snarkvm_algorithms/fft/
domain.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This module contains an `EvaluationDomain` abstraction for
//! performing various kinds of polynomial arithmetic on top of
//! the scalar field.
//!
//! In pairing-based SNARKs like GM17, we need to calculate
//! a quotient polynomial over a target polynomial with roots
//! at distinct points associated with each constraint of the
//! constraint system. In order to be efficient, we choose these
//! roots to be the powers of a 2^n root of unity in the field.
//! This allows us to perform polynomial operations in O(n)
//! by performing an O(n log n) FFT over such a domain.

use crate::{
    cfg_chunks_mut,
    cfg_into_iter,
    cfg_iter,
    cfg_iter_mut,
    fft::{DomainCoeff, SparsePolynomial},
};
use snarkvm_fields::{FftField, FftParameters, Field, batch_inversion};
#[cfg(not(feature = "serial"))]
use snarkvm_utilities::max_available_threads;
use snarkvm_utilities::{execute_with_max_available_threads, serialize::*};

use rand::Rng;
use std::{borrow::Cow, fmt};

use anyhow::{Result, ensure};

#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

#[cfg(feature = "serial")]
use itertools::Itertools;

/// Returns the ceiling of the base-2 logarithm of `x`.
///
/// ```
/// use snarkvm_algorithms::fft::domain::log2;
///
/// assert_eq!(log2(16), 4);
/// assert_eq!(log2(17), 5);
/// assert_eq!(log2(1), 0);
/// assert_eq!(log2(0), 0);
/// assert_eq!(log2(usize::MAX), (core::mem::size_of::<usize>() * 8) as u32);
/// assert_eq!(log2(1 << 15), 15);
/// assert_eq!(log2(2usize.pow(18)), 18);
/// ```
pub fn log2(x: usize) -> u32 {
    if x == 0 {
        0
    } else if x.is_power_of_two() {
        1usize.leading_zeros() - x.leading_zeros()
    } else {
        0usize.leading_zeros() - x.leading_zeros()
    }
}

// minimum size of a parallelized chunk
#[allow(unused)]
#[cfg(not(feature = "serial"))]
const MIN_PARALLEL_CHUNK_SIZE: usize = 1 << 7;

/// Defines a domain over which finite field (I)FFTs can be performed. Works
/// only for fields that have a large multiplicative subgroup of size that is
/// a power-of-2.
#[derive(Copy, Clone, Hash, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct EvaluationDomain<F: FftField> {
    /// The size of the domain.
    pub size: u64,
    /// `log_2(self.size)`.
    pub log_size_of_group: u32,
    /// Size of the domain as a field element.
    pub size_as_field_element: F,
    /// Inverse of the size in the field.
    pub size_inv: F,
    /// A generator of the subgroup.
    pub group_gen: F,
    /// Inverse of the generator of the subgroup.
    pub group_gen_inv: F,
    /// Inverse of the multiplicative generator of the finite field.
    pub generator_inv: F,
}

impl<F: FftField> fmt::Debug for EvaluationDomain<F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Multiplicative subgroup of size {}", self.size)
    }
}

impl<F: FftField> EvaluationDomain<F> {
    /// Sample an element that is *not* in the domain.
    pub fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F {
        let mut t = F::rand(rng);
        while self.evaluate_vanishing_polynomial(t).is_zero() {
            t = F::rand(rng);
        }
        t
    }

    /// Construct a domain that is large enough for evaluations of a polynomial
    /// having `num_coeffs` coefficients.
    pub fn new(num_coeffs: usize) -> Option<Self> {
        // Compute the size of our evaluation domain
        let size = num_coeffs.checked_next_power_of_two()? as u64;
        let log_size_of_group = size.trailing_zeros();

        // libfqfft uses > https://github.com/scipr-lab/libfqfft/blob/e0183b2cef7d4c5deb21a6eaf3fe3b586d738fe0/libfqfft/evaluation_domain/domains/basic_radix2_domain.tcc#L33
        if log_size_of_group > F::FftParameters::TWO_ADICITY {
            return None;
        }

        // Compute the generator for the multiplicative subgroup.
        // It should be the 2^(log_size_of_group) root of unity.
        let group_gen = F::get_root_of_unity(size as usize)?;

        // Check that it is indeed the 2^(log_size_of_group) root of unity.
        debug_assert_eq!(group_gen.pow([size]), F::one());

        let size_as_field_element = F::from(size);
        let size_inv = size_as_field_element.inverse()?;

        Some(EvaluationDomain {
            size,
            log_size_of_group,
            size_as_field_element,
            size_inv,
            group_gen,
            group_gen_inv: group_gen.inverse()?,
            generator_inv: F::multiplicative_generator().inverse()?,
        })
    }

    /// Return the size of a domain that is large enough for evaluations of a polynomial
    /// having `num_coeffs` coefficients.
    pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize> {
        let size = num_coeffs.checked_next_power_of_two()?;
        if size.trailing_zeros() <= F::FftParameters::TWO_ADICITY { Some(size) } else { None }
    }

    /// Return the size of `self`.
    pub fn size(&self) -> usize {
        self.size as usize
    }

    /// Compute an FFT.
    pub fn fft<T: DomainCoeff<F>>(&self, coeffs: &[T]) -> Vec<T> {
        let mut coeffs = coeffs.to_vec();
        self.fft_in_place(&mut coeffs);
        coeffs
    }

