma_g: Option<BTreeMap<usize, Vec<E::G1Affine>>>,

    /// The degree bounds that are supported by `self`.
    /// Sorted in ascending order from smallest bound to largest bound.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub enforced_degree_bounds: Option<Vec<usize>>,
}

impl<E: PairingEngine> FromBytes for CommitterKey<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        // Deserialize `powers`.
        let powers_len: u32 = FromBytes::read_le(&mut reader)?;
        let mut powers_of_beta_g = Vec::with_capacity(powers_len as usize);
        for _ in 0..powers_len {
            let power: E::G1Affine = FromBytes::read_le(&mut reader)?;
            powers_of_beta_g.push(power);
        }

        // Deserialize `lagrange_basis_at_beta`.
        let lagrange_bases_at_beta_len: u32 = FromBytes::read_le(&mut reader)?;
        let mut lagrange_bases_at_beta_g = BTreeMap::new();
        for _ in 0..lagrange_bases_at_beta_len {
            let size: u32 = FromBytes::read_le(&mut reader)?;
            let mut basis = Vec::with_capacity(size as usize);
            for _ in 0..size {
                let power: E::G1Affine = FromBytes::read_le(&mut reader)?;
                basis.push(power);
            }
            lagrange_bases_at_beta_g.insert(size as usize, basis);
        }

        // Deserialize `powers_of_beta_times_gamma_g`.
        let powers_of_beta_times_gamma_g_len: u32 = FromBytes::read_le(&mut reader)?;
        let mut powers_of_beta_times_gamma_g = Vec::with_capacity(powers_of_beta_times_gamma_g_len as usize);
        for _ in 0..powers_of_beta_times_gamma_g_len {
            let powers_of_g: E::G1Affine = FromBytes::read_le(&mut reader)?;
            powers_of_beta_times_gamma_g.push(powers_of_g);
        }

        // Deserialize `shifted_powers_of_beta_g`.
        let has_shifted_powers_of_beta_g: bool = FromBytes::read_le(&mut reader)?;
        let shifted_powers_of_beta_g = match has_shifted_powers_of_beta_g {
            true => {
                let shifted_powers_len: u32 = FromBytes::read_le(&mut reader)?;
                let mut shifted_powers_of_beta_g = Vec::with_capacity(shifted_powers_len as usize);
                for _ in 0..shifted_powers_len {
                    let shifted_power: E::G1Affine = FromBytes::read_le(&mut reader)?;
                    shifted_powers_of_beta_g.push(shifted_power);
                }

                Some(shifted_powers_of_beta_g)
            }
            false => None,
        };

        // Deserialize `shifted_powers_of_beta_times_gamma_g`.
        let has_shifted_powers_of_beta_times_gamma_g: bool = FromBytes::read_le(&mut reader)?;
        let shifted_powers_of_beta_times_gamma_g = match has_shifted_powers_of_beta_times_gamma_g {
            true => {
                let mut shifted_powers_of_beta_times_gamma_g = BTreeMap::new();
                let shifted_powers_of_beta_times_gamma_g_num_elements: u32 = FromBytes::read_le(&mut reader)?;
                for _ in 0..shifted_powers_of_beta_times_gamma_g_num_elements {
                    let key: u32 = FromBytes::read_le(&mut reader)?;

                    let value_len: u32 = FromBytes::read_le(&mut reader)?;
                    let mut value = Vec::with_capacity(value_len as usize);
                    for _ in 0..value_len {
                        let val: E::G1Affine = FromBytes::read_le(&mut reader)?;
                        value.push(val);
                    }

                    shifted_powers_of_beta_times_gamma_g.insert(key as usize, value);
                }

                Some(shifted_powers_of_beta_times_gamma_g)
            }
            false => None,
        };

        // Deserialize `enforced_degree_bounds`.
        let has_enforced_degree_bounds: bool = FromBytes::read_le(&mut reader)?;
        let enforced_degree_bounds = match has_enforced_degree_bounds {
            true => {
                let enforced_degree_bounds_len: u32 = FromBytes::read_le(&mut reader)?;
                let mut enforced_degree_bounds = Vec::with_capacity(enforced_degree_bounds_len as usize);
                for _ in 0..enforced_degree_bounds_len {
                    let enforced_degree_bound: u32 = FromBytes::read_le(&mut reader)?;
                    enforced_degree_bounds.push(enforced_degree_bound as usize);
                }

