1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::r1cs::{errors::SynthesisError, Index, LinearCombination, Namespace, Variable};
use snarkvm_fields::Field;
use std::marker::PhantomData;
/// Computations are expressed in terms of rank-1 constraint systems (R1CS).
/// The `generate_constraints` method is called to generate constraints for
/// both CRS generation and for proving.
pub trait ConstraintSynthesizer<F: Field>: Sync {
/// Drives generation of new constraints inside `CS`.
fn generate_constraints<CS: ConstraintSystem<F>>(&self, cs: &mut CS) -> Result<(), SynthesisError>;
}
/// Represents a constraint system which can have new variables
/// allocated and constraints between them formed.
pub trait ConstraintSystem<F: Field>: Sized {
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type Root: ConstraintSystem<F>;
/// Return the "one" input variable
fn one() -> Variable {
Variable::new_unchecked(Index::Public(0))
}
/// Allocate a private variable in the constraint system. The provided
/// function is used to determine the assignment of the variable. The
/// given `annotation` function is invoked in testing contexts in order
/// to derive a unique name for this variable in the current namespace.
fn alloc<FN, A, AR>(&mut self, annotation: A, f: FN) -> Result<Variable, SynthesisError>
where
FN: FnOnce() -> Result<F, SynthesisError>,
A: FnOnce() -> AR,
AR: AsRef<str>;
/// Allocate a public variable in the constraint system. The provided
/// function is used to determine the assignment of the variable.
fn alloc_input<FN, A, AR>(&mut self, annotation: A, f: FN) -> Result<Variable, SynthesisError>
where
FN: FnOnce() -> Result<F, SynthesisError>,
A: FnOnce() -> AR,
AR: AsRef<str>;
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in
/// testing contexts in order to derive a unique name for the constraint
/// in the current namespace.
fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
where
A: FnOnce() -> AR,
AR: AsRef<str>,
LA: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
LB: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
LC: FnOnce(LinearCombination<F>) -> LinearCombination<F>;
/// Create a new (sub)namespace and enter into it. Not intended
/// for downstream use; use `namespace` instead.
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: AsRef<str>,
N: FnOnce() -> NR;
/// Exit out of the existing namespace. Not intended for
/// downstream use; use `namespace` instead.
fn pop_namespace(&mut self);
/// Gets the "root" constraint system, bypassing the namespacing.
/// Not intended for downstream use; use `namespace` instead.
fn get_root(&mut self) -> &mut Self::Root;
/// Begin a namespace for this constraint system.
fn ns<NR, N>(&mut self, name_fn: N) -> Namespace<'_, F, Self::Root>
where
NR: AsRef<str>,
N: FnOnce() -> NR,
{
self.get_root().push_namespace(name_fn);
Namespace(self.get_root(), PhantomData)
}
/// Output the number of constraints in the system.
fn num_constraints(&self) -> usize;
/// Output the number of public input variables to the system.
fn num_public_variables(&self) -> usize;
/// Output the number of private input variables to the system.
fn num_private_variables(&self) -> usize;
/// Output whether the constraint system is in the setup mode.
fn is_in_setup_mode(&self) -> bool;
}
/// Convenience implementation of ConstraintSystem<F> for mutable references to
/// constraint systems.
impl<F: Field, CS: ConstraintSystem<F>> ConstraintSystem<F> for &mut CS {
type Root = CS::Root;
#[inline]
fn one() -> Variable {
CS::one()
}
#[inline]
fn alloc<FN, A, AR>(&mut self, annotation: A, f: FN) -> Result<Variable, SynthesisError>
where
FN: FnOnce() -> Result<F, SynthesisError>,
A: FnOnce() -> AR,
AR: AsRef<str>,
{
(**self).alloc(annotation, f)
}
#[inline]
fn alloc_input<FN, A, AR>(&mut self, annotation: A, f: FN) -> Result<Variable, SynthesisError>
where
FN: FnOnce() -> Result<F, SynthesisError>,
A: FnOnce() -> AR,
AR: AsRef<str>,
{
(**self).alloc_input(annotation, f)
}
#[inline]
fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
where
A: FnOnce() -> AR,
AR: AsRef<str>,
LA: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
LB: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
LC: FnOnce(LinearCombination<F>) -> LinearCombination<F>,
{
(**self).enforce(annotation, a, b, c)
}
#[inline]
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: AsRef<str>,
N: FnOnce() -> NR,
{
(**self).push_namespace(name_fn)
}
#[inline]
fn pop_namespace(&mut self) {
(**self).pop_namespace()
}
#[inline]
fn get_root(&mut self) -> &mut Self::Root {
(**self).get_root()
}
#[inline]
fn num_constraints(&self) -> usize {
(**self).num_constraints()
}
#[inline]
fn num_public_variables(&self) -> usize {
(**self).num_public_variables()
}
#[inline]
fn num_private_variables(&self) -> usize {
(**self).num_private_variables()
}
#[inline]
fn is_in_setup_mode(&self) -> bool {
(**self).is_in_setup_mode()
}
}