    /// Compute an FFT, modifying the vector in place.
    pub fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>) {
        execute_with_max_available_threads(|| {
            coeffs.resize(self.size(), T::zero());
            self.in_order_fft_in_place(&mut *coeffs);
        });
    }

    /// Compute an IFFT.
    pub fn ifft<T: DomainCoeff<F>>(&self, evals: &[T]) -> Vec<T> {
        let mut evals = evals.to_vec();
        self.ifft_in_place(&mut evals);
        evals
    }

    /// Compute an IFFT, modifying the vector in place.
    #[inline]
    pub fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>) {
        execute_with_max_available_threads(|| {
            evals.resize(self.size(), T::zero());
            self.in_order_ifft_in_place(&mut *evals);
        });
    }

    /// Compute an FFT over a coset of the domain.
    pub fn coset_fft<T: DomainCoeff<F>>(&self, coeffs: &[T]) -> Vec<T> {
        let mut coeffs = coeffs.to_vec();
        self.coset_fft_in_place(&mut coeffs);
        coeffs
    }

    /// Compute an FFT over a coset of the domain, modifying the input vector
    /// in place.
    pub fn coset_fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>) {
        execute_with_max_available_threads(|| {
            Self::distribute_powers(coeffs, F::multiplicative_generator());
            self.fft_in_place(coeffs);
        });
    }

    /// Compute an IFFT over a coset of the domain.
    pub fn coset_ifft<T: DomainCoeff<F>>(&self, evals: &[T]) -> Vec<T> {
        let mut evals = evals.to_vec();
        self.coset_ifft_in_place(&mut evals);
        evals
    }

    /// Compute an IFFT over a coset of the domain, modifying the input vector in place.
    pub fn coset_ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>) {
        execute_with_max_available_threads(|| {
            evals.resize(self.size(), T::zero());
            self.in_order_coset_ifft_in_place(&mut *evals);
        });
    }

    /// Multiply the `i`-th element of `coeffs` with `g^i`.
    fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F) {
        Self::distribute_powers_and_mul_by_const(coeffs, g, F::one());
    }

    /// Multiply the `i`-th element of `coeffs` with `c*g^i`.
    #[cfg(feature = "serial")]
    fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(coeffs: &mut [T], g: F, c: F) {
        // invariant: pow = c*g^i at the ith iteration of the loop
        let mut pow = c;
        coeffs.iter_mut().for_each(|coeff| {
            *coeff *= pow;
            pow *= &g
        })
    }

    /// Multiply the `i`-th element of `coeffs` with `c*g^i`.
    #[cfg(not(feature = "serial"))]
    fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(coeffs: &mut [T], g: F, c: F) {
        let min_parallel_chunk_size = 1024;
        let num_cpus_available = max_available_threads();
        let num_elem_per_thread = core::cmp::max(coeffs.len() / num_cpus_available, min_parallel_chunk_size);

        cfg_chunks_mut!(coeffs, num_elem_per_thread).enumerate().for_each(|(i, chunk)| {
            let offset = c * g.pow([(i * num_elem_per_thread) as u64]);
            let mut pow = offset;
            chunk.iter_mut().for_each(|coeff| {
                *coeff *= pow;
                pow *= &g
            })
        });
    }

    /// Evaluate all the lagrange polynomials defined by this domain at the point
    /// `tau`.
    pub fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F> {
        // Evaluate all Lagrange polynomials
        let size = self.size as usize;
        let t_size = tau.pow([self.size]);
        let one = F::one();
        if t_size.is_one() {
            let mut u = vec![F::zero(); size];
            let mut omega_i = one;
            for x in u.iter_mut().take(size) {
                if omega_i == tau {
                    *x = one;
                    break;
                }
                omega_i *= &self.group_gen;
            }
            u
        } else {
            let mut l = (t_size - one) * self.size_inv;
            let mut r = one;
            let mut u = vec![F::zero(); size];
            let mut ls = vec![F::zero(); size];
            for i in 0..size {
                u[i] = tau - r;
                ls[i] = l;
                l *= &self.group_gen;
                r *= &self.group_gen;
            }

            batch_inversion(u.as_mut_slice());
            cfg_iter_mut!(u).zip_eq(ls).for_each(|(tau_minus_r, l)| {
                *tau_minus_r = l * *tau_minus_r;
            });
            u
        }
    }

    /// Return the sparse vanishing polynomial.
    pub fn vanishing_polynomial(&self) -> SparsePolynomial<F> {
        let coeffs = [(0, -F::one()), (self.size(), F::one())];
        SparsePolynomial::from_coefficients(coeffs)
    }

    /// This evaluates the vanishing polynomial for this domain at tau.
    /// For multiplicative subgroups, this polynomial is `z(X) = X^self.size - 1`.
    pub fn evaluate_vanishing_polynomial(&self, tau: F) -> F {
        tau.pow([self.size]) - F::one()
    }

    /// Return an iterator over the elements of the domain.
    pub fn elements(&self) -> Elements<F> {
        Elements { cur_elem: F::one(), cur_pow: 0, domain: *self }
    }