                Some(enforced_degree_bounds)
            }
            false => None,
        };

        // Construct the hash of the group elements.
        let mut hash_input = powers_of_beta_g.to_bytes_le().map_err(|_| error("Could not serialize powers"))?;
        powers_of_beta_times_gamma_g
            .write_le(&mut hash_input)
            .map_err(|_| error("Could not serialize powers_of_beta_times_gamma_g"))?;

        if let Some(shifted_powers_of_beta_g) = &shifted_powers_of_beta_g {
            shifted_powers_of_beta_g
                .write_le(&mut hash_input)
                .map_err(|_| error("Could not serialize shifted_powers_of_beta_g"))?;
        }

        if let Some(shifted_powers_of_beta_times_gamma_g) = &shifted_powers_of_beta_times_gamma_g {
            for value in shifted_powers_of_beta_times_gamma_g.values() {
                value.write_le(&mut hash_input).map_err(|_| error("Could not serialize shifted_power_of_gamma_g"))?;
            }
        }

        // Deserialize `hash`.
        let hash = sha256(&hash_input);
        let expected_hash: [u8; 32] = FromBytes::read_le(&mut reader)?;

        // Enforce the group elements construct the expected hash.
        if expected_hash != hash {
            return Err(error("Mismatching group elements"));
        }

        Ok(Self {
            powers_of_beta_g,
            lagrange_bases_at_beta_g,
            powers_of_beta_times_gamma_g,
            shifted_powers_of_beta_g,
            shifted_powers_of_beta_times_gamma_g,
            enforced_degree_bounds,
        })
    }
}

impl<E: PairingEngine> ToBytes for CommitterKey<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        // Serialize `powers`.
        (self.powers_of_beta_g.len() as u32).write_le(&mut writer)?;
        for power in &self.powers_of_beta_g {
            power.write_le(&mut writer)?;
        }

        // Serialize `powers`.
        (self.lagrange_bases_at_beta_g.len() as u32).write_le(&mut writer)?;
        for (size, powers) in &self.lagrange_bases_at_beta_g {
            (*size as u32).write_le(&mut writer)?;
            for power in powers {
                power.write_le(&mut writer)?;
            }
        }

        // Serialize `powers_of_beta_times_gamma_g`.
        (self.powers_of_beta_times_gamma_g.len() as u32).write_le(&mut writer)?;
        for power_of_gamma_g in &self.powers_of_beta_times_gamma_g {
            power_of_gamma_g.write_le(&mut writer)?;
        }

        // Serialize `shifted_powers_of_beta_g`.
        self.shifted_powers_of_beta_g.is_some().write_le(&mut writer)?;
        if let Some(shifted_powers_of_beta_g) = &self.shifted_powers_of_beta_g {
            (shifted_powers_of_beta_g.len() as u32).write_le(&mut writer)?;
            for shifted_power in shifted_powers_of_beta_g {
                shifted_power.write_le(&mut writer)?;
            }
        }

        // Serialize `shifted_powers_of_beta_times_gamma_g`.
        self.shifted_powers_of_beta_times_gamma_g.is_some().write_le(&mut writer)?;
        if let Some(shifted_powers_of_beta_times_gamma_g) = &self.shifted_powers_of_beta_times_gamma_g {
            (shifted_powers_of_beta_times_gamma_g.len() as u32).write_le(&mut writer)?;
            for (key, shifted_powers_of_beta_g) in shifted_powers_of_beta_times_gamma_g {
                (*key as u32).write_le(&mut writer)?;
                (shifted_powers_of_beta_g.len() as u32).write_le(&mut writer)?;
                for shifted_power in shifted_powers_of_beta_g {
                    shifted_power.write_le(&mut writer)?;
                }
            }
        }

        // Serialize `enforced_degree_bounds`.
        self.enforced_degree_bounds.is_some().write_le(&mut writer)?;
        if let Some(enforced_degree_bounds) = &self.enforced_degree_bounds {
            (enforced_degree_bounds.len() as u32).write_le(&mut writer)?;
            for enforced_degree_bound in enforced_degree_bounds {
                (*enforced_degree_bound as u32).write_le(&mut writer)?;
            }
        }

