1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{hash_to_curve::hash_to_curve, CRHError, CRH};
use snarkvm_curves::{AffineCurve, ProjectiveCurve};
use snarkvm_fields::{ConstraintFieldError, Field, PrimeField, ToConstraintField};
use snarkvm_utilities::{BigInteger, FromBytes, ToBytes};

use once_cell::sync::OnceCell;
use std::{
    borrow::Borrow,
    fmt::Debug,
    io::{Read, Result as IoResult, Write},
    sync::Arc,
};

#[cfg(feature = "parallel")]
use rayon::prelude::*;

// The stack is currently allocated with the following size
// because we cannot specify them using the trait consts.
const MAX_WINDOW_SIZE: usize = 256;
const MAX_NUM_WINDOWS: usize = 2048;

pub const BOWE_HOPWOOD_CHUNK_SIZE: usize = 3;
pub const BOWE_HOPWOOD_LOOKUP_SIZE: usize = 2usize.pow(BOWE_HOPWOOD_CHUNK_SIZE as u32);

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct BHPCRH<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> {
    pub bases: Arc<Vec<Vec<G>>>,
    base_lookup: OnceCell<Vec<Vec<[G; BOWE_HOPWOOD_LOOKUP_SIZE]>>>,
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> CRH
    for BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
    type Output = <G::Affine as AffineCurve>::BaseField;
    type Parameters = Arc<Vec<Vec<G>>>;

    fn setup(message: &str) -> Self {
        fn calculate_num_chunks_in_segment<F: PrimeField>() -> usize {
            let upper_limit = F::modulus_minus_one_div_two();
            let mut c = 0;
            let mut range = F::BigInteger::from(2_u64);
            while range < upper_limit {
                range.muln(4);
                c += 1;
            }

            c
        }

        let maximum_num_chunks_in_segment = calculate_num_chunks_in_segment::<G::ScalarField>();
        if WINDOW_SIZE > maximum_num_chunks_in_segment {
            panic!(
                "BHP CRH must have a window size resulting in scalars < (p-1)/2, \
                 maximum segment size is {}",
                maximum_num_chunks_in_segment
            );
        }

        let time = start_timer!(|| format!(
            "BoweHopwoodPedersenCRH::Setup: {} segments of {} 3-bit chunks; {{0,1}}^{{{}}} -> G",
            NUM_WINDOWS,
            WINDOW_SIZE,
            WINDOW_SIZE * NUM_WINDOWS * BOWE_HOPWOOD_CHUNK_SIZE
        ));
        let bases = Arc::new(Self::create_generators(message));
        end_timer!(time);

        Self {
            bases,
            base_lookup: OnceCell::new(),
        }
    }

    fn hash_bits(&self, input: &[bool]) -> Result<Self::Output, CRHError> {
        let affine = self.hash_bits_inner(input.iter(), input.len())?.into_affine();
        debug_assert!(affine.is_in_correct_subgroup_assuming_on_curve());
        Ok(affine.to_x_coordinate())
    }

    fn parameters(&self) -> &Self::Parameters {
        &self.bases
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE> {
    pub fn create_generators(message: &str) -> Vec<Vec<G>> {
        let mut generators = Vec::with_capacity(NUM_WINDOWS);
        for index in 0..NUM_WINDOWS {
            // Construct an indexed message to attempt to sample a base.
            let indexed_message = format!("{} at {}", message, index);
            let (generator, _, _) = hash_to_curve::<G::Affine>(&indexed_message);
            let mut base = generator.into_projective();
            // Compute the generators for the sampled base.
            let mut generators_for_segment = Vec::with_capacity(WINDOW_SIZE);
            for _ in 0..WINDOW_SIZE {
                generators_for_segment.push(base);
                for _ in 0..4 {
                    base.double_in_place();
                }
            }
            generators.push(generators_for_segment);
        }
        generators
    }

    pub fn base_lookup(&self, bases: &[Vec<G>]) -> &Vec<Vec<[G; BOWE_HOPWOOD_LOOKUP_SIZE]>> {
        self.base_lookup
            .get_or_try_init::<_, ()>(|| {
                Ok(crate::cfg_iter!(bases)
                    .map(|x| {
                        x.iter()
                            .map(|g| {
                                let mut out = [G::zero(); BOWE_HOPWOOD_LOOKUP_SIZE];
                                for (i, element) in out.iter_mut().enumerate().take(BOWE_HOPWOOD_LOOKUP_SIZE) {
                                    let mut encoded = *g;
                                    if (i & 0x01) != 0 {
                                        encoded += g;
                                    }
                                    if (i & 0x02) != 0 {
                                        encoded += g.double();
                                    }
                                    if (i & 0x04) != 0 {
                                        encoded = encoded.neg();
                                    }
                                    *element = encoded;
                                }
                                out
                            })
                            .collect()
                    })
                    .collect())
            })
            .expect("failed to init BoweHopwoodPedersenCRHParameters")
    }