    /// The target polynomial is the zero polynomial in our
    /// evaluation domain, so we must perform division over
    /// a coset.
    pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [F]) {
        let i = self.evaluate_vanishing_polynomial(F::multiplicative_generator()).inverse().unwrap();

        cfg_iter_mut!(evals).for_each(|eval| *eval *= &i);
    }

    /// Given an index in the `other` subdomain, return an index into this domain `self`
    /// This assumes the `other`'s elements are also `self`'s first elements
    pub fn reindex_by_subdomain(&self, other: &Self, index: usize) -> Result<usize> {
        ensure!(self.size() > other.size(), "other.size() must be smaller than self.size()");

        // Let this subgroup be G, and the subgroup we're re-indexing by be S.
        // Since its a subgroup, the 0th element of S is at index 0 in G, the first element of S is at
        // index |G|/|S|, the second at 2*|G|/|S|, etc.
        // Thus for an index i that corresponds to S, the index in G is i*|G|/|S|
        let period = self.size() / other.size();
        if index < other.size() {
            Ok(index * period)
        } else {
            // Let i now be the index of this element in G \ S
            // Let x be the number of elements in G \ S, for every element in S. Then x = (|G|/|S| - 1).
            // At index i in G \ S, the number of elements in S that appear before the index in G to which
            // i corresponds to, is floor(i / x) + 1.
            // The +1 is because index 0 of G is S_0, so the position is offset by at least one.
            // The floor(i / x) term is because after x elements in G \ S, there is one more element from S
            // that will have appeared in G.
            let i = index - other.size();
            let x = period - 1;
            Ok(i + (i / x) + 1)
        }
    }

    /// Perform O(n) multiplication of two polynomials that are presented by their
    /// evaluations in the domain.
    /// Returns the evaluations of the product over the domain.
    pub fn mul_polynomials_in_evaluation_domain(&self, self_evals: Vec<F>, other_evals: &[F]) -> Result<Vec<F>> {
        let mut result = self_evals;

        ensure!(result.len() == other_evals.len());
        cfg_iter_mut!(result).zip_eq(other_evals).for_each(|(a, b)| *a *= b);

        Ok(result)
    }
}

impl<F: FftField> EvaluationDomain<F> {
    pub fn precompute_fft(&self) -> FFTPrecomputation<F> {
        execute_with_max_available_threads(|| FFTPrecomputation {
            roots: self.roots_of_unity(self.group_gen),
            domain: *self,
        })
    }

    pub fn precompute_ifft(&self) -> IFFTPrecomputation<F> {
        execute_with_max_available_threads(|| IFFTPrecomputation {
            inverse_roots: self.roots_of_unity(self.group_gen_inv),
            domain: *self,
        })
    }

    pub(crate) fn in_order_fft_in_place<T: DomainCoeff<F>>(&self, x_s: &mut [T]) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold and check that the type is Fr
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Forward,
                snarkvm_algorithms_cuda::NTTType::Standard,
            );
            if result.is_ok() {
                return;
            }
        }

        let pc = self.precompute_fft();
        self.fft_helper_in_place_with_pc(x_s, FFTOrder::II, &pc)
    }

    pub fn in_order_fft_with_pc<T: DomainCoeff<F>>(&self, x_s: &[T], pc: &FFTPrecomputation<F>) -> Vec<T> {
        let mut x_s = x_s.to_vec();
        if self.size() != x_s.len() {
            x_s.extend(core::iter::repeat(T::zero()).take(self.size() - x_s.len()));
        }
        self.fft_helper_in_place_with_pc(&mut x_s, FFTOrder::II, pc);
        x_s
    }

    pub(crate) fn in_order_ifft_in_place<T: DomainCoeff<F>>(&self, x_s: &mut [T]) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Standard,
            );
            if result.is_ok() {
                return;
            }
        }

        let pc = self.precompute_ifft();
        self.ifft_helper_in_place_with_pc(x_s, FFTOrder::II, &pc);
        cfg_iter_mut!(x_s).for_each(|val| *val *= self.size_inv);
    }

    pub(crate) fn in_order_coset_ifft_in_place<T: DomainCoeff<F>>(&self, x_s: &mut [T]) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Coset,
            );
            if result.is_ok() {
                return;
            }
        }

        let pc = self.precompute_ifft();
        self.ifft_helper_in_place_with_pc(x_s, FFTOrder::II, &pc);
        let coset_shift = self.generator_inv;
        Self::distribute_powers_and_mul_by_const(x_s, coset_shift, self.size_inv);
    }

    #[allow(unused)]
    pub(crate) fn in_order_fft_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        pre_comp: &FFTPrecomputation<F>,
    ) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Forward,
                snarkvm_algorithms_cuda::NTTType::Standard,
            );
            if result.is_ok() {
                return;
            }
        }

        self.fft_helper_in_place_with_pc(x_s, FFTOrder::II, pre_comp)
    }

    pub(crate) fn out_order_fft_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        pre_comp: &FFTPrecomputation<F>,
    ) {
        self.fft_helper_in_place_with_pc(x_s, FFTOrder::IO, pre_comp)
    }

    pub(crate) fn in_order_ifft_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        pre_comp: &IFFTPrecomputation<F>,
    ) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Standard,
            );
            if result.is_ok() {
                return;
            }
        }

        self.ifft_helper_in_place_with_pc(x_s, FFTOrder::II, pre_comp);
        cfg_iter_mut!(x_s).for_each(|val| *val *= self.size_inv);
    }

    pub(crate) fn out_order_ifft_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        pre_comp: &IFFTPrecomputation<F>,
    ) {
        self.ifft_helper_in_place_with_pc(x_s, FFTOrder::OI, pre_comp);
        cfg_iter_mut!(x_s).for_each(|val| *val *= self.size_inv);
    }

