1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
use crate::fft::{multicore::Worker, SparsePolynomial};
use snarkvm_fields::{batch_inversion, FieldParameters, PrimeField};
use snarkvm_utilities::{errors::SerializationError, serialize::*};
use rand::Rng;
use std::fmt;
#[cfg(feature = "parallel")]
use rayon::prelude::*;
#[cfg(feature = "parallel")]
const LOG_ROOTS_OF_UNITY_PARALLEL_SIZE: usize = 7;
#[cfg(feature = "parallel")]
fn log2(number: usize) -> usize {
(number as f64).log2() as usize
}
#[derive(Copy, Clone, Hash, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct EvaluationDomain<F: PrimeField> {
pub size: u64,
pub log_size_of_group: u32,
pub size_as_field_element: F,
pub size_inv: F,
pub group_gen: F,
pub group_gen_inv: F,
pub generator_inv: F,
}
impl<F: PrimeField> fmt::Debug for EvaluationDomain<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Multiplicative subgroup of size {}", self.size)
}
}
impl<F: PrimeField> EvaluationDomain<F> {
fn calculate_chunk_size(size: usize) -> usize {
match size / rayon::current_num_threads() {
0 => 1,
chunk_size => chunk_size,
}
}
pub fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F {
let mut t = F::rand(rng);
while self.evaluate_vanishing_polynomial(t).is_zero() {
t = F::rand(rng);
}
t
}
pub fn new(num_coeffs: usize) -> Option<Self> {
let size = num_coeffs.next_power_of_two() as u64;
let log_size_of_group = size.trailing_zeros();
if log_size_of_group >= F::Parameters::TWO_ADICITY {
return None;
}
let mut group_gen = F::root_of_unity();
for _ in log_size_of_group..F::Parameters::TWO_ADICITY {
group_gen.square_in_place();
}
let size_as_bigint = F::BigInteger::from(size);
let size_as_field_element = F::from_repr(size_as_bigint)?;
let size_inv = size_as_field_element.inverse()?;
Some(EvaluationDomain {
size,
log_size_of_group,
size_as_field_element,
size_inv,
group_gen,
group_gen_inv: group_gen.inverse()?,
generator_inv: F::multiplicative_generator().inverse()?,
})
}
pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize> {
let size = num_coeffs.next_power_of_two();
if size.trailing_zeros() < F::Parameters::TWO_ADICITY {
Some(size)
} else {
None
}
}
pub fn size(&self) -> usize {
self.size as usize
}
pub fn fft(&self, coeffs: &[F]) -> Vec<F> {
let mut coeffs = coeffs.to_vec();
self.fft_in_place(&mut coeffs);
coeffs
}
pub fn fft_in_place(&self, coeffs: &mut Vec<F>) {
coeffs.resize(self.size(), F::zero());
best_fft(coeffs, &Worker::new(), self.group_gen, self.log_size_of_group)
}
pub fn ifft(&self, evals: &[F]) -> Vec<F> {
let mut evals = evals.to_vec();
self.ifft_in_place(&mut evals);
evals
}
#[inline]
pub fn ifft_in_place(&self, evals: &mut Vec<F>) {
evals.resize(self.size(), F::zero());
best_fft(evals, &Worker::new(), self.group_gen_inv, self.log_size_of_group);
cfg_iter_mut!(evals).for_each(|val| *val *= &self.size_inv);
}
pub fn coset_fft(&self, coeffs: &[F]) -> Vec<F> {
let mut coeffs = coeffs.to_vec();
self.coset_fft_in_place(&mut coeffs);
coeffs
}
pub fn coset_fft_in_place(&self, coeffs: &mut Vec<F>) {
Self::distribute_powers(coeffs, F::multiplicative_generator());
self.fft_in_place(coeffs);
}
pub fn coset_ifft(&self, evals: &[F]) -> Vec<F> {
let mut evals = evals.to_vec();
self.coset_ifft_in_place(&mut evals);
evals
}
pub fn coset_ifft_in_place(&self, evals: &mut Vec<F>) {
self.ifft_in_place(evals);
Self::distribute_powers(evals, self.generator_inv);
}
fn distribute_powers(coeffs: &mut Vec<F>, g: F) {
Worker::new().scope(coeffs.len(), |scope, chunk| {
for (i, v) in coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move |_| {
