snarkvm_algorithms/snark/varuna/
varuna.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::Certificate;
use crate::{
    AlgebraicSponge,
    SNARK,
    SNARKError,
    fft::EvaluationDomain,
    polycommit::sonic_pc::{
        Commitment,
        CommitterUnionKey,
        Evaluations,
        LabeledCommitment,
        QuerySet,
        Randomness,
        SonicKZG10,
    },
    r1cs::{ConstraintSynthesizer, SynthesisError},
    snark::varuna::{
        CircuitProvingKey,
        CircuitVerifyingKey,
        Proof,
        SNARKMode,
        UniversalSRS,
        ahp::{AHPError, AHPForR1CS, CircuitId, EvaluationsProvider},
        proof,
        prover,
        witness_label,
    },
    srs::UniversalVerifier,
};
use rand::RngCore;
use snarkvm_curves::PairingEngine;
use snarkvm_fields::{One, PrimeField, ToConstraintField, Zero};
use snarkvm_utilities::{ToBytes, to_bytes_le};

use anyhow::{Result, anyhow, bail, ensure};
use core::marker::PhantomData;
use itertools::Itertools;
use rand::{CryptoRng, Rng};
use std::{borrow::Borrow, collections::BTreeMap, ops::Deref, sync::Arc};

use crate::srs::UniversalProver;
use snarkvm_utilities::println;

/// The Varuna proof system.
#[derive(Clone, Debug)]
pub struct VarunaSNARK<E: PairingEngine, FS: AlgebraicSponge<E::Fq, 2>, SM: SNARKMode>(
    #[doc(hidden)] PhantomData<(E, FS, SM)>,
);

impl<E: PairingEngine, FS: AlgebraicSponge<E::Fq, 2>, SM: SNARKMode> VarunaSNARK<E, FS, SM> {
    /// The personalization string for this protocol.
    /// Used to personalize the Fiat-Shamir RNG.
    pub const PROTOCOL_NAME: &'static [u8] = b"VARUNA-2023";

    // TODO: implement optimizations resulting from batching
    //       (e.g. computing a common set of Lagrange powers, FFT precomputations, etc)
    pub fn batch_circuit_setup<C: ConstraintSynthesizer<E::Fr>>(
        universal_srs: &UniversalSRS<E>,
        circuits: &[&C],
    ) -> Result<Vec<(CircuitProvingKey<E, SM>, CircuitVerifyingKey<E>)>> {
        let index_time = start_timer!(|| "Varuna::CircuitSetup");

        let universal_prover = &universal_srs.to_universal_prover()?;

        let mut circuit_keys = Vec::with_capacity(circuits.len());
        for circuit in circuits {
            let mut indexed_circuit = AHPForR1CS::<_, SM>::index(*circuit)?;
            // TODO: Add check that c is in the correct mode.
            // Ensure the universal SRS supports the circuit size.
            universal_srs.download_powers_for(0..indexed_circuit.max_degree()?).map_err(|e| {
                anyhow!("Failed to download powers for degree {}: {e}", indexed_circuit.max_degree().unwrap())
            })?;
            let coefficient_support = AHPForR1CS::<E::Fr, SM>::get_degree_bounds(&indexed_circuit.index_info)?;

            // Varuna only needs degree 2 random polynomials.
            let supported_hiding_bound = 1;
            let supported_lagrange_sizes = [].into_iter(); // TODO: consider removing lagrange_bases_at_beta_g from CommitterKey
            let (committer_key, _) = SonicKZG10::<E, FS>::trim(
                universal_srs,
                indexed_circuit.max_degree()?,
                supported_lagrange_sizes,
                supported_hiding_bound,
                Some(coefficient_support.as_slice()),
            )?;

            let ck = CommitterUnionKey::union(std::iter::once(&committer_key));

            let commit_time = start_timer!(|| format!("Commit to index polynomials for {}", indexed_circuit.id));
            let setup_rng = None::<&mut dyn RngCore>; // We do not randomize the commitments