        // Construct the hash of the group elements.
        let mut hash_input = self.powers_of_beta_g.to_bytes_le().map_err(|_| error("Could not serialize powers"))?;
        self.powers_of_beta_times_gamma_g
            .write_le(&mut hash_input)
            .map_err(|_| error("Could not serialize powers_of_beta_times_gamma_g"))?;

        if let Some(shifted_powers_of_beta_g) = &self.shifted_powers_of_beta_g {
            shifted_powers_of_beta_g
                .write_le(&mut hash_input)
                .map_err(|_| error("Could not serialize shifted_powers_of_beta_g"))?;
        }

        if let Some(shifted_powers_of_beta_times_gamma_g) = &self.shifted_powers_of_beta_times_gamma_g {
            for value in shifted_powers_of_beta_times_gamma_g.values() {
                value.write_le(&mut hash_input).map_err(|_| error("Could not serialize shifted_power_of_gamma_g"))?;
            }
        }

        // Serialize `hash`
        let hash = sha256(&hash_input);
        hash.write_le(&mut writer)
    }
}

impl<E: PairingEngine> CommitterKey<E> {
    fn len(&self) -> usize {
        if self.shifted_powers_of_beta_g.is_some() { self.shifted_powers_of_beta_g.as_ref().unwrap().len() } else { 0 }
    }
}

/// `CommitterUnionKey` is a union of `CommitterKey`s, useful for multi-circuit batch proofs.
#[derive(Debug)]
pub struct CommitterUnionKey<'a, E: PairingEngine> {
    /// The key used to commit to polynomials.
    pub powers_of_beta_g: Option<&'a Vec<E::G1Affine>>,

    /// The key used to commit to polynomials in Lagrange basis.
    pub lagrange_bases_at_beta_g: BTreeMap<usize, &'a Vec<E::G1Affine>>,

    /// The key used to commit to hiding polynomials.
    pub powers_of_beta_times_gamma_g: Option<&'a Vec<E::G1Affine>>,

    /// The powers used to commit to shifted polynomials.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub shifted_powers_of_beta_g: Option<&'a Vec<E::G1Affine>>,

    /// The powers used to commit to shifted hiding polynomials.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub shifted_powers_of_beta_times_gamma_g: Option<BTreeMap<usize, &'a Vec<E::G1Affine>>>,

    /// The degree bounds that are supported by `self`.
    /// Sorted in ascending order from smallest bound to largest bound.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub enforced_degree_bounds: Option<Vec<usize>>,
}

impl<'a, E: PairingEngine> CommitterUnionKey<'a, E> {
    /// Obtain powers for the underlying KZG10 construction
    pub fn powers(&self) -> kzg10::Powers<E> {
        kzg10::Powers {
            powers_of_beta_g: self.powers_of_beta_g.unwrap().as_slice().into(),
            powers_of_beta_times_gamma_g: self.powers_of_beta_times_gamma_g.unwrap().as_slice().into(),
        }
    }

    /// Obtain powers for committing to shifted polynomials.
    pub fn shifted_powers_of_beta_g(&self, degree_bound: impl Into<Option<usize>>) -> Option<kzg10::Powers<E>> {
        match (&self.shifted_powers_of_beta_g, &self.shifted_powers_of_beta_times_gamma_g) {
            (Some(shifted_powers_of_beta_g), Some(shifted_powers_of_beta_times_gamma_g)) => {
                let max_bound = self.enforced_degree_bounds.as_ref().unwrap().last().unwrap();
                let (bound, powers_range) = if let Some(degree_bound) = degree_bound.into() {
                    assert!(self.enforced_degree_bounds.as_ref().unwrap().contains(&degree_bound));
                    (degree_bound, (max_bound - degree_bound)..)
                } else {
                    (*max_bound, 0..)
                };

                let ck = kzg10::Powers {
                    powers_of_beta_g: shifted_powers_of_beta_g[powers_range].into(),
                    powers_of_beta_times_gamma_g: shifted_powers_of_beta_times_gamma_g[&bound].clone().into(),
                };