let mut u = g.pow(&[(i * chunk) as u64]);
for v in v.iter_mut() {
*v *= &u;
u *= &g;
}
});
}
});
}
pub fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F> {
let size = self.size as usize;
let t_size = tau.pow(&[self.size]);
let one = F::one();
if t_size.is_one() {
let mut u = vec![F::zero(); size];
let mut omega_i = one;
for x in u.iter_mut().take(size) {
if omega_i == tau {
*x = one;
break;
}
omega_i *= &self.group_gen;
}
u
} else {
let mut l = (t_size - &one) * &self.size_inv;
let mut r = one;
let mut u = vec![F::zero(); size];
let mut ls = vec![F::zero(); size];
for i in 0..size {
u[i] = tau - &r;
ls[i] = l;
l *= &self.group_gen;
r *= &self.group_gen;
}
batch_inversion(u.as_mut_slice());
cfg_iter_mut!(u).zip(ls).for_each(|(tau_minus_r, l)| {
*tau_minus_r = l * tau_minus_r;
});
u
}
}
pub fn vanishing_polynomial(&self) -> SparsePolynomial<F> {
let coeffs = vec![(0, -F::one()), (self.size(), F::one())];
SparsePolynomial::from_coefficients_vec(coeffs)
}
pub fn evaluate_vanishing_polynomial(&self, tau: F) -> F {
tau.pow(&[self.size]) - &F::one()
}
pub fn elements(&self) -> Elements<F> {
Elements {
cur_elem: F::one(),
cur_pow: 0,
domain: *self,
}
}
pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [F]) {
let i = self
.evaluate_vanishing_polynomial(F::multiplicative_generator())
.inverse()
.unwrap();
Worker::new().scope(evals.len(), |scope, chunk| {
for evals in evals.chunks_mut(chunk) {
scope.spawn(move |_| evals.iter_mut().for_each(|eval| *eval *= &i));
}
});
}
pub fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize {
assert!(self.size() >= other.size());
let period = self.size() / other.size();
if index < other.size() {
index * period
} else {
let i = index - other.size();
let x = period - 1;
i + (i / x) + 1
}
}
#[must_use]
pub fn mul_polynomials_in_evaluation_domain(&self, self_evals: &[F], other_evals: &[F]) -> Vec<F> {
assert_eq!(self_evals.len(), other_evals.len());
let mut result = self_evals.to_vec();
let chunk_size = Self::calculate_chunk_size(self.size());
cfg_chunks_mut!(result, chunk_size)
.zip(cfg_chunks!(other_evals, chunk_size))
.for_each(|(a, b)| {
for (a, b) in a.iter_mut().zip(b) {
*a *= b;
}
});
result
}
#[cfg(not(feature = "parallel"))]
pub fn roots_of_unity(&self, root: F) -> Vec<F> {
Self::compute_powers_serial((self.size as usize) / 2, root)
}
#[cfg(feature = "parallel")]
pub fn roots_of_unity(&self, root: F) -> Vec<F> {
let log_size = log2(self.size as usize);
if log_size <= LOG_ROOTS_OF_UNITY_PARALLEL_SIZE {
Self::compute_powers_serial((self.size as usize) / 2, root)
} else {
let mut tmp = root;
let log_powers: Vec<F> = (0..(log_size - 1))
.map(|_| {
let old_value = tmp;
tmp.square_in_place();
old_value
})
.collect();
let mut powers = vec![F::zero(); 1 << (log_size - 1)];
Self::roots_of_unity_recursive(&mut powers, &log_powers);
powers
}
}
#[cfg(feature = "parallel")]
fn roots_of_unity_recursive(powers: &mut [F], log_powers: &[F]) {
assert_eq!(powers.len(), 1 << log_powers.len());
if log_powers.len() <= LOG_ROOTS_OF_UNITY_PARALLEL_SIZE {
powers[0] = F::one();
for i in 1..powers.len() {
powers[i] = powers[i - 1] * &log_powers[0];
}
return;
}
let (lr_low, lr_high) = log_powers.split_at((1 + log_powers.len()) / 2);
let mut scr_low = vec![F::default(); 1 << lr_low.len()];
let mut scr_high = vec![F::default(); 1 << lr_high.len()];
rayon::join(
|| Self::roots_of_unity_recursive(&mut scr_low, lr_low),
|| Self::roots_of_unity_recursive(&mut scr_high, lr_high),
);
powers
.par_chunks_mut(scr_low.len())
.zip(&scr_high)