            let (mut circuit_commitments, commitment_randomnesses): (_, _) = SonicKZG10::<E, FS>::commit(
                universal_prover,
                &ck,
                indexed_circuit.interpolate_matrix_evals()?.map(Into::into),
                setup_rng,
            )?;
            let empty_randomness = Randomness::<E>::empty();
            ensure!(commitment_randomnesses.iter().all(|r| r == &empty_randomness));
            end_timer!(commit_time);

            circuit_commitments.sort_by(|c1, c2| c1.label().cmp(c2.label()));
            let circuit_commitments = circuit_commitments.into_iter().map(|c| *c.commitment()).collect();
            indexed_circuit.prune_row_col_evals();
            let circuit_verifying_key = CircuitVerifyingKey {
                circuit_info: indexed_circuit.index_info,
                circuit_commitments,
                id: indexed_circuit.id,
            };
            let circuit_proving_key = CircuitProvingKey {
                circuit_verifying_key: circuit_verifying_key.clone(),
                circuit: Arc::new(indexed_circuit),
                committer_key: Arc::new(committer_key),
            };
            circuit_keys.push((circuit_proving_key, circuit_verifying_key));
        }

        end_timer!(index_time);
        Ok(circuit_keys)
    }

    fn init_sponge<'a>(
        fs_parameters: &FS::Parameters,
        inputs_and_batch_sizes: &BTreeMap<CircuitId, (usize, &[Vec<E::Fr>])>,
        circuit_commitments: impl Iterator<Item = &'a [crate::polycommit::sonic_pc::Commitment<E>]>,
    ) -> FS {
        let mut sponge = FS::new_with_parameters(fs_parameters);
        sponge.absorb_bytes(Self::PROTOCOL_NAME);
        for (batch_size, inputs) in inputs_and_batch_sizes.values() {
            sponge.absorb_bytes(&(*batch_size as u64).to_le_bytes());
            for input in inputs.iter() {
                sponge.absorb_nonnative_field_elements(input.iter().copied());
            }
        }
        for circuit_specific_commitments in circuit_commitments {
            sponge.absorb_native_field_elements(circuit_specific_commitments);
        }
        sponge
    }

    fn init_sponge_for_certificate(
        fs_parameters: &FS::Parameters,
        verifying_key: &CircuitVerifyingKey<E>,
    ) -> Result<FS> {
        let mut sponge = FS::new_with_parameters(fs_parameters);
        sponge.absorb_bytes(&to_bytes_le![&Self::PROTOCOL_NAME]?);
        sponge.absorb_bytes(&verifying_key.circuit_info.to_bytes_le()?);
        sponge.absorb_native_field_elements(&verifying_key.circuit_commitments);
        sponge.absorb_bytes(&verifying_key.id.0);
        Ok(sponge)
    }

    fn absorb_labeled_with_sums(
        comms: &[LabeledCommitment<Commitment<E>>],
        sums: &[prover::MatrixSums<E::Fr>],
        sponge: &mut FS,
    ) {
        let commitments: Vec<_> = comms.iter().map(|c| *c.commitment()).collect();
        Self::absorb_with_sums(&commitments, sums, sponge)
    }

    fn absorb_labeled(comms: &[LabeledCommitment<Commitment<E>>], sponge: &mut FS) {
        let commitments: Vec<_> = comms.iter().map(|c| *c.commitment()).collect();
        Self::absorb(&commitments, sponge);
    }

    fn absorb(commitments: &[Commitment<E>], sponge: &mut FS) {
        let sponge_time = start_timer!(|| "Absorbing commitments");
        sponge.absorb_native_field_elements(commitments);
        end_timer!(sponge_time);
    }

    fn absorb_with_sums(commitments: &[Commitment<E>], sums: &[prover::MatrixSums<E::Fr>], sponge: &mut FS) {
        let sponge_time = start_timer!(|| "Absorbing commitments and message");
        Self::absorb(commitments, sponge);
        for sum in sums.iter() {
            sponge.absorb_nonnative_field_elements([sum.sum_a, sum.sum_b, sum.sum_c]);
        }
        end_timer!(sponge_time);
    }
}

