snarkvm_algorithms/msm/variable_base/standard.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use snarkvm_curves::{AffineCurve, ProjectiveCurve};
use snarkvm_fields::{One, PrimeField, Zero};
use snarkvm_utilities::{BigInteger, cfg_into_iter};
#[cfg(not(feature = "serial"))]
use rayon::prelude::*;
fn update_buckets<G: AffineCurve>(
base: &G,
mut scalar: <G::ScalarField as PrimeField>::BigInteger,
w_start: usize,
c: usize,
buckets: &mut [G::Projective],
) {
// We right-shift by w_start, thus getting rid of the lower bits.
scalar.divn(w_start as u32);
// We mod the remaining bits by the window size.
let scalar = scalar.as_ref()[0] % (1 << c);
// If the scalar is non-zero, we update the corresponding bucket.
// (Recall that `buckets` doesn't have a zero bucket.)
if scalar != 0 {
buckets[(scalar - 1) as usize].add_assign_mixed(base);
}
}
fn standard_window<G: AffineCurve>(
bases: &[G],
scalars: &[<G::ScalarField as PrimeField>::BigInteger],
w_start: usize,
c: usize,
) -> (G::Projective, usize) {
let mut res = G::Projective::zero();
let fr_one = G::ScalarField::one().to_bigint();
// We only process unit scalars once in the first window.
if w_start == 0 {
scalars.iter().zip(bases).filter(|(&s, _)| s == fr_one).for_each(|(_, base)| {
res.add_assign_mixed(base);
});
}
// We don't need the "zero" bucket, so we only have 2^c - 1 buckets
let window_size = if (w_start % c) != 0 { w_start % c } else { c };
let mut buckets = vec![G::Projective::zero(); (1 << window_size) - 1];
scalars
.iter()
.zip(bases)
.filter(|(&s, _)| s > fr_one)
.for_each(|(&scalar, base)| update_buckets(base, scalar, w_start, c, &mut buckets));
// G::Projective::batch_normalization(&mut buckets);
for running_sum in buckets.into_iter().rev().scan(G::Projective::zero(), |sum, b| {
*sum += b;
Some(*sum)
}) {
res += running_sum;
}
(res, window_size)
}
pub fn msm<G: AffineCurve>(bases: &[G], scalars: &[<G::ScalarField as PrimeField>::BigInteger]) -> G::Projective {
// Determine the bucket size `c` (chosen empirically).
let c = match scalars.len() < 32 {
true => 1,
false => crate::msm::ln_without_floats(scalars.len()) + 2,
};
let num_bits = <G::ScalarField as PrimeField>::size_in_bits();
// Each window is of size `c`.
// We divide up the bits 0..num_bits into windows of size `c`, and
// in parallel process each such window.
let window_sums: Vec<_> =
cfg_into_iter!(0..num_bits).step_by(c).map(|w_start| standard_window(bases, scalars, w_start, c)).collect();
// We store the sum for the lowest window.
let (lowest, window_sums) = window_sums.split_first().unwrap();
// We're traversing windows from high to low.
window_sums.iter().rev().fold(G::Projective::zero(), |mut total, (sum_i, window_size)| {
total += sum_i;
for _ in 0..*window_size {
total.double_in_place();
}
total
}) + lowest.0
}