                Some(ck)
            }

            (_, _) => None,
        }
    }

    /// Obtain elements of the SRS in the lagrange basis powers, for use with the underlying
    /// KZG10 construction.
    pub fn lagrange_basis(&self, domain: EvaluationDomain<E::Fr>) -> Option<kzg10::LagrangeBasis<E>> {
        self.lagrange_bases_at_beta_g.get(&domain.size()).map(|basis| kzg10::LagrangeBasis {
            lagrange_basis_at_beta_g: Cow::Borrowed(basis),
            powers_of_beta_times_gamma_g: Cow::Borrowed(self.powers_of_beta_times_gamma_g.unwrap()),
            domain,
        })
    }

    pub fn union<T: IntoIterator<Item = &'a CommitterKey<E>>>(committer_keys: T) -> Self {
        let mut ck_union = CommitterUnionKey::<E> {
            powers_of_beta_g: None,
            lagrange_bases_at_beta_g: BTreeMap::new(),
            powers_of_beta_times_gamma_g: None,
            shifted_powers_of_beta_g: None,
            shifted_powers_of_beta_times_gamma_g: None,
            enforced_degree_bounds: None,
        };
        let mut enforced_degree_bounds = vec![];
        let mut biggest_ck: Option<&CommitterKey<E>> = None;
        let mut shifted_powers_of_beta_times_gamma_g = BTreeMap::new();
        for ck in committer_keys {
            if biggest_ck.is_none() || biggest_ck.unwrap().len() < ck.len() {
                biggest_ck = Some(ck);
            }
            let lagrange_bases = &ck.lagrange_bases_at_beta_g;
            for (bound_base, bases) in lagrange_bases.iter() {
                ck_union.lagrange_bases_at_beta_g.entry(*bound_base).or_insert(bases);
            }
            if let Some(shifted_powers) = ck.shifted_powers_of_beta_times_gamma_g.as_ref() {
                for (bound_power, powers) in shifted_powers.iter() {
                    shifted_powers_of_beta_times_gamma_g.entry(*bound_power).or_insert(powers);
                }
            }
            if let Some(degree_bounds) = &ck.enforced_degree_bounds {
                enforced_degree_bounds.append(&mut degree_bounds.clone());
            }
        }

        let biggest_ck = biggest_ck.unwrap();
        ck_union.powers_of_beta_g = Some(&biggest_ck.powers_of_beta_g);
        ck_union.powers_of_beta_times_gamma_g = Some(&biggest_ck.powers_of_beta_times_gamma_g);
        ck_union.shifted_powers_of_beta_g = biggest_ck.shifted_powers_of_beta_g.as_ref();

        if !enforced_degree_bounds.is_empty() {
            enforced_degree_bounds.sort();
            enforced_degree_bounds.dedup();
            ck_union.enforced_degree_bounds = Some(enforced_degree_bounds);
            ck_union.shifted_powers_of_beta_times_gamma_g = Some(shifted_powers_of_beta_times_gamma_g);
        }

        ck_union
    }
}

/// Evaluation proof at a query set.
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash, CanonicalSerialize, CanonicalDeserialize)]
pub struct BatchProof<E: PairingEngine>(pub(crate) Vec<kzg10::KZGProof<E>>);

impl<E: PairingEngine> BatchProof<E> {
    pub fn is_hiding(&self) -> bool {
        self.0.iter().any(|c| c.is_hiding())
    }
}

/// Labels a `LabeledPolynomial` or a `LabeledCommitment`.
pub type PolynomialLabel = String;

/// A commitment along with information about its degree bound (if any).
#[derive(Clone, Debug, CanonicalSerialize, PartialEq, Eq)]
pub struct LabeledCommitment<C: CanonicalSerialize + 'static> {
    label: PolynomialLabel,
    commitment: C,
    degree_bound: Option<usize>,
}

impl<F: Field, C: CanonicalSerialize + ToConstraintField<F>> ToConstraintField<F> for LabeledCommitment<C> {
    fn to_field_elements(&self) -> Result<Vec<F>, ConstraintFieldError> {
        self.commitment.to_field_elements()
    }
}

// NOTE: Serializing the LabeledCommitments struct is done by serializing
// _WITHOUT_ the labels or the degree bound. Deserialization is _NOT_ supported,
// and you should construct the struct via the `LabeledCommitment::new` method after
// deserializing the Commitment.
impl<C: CanonicalSerialize + ToBytes> ToBytes for LabeledCommitment<C> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(&self.commitment, &mut writer)
            .map_err(|_| error("could not serialize struct"))
    }
}

impl<C: CanonicalSerialize> LabeledCommitment<C> {
    /// Instantiate a new polynomial_context.
    pub fn new(label: PolynomialLabel, commitment: C, degree_bound: Option<usize>) -> Self {
        Self { label, commitment, degree_bound }
    }

    pub fn new_with_info(info: &PolynomialInfo, commitment: C) -> Self {
        Self { label: info.label().to_string(), commitment, degree_bound: info.degree_bound() }
    }