    #[allow(unused)]
    pub(crate) fn in_order_coset_ifft_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        pre_comp: &IFFTPrecomputation<F>,
    ) {
        #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
        // SNP TODO: how to set threshold
        if self.size >= 32 && std::mem::size_of::<T>() == 32 {
            let result = snarkvm_algorithms_cuda::NTT(
                self.size as usize,
                x_s,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Coset,
            );
            if result.is_ok() {
                return;
            }
        }

        self.ifft_helper_in_place_with_pc(x_s, FFTOrder::II, pre_comp);
        let coset_shift = self.generator_inv;
        Self::distribute_powers_and_mul_by_const(x_s, coset_shift, self.size_inv);
    }

    fn fft_helper_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        ord: FFTOrder,
        pre_comp: &FFTPrecomputation<F>,
    ) {
        use FFTOrder::*;
        let pc = pre_comp.precomputation_for_subdomain(self).unwrap();

        let log_len = log2(x_s.len());

        if ord == OI {
            self.oi_helper_with_roots(x_s, &pc.roots);
        } else {
            self.io_helper_with_roots(x_s, &pc.roots);
        }

        if ord == II {
            derange_helper(x_s, log_len);
        }
    }

    // Handles doing an IFFT with handling of being in order and out of order.
    // The results here must all be divided by |x_s|,
    // which is left up to the caller to do.
    fn ifft_helper_in_place_with_pc<T: DomainCoeff<F>>(
        &self,
        x_s: &mut [T],
        ord: FFTOrder,
        pre_comp: &IFFTPrecomputation<F>,
    ) {
        use FFTOrder::*;
        let pc = pre_comp.precomputation_for_subdomain(self).unwrap();

        let log_len = log2(x_s.len());

        if ord == II {
            derange_helper(x_s, log_len);
        }

        if ord == IO {
            self.io_helper_with_roots(x_s, &pc.inverse_roots);
        } else {
            self.oi_helper_with_roots(x_s, &pc.inverse_roots);
        }
    }

    /// Computes the first `self.size / 2` roots of unity for the entire domain.
    /// e.g. for the domain [1, g, g^2, ..., g^{n - 1}], it computes
    // [1, g, g^2, ..., g^{(n/2) - 1}]
    #[cfg(feature = "serial")]
    pub fn roots_of_unity(&self, root: F) -> Vec<F> {
        compute_powers_serial((self.size as usize) / 2, root)
    }

    /// Computes the first `self.size / 2` roots of unity.
    #[cfg(not(feature = "serial"))]
    pub fn roots_of_unity(&self, root: F) -> Vec<F> {
        // TODO: check if this method can replace parallel compute powers.
        let log_size = log2(self.size as usize);
        // early exit for short inputs
        if log_size <= LOG_ROOTS_OF_UNITY_PARALLEL_SIZE {
            compute_powers_serial((self.size as usize) / 2, root)
        } else {
            let mut temp = root;
            // w, w^2, w^4, w^8, ..., w^(2^(log_size - 1))
            let log_powers: Vec<F> = (0..(log_size - 1))
                .map(|_| {
                    let old_value = temp;
                    temp.square_in_place();
                    old_value
                })
                .collect();

            // allocate the return array and start the recursion
            let mut powers = vec![F::zero(); 1 << (log_size - 1)];
            Self::roots_of_unity_recursive(&mut powers, &log_powers);
            powers
        }
    }

    #[cfg(not(feature = "serial"))]
    fn roots_of_unity_recursive(out: &mut [F], log_powers: &[F]) {
        assert_eq!(out.len(), 1 << log_powers.len());
        // base case: just compute the powers sequentially,
        // g = log_powers[0], out = [1, g, g^2, ...]
        if log_powers.len() <= LOG_ROOTS_OF_UNITY_PARALLEL_SIZE as usize {
            out[0] = F::one();
            for idx in 1..out.len() {
                out[idx] = out[idx - 1] * log_powers[0];
            }
            return;
        }

        // recursive case:
        // 1. split log_powers in half
        let (lr_lo, lr_hi) = log_powers.split_at((1 + log_powers.len()) / 2);
        let mut scr_lo = vec![F::default(); 1 << lr_lo.len()];
        let mut scr_hi = vec![F::default(); 1 << lr_hi.len()];
        // 2. compute each half individually
        rayon::join(
            || Self::roots_of_unity_recursive(&mut scr_lo, lr_lo),
            || Self::roots_of_unity_recursive(&mut scr_hi, lr_hi),
        );
        // 3. recombine halves
        // At this point, out is a blank slice.
        out.par_chunks_mut(scr_lo.len()).zip(&scr_hi).for_each(|(out_chunk, scr_hi)| {
            for (out_elem, scr_lo) in out_chunk.iter_mut().zip(&scr_lo) {
                *out_elem = *scr_hi * scr_lo;
            }
        });
    }