.for_each(|(power_chunk, scr_high)| {
for (power, scr_low) in power_chunk.iter_mut().zip(&scr_low) {
*power = *scr_high * scr_low;
}
});
}
fn compute_powers_serial(size: usize, root: F) -> Vec<F> {
let mut value = F::one();
(0..size)
.map(|_| {
let old_value = value;
value *= &root;
old_value
})
.collect()
}
}
#[allow(unused_variables)]
#[cfg(not(feature = "parallel"))]
fn best_fft<F: PrimeField>(a: &mut [F], worker: &Worker, omega: F, log_n: u32) {
serial_radix2_fft(a, omega, log_n);
}
#[cfg(feature = "parallel")]
fn best_fft<F: PrimeField>(a: &mut [F], worker: &Worker, omega: F, log_n: u32) {
let log_cpus = worker.log_num_cpus();
if log_n <= log_cpus {
serial_radix2_fft(a, omega, log_n);
} else {
parallel_radix2_fft(a, worker, omega, log_n, log_cpus);
}
}
#[allow(clippy::many_single_char_names)]
pub(crate) fn serial_radix2_fft<F: PrimeField>(a: &mut [F], omega: F, log_n: u32) {
#[inline]
fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
let n = a.len() as u32;
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
a.swap(rk as usize, k as usize);
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2 * m)) as u64]);
let mut k = 0;
while k < n {
let mut w = F::one();
for j in 0..m {
let mut t = a[(k + j + m) as usize];
t *= &w;
let mut tmp = a[(k + j) as usize];
tmp -= &t;
a[(k + j + m) as usize] = tmp;
a[(k + j) as usize] += &t;
w.mul_assign(&w_m);
}
k += 2 * m;
}
m *= 2;
}
}
#[cfg(feature = "parallel")]
pub(crate) fn parallel_radix2_fft<F: PrimeField>(a: &mut [F], worker: &Worker, omega: F, log_n: u32, log_cpus: u32) {
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![F::zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
worker.scope(0, |scope, _| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
scope.spawn(move |_| {
let omega_j = omega.pow(&[j as u64]);
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
let mut elt = F::one();
for (i, x) in tmp.iter_mut().enumerate().take(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t *= &elt;
*x += &t;
elt *= &omega_step;
}
elt *= &omega_j;
}
serial_radix2_fft(tmp, new_omega, log_new_n);
});
}
});
worker.scope(a.len(), |scope, chunk| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
scope.spawn(move |_| {
let mut idx = idx * chunk;
let mask = (1 << log_cpus) - 1;
for a in a {
*a = tmp[idx & mask][idx >> log_cpus];
idx += 1;
}
});
}
});
}
pub struct Elements<F: PrimeField> {
cur_elem: F,
cur_pow: u64,
domain: EvaluationDomain<F>,
}
impl<F: PrimeField> Iterator for Elements<F> {
type Item = F;
fn next(&mut self) -> Option<F> {
if self.cur_pow == self.domain.size {
None
} else {
let cur_elem = self.cur_elem;
self.cur_elem *= &self.domain.group_gen;
self.cur_pow += 1;
Some(cur_elem)
}
}
}
#[cfg(test)]
mod tests {
use crate::fft::{DensePolynomial, EvaluationDomain};
use snarkvm_curves::bls12_377::Fr;
use snarkvm_fields::{Field, One, PrimeField, Zero};
use snarkvm_utilities::UniformRand;
use rand::{thread_rng, Rng};
#[test]
fn vanishing_polynomial_evaluation() {
let rng = &mut thread_rng();
for coeffs in 0..10 {
let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
let z = domain.vanishing_polynomial();
for _ in 0..100 {
let point = rng.gen();
assert_eq!(z.evaluate(point), domain.evaluate_vanishing_polynomial(point))
}
}
}
#[test]
fn vanishing_polynomial_vanishes_on_domain() {
for coeffs in 0..1000 {
let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
let z = domain.vanishing_polynomial();
for point in domain.elements() {
assert!(z.evaluate(point).is_zero())
}
}
}
#[test]