    /// Return the label for `self`.
    pub fn label(&self) -> &str {
        &self.label
    }

    /// Retrieve the commitment from `self`.
    pub fn commitment(&self) -> &C {
        &self.commitment
    }

    /// Retrieve the degree bound in `self`.
    pub fn degree_bound(&self) -> Option<usize> {
        self.degree_bound
    }
}

/// A term in a linear combination.
#[derive(Hash, Ord, PartialOrd, Clone, Eq, PartialEq)]
pub enum LCTerm {
    /// The constant term representing `one`.
    One,
    /// Label for a polynomial.
    PolyLabel(String),
}

impl fmt::Debug for LCTerm {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            LCTerm::One => write!(f, "1"),
            LCTerm::PolyLabel(label) => write!(f, "{label}"),
        }
    }
}

impl LCTerm {
    /// Returns `true` if `self == LCTerm::One`
    #[inline]
    pub fn is_one(&self) -> bool {
        matches!(self, LCTerm::One)
    }
}

impl From<PolynomialLabel> for LCTerm {
    fn from(other: PolynomialLabel) -> Self {
        Self::PolyLabel(other)
    }
}

impl<'a> From<&'a str> for LCTerm {
    fn from(other: &str) -> Self {
        Self::PolyLabel(other.into())
    }
}

impl core::convert::TryInto<PolynomialLabel> for LCTerm {
    type Error = ();

    fn try_into(self) -> Result<PolynomialLabel, ()> {
        match self {
            Self::One => Err(()),
            Self::PolyLabel(l) => Ok(l),
        }
    }
}

impl<'a> core::convert::TryInto<&'a PolynomialLabel> for &'a LCTerm {
    type Error = ();

    fn try_into(self) -> Result<&'a PolynomialLabel, ()> {
        match self {
            LCTerm::One => Err(()),
            LCTerm::PolyLabel(l) => Ok(l),
        }
    }
}

impl<B: Borrow<String>> PartialEq<B> for LCTerm {
    fn eq(&self, other: &B) -> bool {
        match self {
            Self::One => false,
            Self::PolyLabel(l) => l == other.borrow(),
        }
    }
}

/// A labeled linear combinations of polynomials.
#[derive(Clone, Debug)]
pub struct LinearCombination<F> {
    /// The label.
    pub label: String,
    /// The linear combination of `(poly_label, coeff)` pairs.
    pub terms: BTreeMap<LCTerm, F>,
}

#[allow(clippy::or_fun_call)]
impl<F: Field> LinearCombination<F> {
    /// Construct an empty labeled linear combination.
    pub fn empty(label: impl Into<String>) -> Self {
        Self { label: label.into(), terms: BTreeMap::new() }
    }

    /// Construct a new labeled linear combination.
    /// with the terms specified in `term`.
    pub fn new(label: impl Into<String>, _terms: impl IntoIterator<Item = (F, impl Into<LCTerm>)>) -> Self {
        let mut terms = BTreeMap::new();
        for (c, l) in _terms.into_iter().map(|(c, t)| (c, t.into())) {
            *terms.entry(l).or_insert(F::zero()) += c;
        }

        Self { label: label.into(), terms }
    }

    /// Returns the label of the linear combination.
    pub fn label(&self) -> &str {
        &self.label
    }

    /// Returns `true` if the linear combination has no terms.
    pub fn is_empty(&self) -> bool {
        self.terms.is_empty()
    }