    #[inline(always)]
    fn butterfly_fn_io<T: DomainCoeff<F>>(((lo, hi), root): ((&mut T, &mut T), &F)) {
        let neg = *lo - *hi;
        *lo += *hi;
        *hi = neg;
        *hi *= *root;
    }

    #[inline(always)]
    fn butterfly_fn_oi<T: DomainCoeff<F>>(((lo, hi), root): ((&mut T, &mut T), &F)) {
        *hi *= *root;
        let neg = *lo - *hi;
        *lo += *hi;
        *hi = neg;
    }

    #[allow(clippy::too_many_arguments)]
    fn apply_butterfly<T: DomainCoeff<F>, G: Fn(((&mut T, &mut T), &F)) + Copy + Sync + Send>(
        g: G,
        xi: &mut [T],
        roots: &[F],
        step: usize,
        chunk_size: usize,
        num_chunks: usize,
        max_threads: usize,
        gap: usize,
    ) {
        cfg_chunks_mut!(xi, chunk_size).for_each(|cxi| {
            let (lo, hi) = cxi.split_at_mut(gap);
            // If the chunk is sufficiently big that parallelism helps,
            // we parallelize the butterfly operation within the chunk.

            if gap > MIN_GAP_SIZE_FOR_PARALLELISATION && num_chunks < max_threads {
                cfg_iter_mut!(lo).zip(hi).zip(cfg_iter!(roots).step_by(step)).for_each(g);
            } else {
                lo.iter_mut().zip(hi).zip(roots.iter().step_by(step)).for_each(g);
            }
        });
    }

    #[allow(clippy::unnecessary_to_owned)]
    fn io_helper_with_roots<T: DomainCoeff<F>>(&self, xi: &mut [T], roots: &[F]) {
        let mut roots = std::borrow::Cow::Borrowed(roots);

        let mut step = 1;
        let mut first = true;

        #[cfg(not(feature = "serial"))]
        let max_threads = snarkvm_utilities::parallel::max_available_threads();
        #[cfg(feature = "serial")]
        let max_threads = 1;

        let mut gap = xi.len() / 2;
        while gap > 0 {
            // each butterfly cluster uses 2*gap positions
            let chunk_size = 2 * gap;
            let num_chunks = xi.len() / chunk_size;

            // Only compact roots to achieve cache locality/compactness if
            // the roots lookup is done a significant amount of times
            // Which also implies a large lookup stride.
            if num_chunks >= MIN_NUM_CHUNKS_FOR_COMPACTION {
                if !first {
                    roots = Cow::Owned(cfg_into_iter!(roots.into_owned()).step_by(step * 2).collect());
                }
                step = 1;
                roots.to_mut().shrink_to_fit();
            } else {
                step = num_chunks;
            }
            first = false;

            Self::apply_butterfly(
                Self::butterfly_fn_io,
                xi,
                &roots[..],
                step,
                chunk_size,
                num_chunks,
                max_threads,
                gap,
            );

            gap /= 2;
        }
    }

    fn oi_helper_with_roots<T: DomainCoeff<F>>(&self, xi: &mut [T], roots_cache: &[F]) {
        // The `cmp::min` is only necessary for the case where
        // `MIN_NUM_CHUNKS_FOR_COMPACTION = 1`. Else, notice that we compact
        // the roots cache by a stride of at least `MIN_NUM_CHUNKS_FOR_COMPACTION`.

        let compaction_max_size =
            core::cmp::min(roots_cache.len() / 2, roots_cache.len() / MIN_NUM_CHUNKS_FOR_COMPACTION);
        let mut compacted_roots = vec![F::default(); compaction_max_size];

        #[cfg(not(feature = "serial"))]
        let max_threads = snarkvm_utilities::parallel::max_available_threads();
        #[cfg(feature = "serial")]
        let max_threads = 1;

        let mut gap = 1;
        while gap < xi.len() {
            // each butterfly cluster uses 2*gap positions
            let chunk_size = 2 * gap;
            let num_chunks = xi.len() / chunk_size;

            // Only compact roots to achieve cache locality/compactness if
            // the roots lookup is done a significant amount of times
            // Which also implies a large lookup stride.
            let (roots, step) = if num_chunks >= MIN_NUM_CHUNKS_FOR_COMPACTION && gap < xi.len() / 2 {
                cfg_iter_mut!(compacted_roots[..gap])
                    .zip(cfg_iter!(roots_cache[..(gap * num_chunks)]).step_by(num_chunks))
                    .for_each(|(a, b)| *a = *b);
                (&compacted_roots[..gap], 1)
            } else {
                (roots_cache, num_chunks)
            };

            Self::apply_butterfly(Self::butterfly_fn_oi, xi, roots, step, chunk_size, num_chunks, max_threads, gap);

            gap *= 2;
        }
    }
}

/// The minimum number of chunks at which root compaction
/// is beneficial.
const MIN_NUM_CHUNKS_FOR_COMPACTION: usize = 1 << 7;

/// The minimum size of a chunk at which parallelization of `butterfly`s is
/// beneficial. This value was chosen empirically.
const MIN_GAP_SIZE_FOR_PARALLELISATION: usize = 1 << 10;

// minimum size at which to parallelize.
#[cfg(not(feature = "serial"))]
const LOG_ROOTS_OF_UNITY_PARALLEL_SIZE: u32 = 7;