impl<E: PairingEngine, FS, SM> SNARK for VarunaSNARK<E, FS, SM>
where
    E::Fr: PrimeField,
    E::Fq: PrimeField,
    FS: AlgebraicSponge<E::Fq, 2>,
    SM: SNARKMode,
{
    type BaseField = E::Fq;
    type Certificate = Certificate<E>;
    type FSParameters = FS::Parameters;
    type FiatShamirRng = FS;
    type Proof = Proof<E>;
    type ProvingKey = CircuitProvingKey<E, SM>;
    type ScalarField = E::Fr;
    type UniversalProver = UniversalProver<E>;
    type UniversalSRS = UniversalSRS<E>;
    type UniversalVerifier = UniversalVerifier<E>;
    type VerifierInput = [E::Fr];
    type VerifyingKey = CircuitVerifyingKey<E>;

    fn universal_setup(max_degree: usize) -> Result<Self::UniversalSRS> {
        let setup_time = start_timer!(|| { format!("Varuna::UniversalSetup with max_degree {max_degree}",) });
        let srs = SonicKZG10::<E, FS>::load_srs(max_degree).map_err(Into::into);
        end_timer!(setup_time);
        srs
    }

    /// Generates the circuit proving and verifying keys.
    /// This is a deterministic algorithm that anyone can rerun.
    fn circuit_setup<C: ConstraintSynthesizer<E::Fr>>(
        universal_srs: &Self::UniversalSRS,
        circuit: &C,
    ) -> Result<(Self::ProvingKey, Self::VerifyingKey)> {
        let mut circuit_keys = Self::batch_circuit_setup::<C>(universal_srs, &[circuit])?;
        ensure!(circuit_keys.len() == 1);
        Ok(circuit_keys.pop().unwrap())
    }

    /// Prove that the verifying key commitments commit to the indexed circuit's polynomials
    fn prove_vk(
        universal_prover: &Self::UniversalProver,
        fs_parameters: &Self::FSParameters,
        verifying_key: &Self::VerifyingKey,
        proving_key: &Self::ProvingKey,
    ) -> Result<Self::Certificate> {
        // Initialize sponge
        let mut sponge = Self::init_sponge_for_certificate(fs_parameters, verifying_key)?;
        // Compute challenges for linear combination, and the point to evaluate the polynomials at.
        // The linear combination requires `num_polynomials - 1` coefficients
        // (since the first coeff is 1), and so we squeeze out `num_polynomials` points.
        let mut challenges = sponge.squeeze_nonnative_field_elements(verifying_key.circuit_commitments.len());
        let point = challenges.pop().ok_or(anyhow!("Failed to squeeze random element"))?;
        let one = E::Fr::one();
        let linear_combination_challenges = core::iter::once(&one).chain(challenges.iter());

        let circuit_id = std::iter::once(&verifying_key.id);
        let circuit_poly_info = AHPForR1CS::<E::Fr, SM>::index_polynomial_info(circuit_id);

        // We will construct a linear combination and provide a proof of evaluation of the lc at `point`.
        let mut lc = crate::polycommit::sonic_pc::LinearCombination::empty("circuit_check");
        for (label, &c) in circuit_poly_info.keys().zip(linear_combination_challenges) {
            lc.add(c, label.clone());
        }

        let query_set = QuerySet::from_iter([("circuit_check".into(), ("challenge".into(), point))]);
        let committer_key = CommitterUnionKey::union(std::iter::once(proving_key.committer_key.as_ref()));

        let empty_randomness = vec![Randomness::<E>::empty(); 12];
        let certificate = SonicKZG10::<E, FS>::open_combinations(
            universal_prover,
            &committer_key,
            &[lc],
            proving_key.circuit.interpolate_matrix_evals()?,
            &empty_randomness,
            &query_set,
            &mut sponge,
        )?;