    /// Add a term to the linear combination.
    pub fn add(&mut self, c: F, t: impl Into<LCTerm>) -> &mut Self {
        let t = t.into();
        *self.terms.entry(t.clone()).or_insert(F::zero()) += c;
        if self.terms[&t].is_zero() {
            self.terms.remove(&t);
        }
        self
    }

    pub fn len(&self) -> usize {
        self.terms.len()
    }

    pub fn iter(&self) -> impl Iterator<Item = (&F, &LCTerm)> {
        self.terms.iter().map(|(t, c)| (c, t))
    }
}

impl<'a, F: Field> AddAssign<(F, &'a LinearCombination<F>)> for LinearCombination<F> {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn add_assign(&mut self, (coeff, other): (F, &'a LinearCombination<F>)) {
        for (t, c) in other.terms.iter() {
            self.add(coeff * c, t.clone());
        }
    }
}

impl<'a, F: Field> SubAssign<(F, &'a LinearCombination<F>)> for LinearCombination<F> {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn sub_assign(&mut self, (coeff, other): (F, &'a LinearCombination<F>)) {
        for (t, c) in other.terms.iter() {
            self.add(-coeff * c, t.clone());
        }
    }
}

impl<'a, F: Field> AddAssign<&'a LinearCombination<F>> for LinearCombination<F> {
    fn add_assign(&mut self, other: &'a LinearCombination<F>) {
        for (t, c) in other.terms.iter() {
            self.add(*c, t.clone());
        }
    }
}

impl<'a, F: Field> SubAssign<&'a LinearCombination<F>> for LinearCombination<F> {
    fn sub_assign(&mut self, other: &'a LinearCombination<F>) {
        for (t, &c) in other.terms.iter() {
            self.add(-c, t.clone());
        }
    }
}

impl<F: Field> AddAssign<F> for LinearCombination<F> {
    fn add_assign(&mut self, coeff: F) {
        self.add(coeff, LCTerm::One);
    }
}

impl<F: Field> SubAssign<F> for LinearCombination<F> {
    fn sub_assign(&mut self, coeff: F) {
        self.add(-coeff, LCTerm::One);
    }
}

impl<F: Field> MulAssign<F> for LinearCombination<F> {
    fn mul_assign(&mut self, coeff: F) {
        self.terms.values_mut().for_each(|c| *c *= &coeff);
    }
}

/// `QuerySet` is the set of queries that are to be made to a set of labeled polynomials/equations
/// `p` that have previously been committed to. Each element of a `QuerySet` is a `(label, query)`
/// pair, where `label` is the label of a polynomial in `p`, and `query` is the field element
/// that `p[label]` is to be queried at.
///
/// Added the third field: the point name.
pub type QuerySet<T> = BTreeSet<(String, (String, T))>;

/// `Evaluations` is the result of querying a set of labeled polynomials or equations
/// `p` at a `QuerySet` `Q`. It maps each element of `Q` to the resulting evaluation.
/// That is, if `(label, query)` is an element of `Q`, then `evaluation.get((label, query))`
/// should equal `p[label].evaluate(query)`.
pub type Evaluations<F> = BTreeMap<(String, F), F>;

/// Evaluate the given polynomials at `query_set`.
pub fn evaluate_query_set<'a, F: PrimeField>(
    polys: impl IntoIterator<Item = &'a LabeledPolynomial<F>>,
    query_set: &QuerySet<F>,
) -> Evaluations<F> {
    let polys: HashMap<_, _> = polys.into_iter().map(|p| (p.label(), p)).collect();
    let mut evaluations = Evaluations::new();
    for (label, (_point_name, point)) in query_set {
        let poly = polys.get(label as &str).expect("polynomial in evaluated lc is not found");
        let eval = poly.evaluate(*point);
        evaluations.insert((label.clone(), *point), eval);
    }
    evaluations
}

/// A proof of satisfaction of linear combinations.
#[derive(Clone, Debug, PartialEq, Eq, CanonicalSerialize, CanonicalDeserialize)]
pub struct BatchLCProof<E: PairingEngine> {
    /// Evaluation proof.
    pub proof: BatchProof<E>,
}

impl<E: PairingEngine> BatchLCProof<E> {
    pub fn is_hiding(&self) -> bool {
        self.proof.is_hiding()
    }
}

impl<E: PairingEngine> FromBytes for BatchLCProof<E> {
    fn read_le<R: Read>(mut reader: R) -> io::Result<Self> {
        CanonicalDeserialize::deserialize_compressed(&mut reader).map_err(|_| error("could not deserialize struct"))
    }
}

impl<E: PairingEngine> ToBytes for BatchLCProof<E> {
    fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
        CanonicalSerialize::serialize_compressed(self, &mut writer).map_err(|_| error("could not serialize struct"))
    }
}