#[inline]
pub(super) fn bitrev(a: u64, log_len: u32) -> u64 {
    a.reverse_bits() >> (64 - log_len)
}

pub(crate) fn derange<T>(xi: &mut [T]) {
    derange_helper(xi, log2(xi.len()))
}

fn derange_helper<T>(xi: &mut [T], log_len: u32) {
    for idx in 1..(xi.len() as u64 - 1) {
        let ridx = bitrev(idx, log_len);
        if idx < ridx {
            xi.swap(idx as usize, ridx as usize);
        }
    }
}

#[derive(PartialEq, Eq, Debug)]
enum FFTOrder {
    /// Both the input and the output of the FFT must be in-order.
    II,
    /// The input of the FFT must be in-order, but the output does not have to
    /// be.
    IO,
    /// The input of the FFT can be out of order, but the output must be
    /// in-order.
    OI,
}

pub(crate) fn compute_powers_serial<F: Field>(size: usize, root: F) -> Vec<F> {
    compute_powers_and_mul_by_const_serial(size, root, F::one())
}

pub(crate) fn compute_powers_and_mul_by_const_serial<F: Field>(size: usize, root: F, c: F) -> Vec<F> {
    let mut value = c;
    (0..size)
        .map(|_| {
            let old_value = value;
            value *= root;
            old_value
        })
        .collect()
}

#[allow(unused)]
#[cfg(not(feature = "serial"))]
pub(crate) fn compute_powers<F: Field>(size: usize, g: F) -> Vec<F> {
    if size < MIN_PARALLEL_CHUNK_SIZE {
        return compute_powers_serial(size, g);
    }
    // compute the number of threads we will be using.
    let num_cpus_available = max_available_threads();
    let num_elem_per_thread = core::cmp::max(size / num_cpus_available, MIN_PARALLEL_CHUNK_SIZE);
    let num_cpus_used = size / num_elem_per_thread;

    // Split up the powers to compute across each thread evenly.
    let res: Vec<F> = (0..num_cpus_used)
        .into_par_iter()
        .flat_map(|i| {
            let offset = g.pow([(i * num_elem_per_thread) as u64]);
            // Compute the size that this chunks' output should be
            // (num_elem_per_thread, unless there are less than num_elem_per_thread elements remaining)
            let num_elements_to_compute = core::cmp::min(size - i * num_elem_per_thread, num_elem_per_thread);
            compute_powers_and_mul_by_const_serial(num_elements_to_compute, g, offset)
        })
        .collect();
    res
}

/// An iterator over the elements of the domain.
#[derive(Clone)]
pub struct Elements<F: FftField> {
    cur_elem: F,
    cur_pow: u64,
    domain: EvaluationDomain<F>,
}

impl<F: FftField> Iterator for Elements<F> {
    type Item = F;

    fn next(&mut self) -> Option<F> {
        if self.cur_pow == self.domain.size {
            None
        } else {
            let cur_elem = self.cur_elem;
            self.cur_elem *= &self.domain.group_gen;
            self.cur_pow += 1;
            Some(cur_elem)
        }
    }
}

/// An iterator over the elements of the domain.
#[derive(Clone, Eq, PartialEq, Debug, CanonicalDeserialize, CanonicalSerialize)]
pub struct FFTPrecomputation<F: FftField> {
    roots: Vec<F>,
    domain: EvaluationDomain<F>,
}

impl<F: FftField> FFTPrecomputation<F> {
    pub fn to_ifft_precomputation(&self) -> IFFTPrecomputation<F> {
        let mut inverse_roots = self.roots.clone();
        snarkvm_fields::batch_inversion(&mut inverse_roots);
        IFFTPrecomputation { inverse_roots, domain: self.domain }
    }

    pub fn precomputation_for_subdomain<'a>(&'a self, domain: &EvaluationDomain<F>) -> Option<Cow<'a, Self>> {
        if domain.size() == 1 {
            return Some(Cow::Owned(Self { roots: vec![], domain: *domain }));
        }
        if &self.domain == domain {
            Some(Cow::Borrowed(self))
        } else if domain.size() < self.domain.size() {
            let size_ratio = self.domain.size() / domain.size();
            let roots = self.roots.iter().step_by(size_ratio).copied().collect();
            Some(Cow::Owned(Self { roots, domain: *domain }))
        } else {
            None
        }
    }
}

/// An iterator over the elements of the domain.
#[derive(Clone, Eq, PartialEq, Debug, CanonicalSerialize, CanonicalDeserialize)]
pub struct IFFTPrecomputation<F: FftField> {
    inverse_roots: Vec<F>,
    domain: EvaluationDomain<F>,
}

impl<F: FftField> IFFTPrecomputation<F> {
    pub fn precomputation_for_subdomain<'a>(&'a self, domain: &EvaluationDomain<F>) -> Option<Cow<'a, Self>> {
        if domain.size() == 1 {
            return Some(Cow::Owned(Self { inverse_roots: vec![], domain: *domain }));
        }
        if &self.domain == domain {
            Some(Cow::Borrowed(self))
        } else if domain.size() < self.domain.size() {
            let size_ratio = self.domain.size() / domain.size();
            let inverse_roots = self.inverse_roots.iter().step_by(size_ratio).copied().collect();
            Some(Cow::Owned(Self { inverse_roots, domain: *domain }))
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
    use crate::fft::domain::FFTOrder;
    use crate::fft::{DensePolynomial, EvaluationDomain};
    use rand::Rng;
    use snarkvm_curves::bls12_377::Fr;
    use snarkvm_fields::{FftField, Field, One, Zero};
    use snarkvm_utilities::{TestRng, Uniform};