    /// Precondition: number of elements in `input` == `num_bits`.
    pub(crate) fn hash_bits_inner<S: Borrow<bool>>(
        &self,
        input: impl Iterator<Item = S>,
        num_bits: usize,
    ) -> Result<G, CRHError> {
        if num_bits > WINDOW_SIZE * NUM_WINDOWS {
            return Err(CRHError::IncorrectInputLength(num_bits, WINDOW_SIZE, NUM_WINDOWS));
        }
        debug_assert!(WINDOW_SIZE <= MAX_WINDOW_SIZE);
        debug_assert!(NUM_WINDOWS <= MAX_NUM_WINDOWS);

        // overzealous but stack allocation
        let mut buf_slice = [false; MAX_WINDOW_SIZE * MAX_NUM_WINDOWS + BOWE_HOPWOOD_CHUNK_SIZE + 1];
        buf_slice[..num_bits]
            .iter_mut()
            .zip(input)
            .for_each(|(b, i)| *b = *i.borrow());

        let mut bit_len = WINDOW_SIZE * NUM_WINDOWS;
        if bit_len % BOWE_HOPWOOD_CHUNK_SIZE != 0 {
            bit_len += BOWE_HOPWOOD_CHUNK_SIZE - (bit_len % BOWE_HOPWOOD_CHUNK_SIZE);
        }

        debug_assert_eq!(bit_len % BOWE_HOPWOOD_CHUNK_SIZE, 0);

        debug_assert_eq!(
            self.bases.len(),
            NUM_WINDOWS,
            "Incorrect number of windows ({:?}) for BHP of {:?}x{:?}x{}",
            self.bases.len(),
            WINDOW_SIZE,
            NUM_WINDOWS,
            BOWE_HOPWOOD_CHUNK_SIZE,
        );
        for bases in self.bases.iter() {
            debug_assert_eq!(bases.len(), WINDOW_SIZE);
        }
        let base_lookup = self.base_lookup(&self.bases);
        debug_assert_eq!(base_lookup.len(), NUM_WINDOWS);
        for bases in base_lookup.iter() {
            debug_assert_eq!(bases.len(), WINDOW_SIZE);
        }
        debug_assert_eq!(BOWE_HOPWOOD_CHUNK_SIZE, 3);

        // Compute sum of h_i^{sum of
        // (1-2*c_{i,j,2})*(1+c_{i,j,0}+2*c_{i,j,1})*2^{4*(j-1)} for all j in segment}
        // for all i. Described in section 5.4.1.7 in the Zcash protocol
        // specification.
        let output = buf_slice[..bit_len]
            .chunks(WINDOW_SIZE * BOWE_HOPWOOD_CHUNK_SIZE)
            .zip(base_lookup)
            .map(|(segment_bits, segment_generators)| {
                segment_bits
                    .chunks(BOWE_HOPWOOD_CHUNK_SIZE)
                    .zip(segment_generators)
                    .map(|(chunk_bits, generator)| {
                        &generator
                            [(chunk_bits[0] as usize) | (chunk_bits[1] as usize) << 1 | (chunk_bits[2] as usize) << 2]
                    })
                    .fold(G::zero(), |a, b| a + b)
            })
            .fold(G::zero(), |a, b| a + b);

        Ok(output)
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> From<Arc<Vec<Vec<G>>>>
    for BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
    fn from(bases: Arc<Vec<Vec<G>>>) -> Self {
        Self {
            bases,
            base_lookup: OnceCell::new(),
        }
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> ToBytes
    for BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        (self.bases.len() as u32).write_le(&mut writer)?;
        for base in self.bases.iter() {
            (base.len() as u32).write_le(&mut writer)?;
            for g in base {
                g.write_le(&mut writer)?;
            }
        }
        Ok(())
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> FromBytes
    for BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
    #[inline]
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        let num_bases: u32 = FromBytes::read_le(&mut reader)?;
        let mut bases = Vec::with_capacity(num_bases as usize);

        for _ in 0..num_bases {
            let base_len: u32 = FromBytes::read_le(&mut reader)?;
            let mut base = Vec::with_capacity(base_len as usize);

            for _ in 0..base_len {
                let g: G = FromBytes::read_le(&mut reader)?;
                base.push(g);
            }
            bases.push(base);
        }

        Ok(Self {
            bases: Arc::new(bases),
            base_lookup: OnceCell::new(),
        })
    }
}

impl<F: Field, G: ProjectiveCurve + ToConstraintField<F>, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize>
    ToConstraintField<F> for BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
    #[inline]
    fn to_field_elements(&self) -> Result<Vec<F>, ConstraintFieldError> {
        Ok(Vec::new())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_curves::edwards_bls12::EdwardsProjective;

    const NUM_WINDOWS: usize = 8;
    const WINDOW_SIZE: usize = 32;

    #[test]
    fn test_bhp_sanity_check() {
        let crh = <BHPCRH<EdwardsProjective, NUM_WINDOWS, WINDOW_SIZE> as CRH>::setup("test_bowe_pedersen");
        let input = vec![127u8; 32];

        let output = crh.hash(&input).unwrap();
        assert_eq!(
            &*output.to_string(),
            "2591648422993904809826711498838675948697848925001720514073745852367402669969"
        );
    }
}