fn size_of_elements() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::<Fr>::new(size).unwrap();
let domain_size = domain.size();
assert_eq!(domain_size, domain.elements().count());
}
}
#[test]
fn elements_contents() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::<Fr>::new(size).unwrap();
for (i, element) in domain.elements().enumerate() {
assert_eq!(element, domain.group_gen.pow([i as u64]));
}
}
}
#[test]
fn non_systematic_lagrange_coefficients_test() {
for domain_dimension in 1..10 {
let domain_size = 1 << domain_dimension;
let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
let random_point = Fr::rand(&mut thread_rng());
let lagrange_coefficients = domain.evaluate_all_lagrange_coefficients(random_point);
let random_polynomial = DensePolynomial::<Fr>::rand(domain_size - 1, &mut thread_rng());
let polynomial_evaluations = domain.fft(random_polynomial.coeffs());
let actual_evaluations = random_polynomial.evaluate(random_point);
let mut interpolated_evaluation = Fr::zero();
for i in 0..domain_size {
interpolated_evaluation += &(lagrange_coefficients[i] * &polynomial_evaluations[i]);
}
assert_eq!(actual_evaluations, interpolated_evaluation);
}
}
#[test]
fn systematic_lagrange_coefficients_test() {
for domain_dimension in 1..5 {
let domain_size = 1 << domain_dimension;
let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
let all_domain_elements: Vec<Fr> = domain.elements().collect();
for (i, domain_element) in all_domain_elements.iter().enumerate().take(domain_size) {
let lagrange_coefficients = domain.evaluate_all_lagrange_coefficients(*domain_element);
for (j, lagrange_coefficient) in lagrange_coefficients.iter().enumerate().take(domain_size) {
if i == j {
assert_eq!(*lagrange_coefficient, Fr::one());
} else {
assert_eq!(*lagrange_coefficient, Fr::zero());
}
}
}
}
}
#[test]
fn test_roots_of_unity() {
let max_degree = 10;
for log_domain_size in 0..max_degree {
let domain_size = 1 << log_domain_size;
let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
let actual_roots = domain.roots_of_unity(domain.group_gen);
for &value in &actual_roots {
assert!(domain.evaluate_vanishing_polynomial(value).is_zero());
}
let expected_roots_elements = domain.elements();
for (expected, &actual) in expected_roots_elements.zip(&actual_roots) {
assert_eq!(expected, actual);
}
assert_eq!(actual_roots.len(), domain_size / 2);
}
}
#[test]
fn test_fft_correctness() {
let log_degree = 5;
let degree = 1 << log_degree;
let random_polynomial = DensePolynomial::<Fr>::rand(degree - 1, &mut thread_rng());
for log_domain_size in log_degree..(log_degree + 2) {
let domain_size = 1 << log_domain_size;
let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
let polynomial_evaluations = domain.fft(&random_polynomial.coeffs);
let polynomial_coset_evaluations = domain.coset_fft(&random_polynomial.coeffs);
for (i, x) in domain.elements().enumerate() {
let coset_x = Fr::multiplicative_generator() * &x;
assert_eq!(polynomial_evaluations[i], random_polynomial.evaluate(x));
assert_eq!(polynomial_coset_evaluations[i], random_polynomial.evaluate(coset_x));
}
let randon_polynomial_from_subgroup =
DensePolynomial::from_coefficients_vec(domain.ifft(&polynomial_evaluations));
let random_polynomial_from_coset =
DensePolynomial::from_coefficients_vec(domain.coset_ifft(&polynomial_coset_evaluations));
assert_eq!(
random_polynomial, randon_polynomial_from_subgroup,
"degree = {}, domain size = {}",
degree, domain_size
);
assert_eq!(
random_polynomial, random_polynomial_from_coset,
"degree = {}, domain size = {}",
degree, domain_size
);
}
}
}