    #[test]
    fn vanishing_polynomial_evaluation() {
        let rng = &mut TestRng::default();
        for coeffs in 0..10 {
            let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
            let z = domain.vanishing_polynomial();
            for _ in 0..100 {
                let point = rng.gen();
                assert_eq!(z.evaluate(point), domain.evaluate_vanishing_polynomial(point))
            }
        }
    }

    #[test]
    fn vanishing_polynomial_vanishes_on_domain() {
        for coeffs in 0..1000 {
            let domain = EvaluationDomain::<Fr>::new(coeffs).unwrap();
            let z = domain.vanishing_polynomial();
            for point in domain.elements() {
                assert!(z.evaluate(point).is_zero())
            }
        }
    }

    #[test]
    fn size_of_elements() {
        for coeffs in 1..10 {
            let size = 1 << coeffs;
            let domain = EvaluationDomain::<Fr>::new(size).unwrap();
            let domain_size = domain.size();
            assert_eq!(domain_size, domain.elements().count());
        }
    }

    #[test]
    fn elements_contents() {
        for coeffs in 1..10 {
            let size = 1 << coeffs;
            let domain = EvaluationDomain::<Fr>::new(size).unwrap();
            for (i, element) in domain.elements().enumerate() {
                assert_eq!(element, domain.group_gen.pow([i as u64]));
            }
        }
    }

    /// Test that lagrange interpolation for a random polynomial at a random point works.
    #[test]
    fn non_systematic_lagrange_coefficients_test() {
        let mut rng = TestRng::default();
        for domain_dimension in 1..10 {
            let domain_size = 1 << domain_dimension;
            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            // Get random point & lagrange coefficients
            let random_point = Fr::rand(&mut rng);
            let lagrange_coefficients = domain.evaluate_all_lagrange_coefficients(random_point);

            // Sample the random polynomial, evaluate it over the domain and the random point.
            let random_polynomial = DensePolynomial::<Fr>::rand(domain_size - 1, &mut rng);
            let polynomial_evaluations = domain.fft(random_polynomial.coeffs());
            let actual_evaluations = random_polynomial.evaluate(random_point);

            // Do lagrange interpolation, and compare against the actual evaluation
            let mut interpolated_evaluation = Fr::zero();
            for i in 0..domain_size {
                interpolated_evaluation += lagrange_coefficients[i] * polynomial_evaluations[i];
            }
            assert_eq!(actual_evaluations, interpolated_evaluation);
        }
    }

    /// Test that lagrange coefficients for a point in the domain is correct.
    #[test]
    fn systematic_lagrange_coefficients_test() {
        // This runs in time O(N^2) in the domain size, so keep the domain dimension low.
        // We generate lagrange coefficients for each element in the domain.
        for domain_dimension in 1..5 {
            let domain_size = 1 << domain_dimension;
            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            let all_domain_elements: Vec<Fr> = domain.elements().collect();
            for (i, domain_element) in all_domain_elements.iter().enumerate().take(domain_size) {
                let lagrange_coefficients = domain.evaluate_all_lagrange_coefficients(*domain_element);
                for (j, lagrange_coefficient) in lagrange_coefficients.iter().enumerate().take(domain_size) {
                    // Lagrange coefficient for the evaluation point, which should be 1
                    if i == j {
                        assert_eq!(*lagrange_coefficient, Fr::one());
                    } else {
                        assert_eq!(*lagrange_coefficient, Fr::zero());
                    }
                }
            }
        }
    }

    /// Tests that the roots of unity result is the same as domain.elements().
    #[test]
    fn test_roots_of_unity() {
        let max_degree = 10;
        for log_domain_size in 0..max_degree {
            let domain_size = 1 << log_domain_size;
            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            let actual_roots = domain.roots_of_unity(domain.group_gen);
            for &value in &actual_roots {
                assert!(domain.evaluate_vanishing_polynomial(value).is_zero());
            }
            let expected_roots_elements = domain.elements();
            for (expected, &actual) in expected_roots_elements.zip(&actual_roots) {
                assert_eq!(expected, actual);
            }
            assert_eq!(actual_roots.len(), domain_size / 2);
        }
    }

    /// Tests that the FFTs output the correct result.
    #[test]
    fn test_fft_correctness() {
        // This assumes a correct polynomial evaluation at point procedure.
        // It tests consistency of FFT/IFFT, and coset_fft/coset_ifft,
        // along with testing that each individual evaluation is correct.

        let mut rng = TestRng::default();

        // Runs in time O(degree^2)
        let log_degree = 5;
        let degree = 1 << log_degree;
        let random_polynomial = DensePolynomial::<Fr>::rand(degree - 1, &mut rng);

        for log_domain_size in log_degree..(log_degree + 2) {
            let domain_size = 1 << log_domain_size;
            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            let polynomial_evaluations = domain.fft(&random_polynomial.coeffs);
            let polynomial_coset_evaluations = domain.coset_fft(&random_polynomial.coeffs);
            for (i, x) in domain.elements().enumerate() {
                let coset_x = Fr::multiplicative_generator() * x;

                assert_eq!(polynomial_evaluations[i], random_polynomial.evaluate(x));
                assert_eq!(polynomial_coset_evaluations[i], random_polynomial.evaluate(coset_x));
            }

            let randon_polynomial_from_subgroup =
                DensePolynomial::from_coefficients_vec(domain.ifft(&polynomial_evaluations));
            let random_polynomial_from_coset =
                DensePolynomial::from_coefficients_vec(domain.coset_ifft(&polynomial_coset_evaluations));

            assert_eq!(
                random_polynomial, randon_polynomial_from_subgroup,
                "degree = {degree}, domain size = {domain_size}"
            );
            assert_eq!(
                random_polynomial, random_polynomial_from_coset,
                "degree = {degree}, domain size = {domain_size}"
            );
        }
    }

    /// Tests that FFT precomputation is correctly subdomained
    #[test]
    fn test_fft_precomputation() {
        for i in 1..10 {
            let big_domain = EvaluationDomain::<Fr>::new(i).unwrap();
            let pc = big_domain.precompute_fft();
            for j in 1..i {
                let small_domain = EvaluationDomain::<Fr>::new(j).unwrap();
                let small_pc = small_domain.precompute_fft();
                assert_eq!(pc.precomputation_for_subdomain(&small_domain).unwrap().as_ref(), &small_pc);
            }
        }
    }

    /// Tests that IFFT precomputation is correctly subdomained
    #[test]
    fn test_ifft_precomputation() {
        for i in 1..10 {
            let big_domain = EvaluationDomain::<Fr>::new(i).unwrap();
            let pc = big_domain.precompute_ifft();
            for j in 1..i {
                let small_domain = EvaluationDomain::<Fr>::new(j).unwrap();
                let small_pc = small_domain.precompute_ifft();
                assert_eq!(pc.precomputation_for_subdomain(&small_domain).unwrap().as_ref(), &small_pc);
            }
        }
    }

    /// Tests that IFFT precomputation can be correctly computed from
    /// FFT precomputation
    #[test]
    fn test_ifft_precomputation_from_fft() {
        for i in 1..10 {
            let domain = EvaluationDomain::<Fr>::new(i).unwrap();
            let pc = domain.precompute_ifft();
            let fft_pc = domain.precompute_fft();
            assert_eq!(pc, fft_pc.to_ifft_precomputation())
        }
    }

    /// Tests that the FFTs output the correct result.
    #[cfg(all(feature = "cuda", target_arch = "x86_64"))]
    #[test]
    fn test_fft_correctness_cuda() {
        let mut rng = TestRng::default();
        for log_domain in 2..20 {
            println!("Testing domain size {log_domain}");
            let domain_size = 1 << log_domain;
            let random_polynomial = DensePolynomial::<Fr>::rand(domain_size - 1, &mut rng);
            let mut polynomial_evaluations = random_polynomial.coeffs.clone();
            let mut polynomial_evaluations_cuda = random_polynomial.coeffs.clone();

            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            let pc = domain.precompute_fft();
            domain.fft_helper_in_place_with_pc(&mut polynomial_evaluations, FFTOrder::II, &pc);

            if snarkvm_algorithms_cuda::NTT::<Fr>(
                domain_size,
                &mut polynomial_evaluations_cuda,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Forward,
                snarkvm_algorithms_cuda::NTTType::Standard,
            )
            .is_err()
            {
                println!("cuda error!");
            }

            assert_eq!(polynomial_evaluations, polynomial_evaluations_cuda, "domain size = {domain_size}");

            // iNTT
            if snarkvm_algorithms_cuda::NTT::<Fr>(
                domain_size,
                &mut polynomial_evaluations_cuda,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Standard,
            )
            .is_err()
            {
                println!("cuda error!");
            }
            assert_eq!(random_polynomial.coeffs, polynomial_evaluations_cuda, "domain size = {domain_size}");

            // Coset NTT
            polynomial_evaluations = random_polynomial.coeffs.clone();
            let domain = EvaluationDomain::<Fr>::new(domain_size).unwrap();
            let pc = domain.precompute_fft();
            EvaluationDomain::<Fr>::distribute_powers(&mut polynomial_evaluations, Fr::multiplicative_generator());
            domain.fft_helper_in_place_with_pc(&mut polynomial_evaluations, FFTOrder::II, &pc);

            if snarkvm_algorithms_cuda::NTT::<Fr>(
                domain_size,
                &mut polynomial_evaluations_cuda,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Forward,
                snarkvm_algorithms_cuda::NTTType::Coset,
            )
            .is_err()
            {
                println!("cuda error!");
            }

            assert_eq!(polynomial_evaluations, polynomial_evaluations_cuda, "domain size = {domain_size}");

            // Coset iNTT
            if snarkvm_algorithms_cuda::NTT::<Fr>(
                domain_size,
                &mut polynomial_evaluations_cuda,
                snarkvm_algorithms_cuda::NTTInputOutputOrder::NN,
                snarkvm_algorithms_cuda::NTTDirection::Inverse,
                snarkvm_algorithms_cuda::NTTType::Coset,
            )
            .is_err()
            {
                println!("cuda error!");
            }
            assert_eq!(random_polynomial.coeffs, polynomial_evaluations_cuda, "domain size = {domain_size}");
        }
    }
}