        Ok(Self::Certificate::new(certificate))
    }

    /// Verify that the verifying key commitments commit to the indexed circuit's polynomials
    /// Verify that the verifying key's circuit_info is correct
    fn verify_vk<C: ConstraintSynthesizer<Self::ScalarField>>(
        universal_verifier: &Self::UniversalVerifier,
        fs_parameters: &Self::FSParameters,
        circuit: &C,
        verifying_key: &Self::VerifyingKey,
        certificate: &Self::Certificate,
    ) -> Result<bool> {
        // Ensure the VerifyingKey encodes the expected circuit.
        let circuit_id = &verifying_key.id;
        let state = AHPForR1CS::<E::Fr, SM>::index_helper(circuit)?;
        if state.index_info != verifying_key.circuit_info {
            bail!(SNARKError::CircuitNotFound);
        }
        if state.id != *circuit_id {
            bail!(SNARKError::CircuitNotFound);
        }

        // Initialize sponge.
        let mut sponge = Self::init_sponge_for_certificate(fs_parameters, verifying_key)?;

        // Compute challenges for linear combination, and the point to evaluate the polynomials at.
        // The linear combination requires `num_polynomials - 1` coefficients
        // (since the first coeff is 1), and so we squeeze out `num_polynomials` points.
        let mut challenges = sponge.squeeze_nonnative_field_elements(verifying_key.circuit_commitments.len());
        let point = challenges.pop().ok_or(anyhow!("Failed to squeeze random element"))?;
        let combiners = core::iter::once(E::Fr::one()).chain(challenges);

        // We will construct a linear combination and provide a proof of evaluation of the lc at `point`.
        let (lc, evaluation) =
            AHPForR1CS::<E::Fr, SM>::evaluate_index_polynomials(state, circuit_id, point, combiners)?;

        ensure!(verifying_key.circuit_commitments.len() == lc.terms.len());
        let commitments = verifying_key
            .iter()
            .cloned()
            .zip_eq(lc.terms.keys())
            .map(|(c, label)| LabeledCommitment::new(format!("{label:?}"), c, None))
            .collect_vec();
        let evaluations = Evaluations::from_iter([(("circuit_check".into(), point), evaluation)]);
        let query_set = QuerySet::from_iter([("circuit_check".into(), ("challenge".into(), point))]);

        SonicKZG10::<E, FS>::check_combinations(
            universal_verifier,
            &[lc],
            &commitments,
            &query_set,
            &evaluations,
            &certificate.pc_proof,
            &mut sponge,
        )
        .map_err(Into::into)
    }

    /// This is the main entrypoint for creating proofs.
    /// You can find a specification of the prover algorithm in:
    /// https://github.com/ProvableHQ/protocol-docs
    fn prove_batch<C: ConstraintSynthesizer<E::Fr>, R: Rng + CryptoRng>(
        universal_prover: &Self::UniversalProver,
        fs_parameters: &Self::FSParameters,
        keys_to_constraints: &BTreeMap<&CircuitProvingKey<E, SM>, &[C]>,
        zk_rng: &mut R,
    ) -> Result<Self::Proof> {
        let prover_time = start_timer!(|| "Varuna::Prover");
        if keys_to_constraints.is_empty() {
            bail!(SNARKError::EmptyBatch);
        }

        let mut circuits_to_constraints = BTreeMap::new();
        for (pk, constraints) in keys_to_constraints {
            circuits_to_constraints.insert(pk.circuit.deref(), *constraints);
        }
        let prover_state = AHPForR1CS::<_, SM>::init_prover(&circuits_to_constraints, zk_rng)?;

        // extract information from the prover key and state to consume in further calculations
        let mut batch_sizes = BTreeMap::new();
        let mut circuit_infos = BTreeMap::new();
        let mut inputs_and_batch_sizes = BTreeMap::new();
        let mut total_instances = 0usize;
        let mut public_inputs = BTreeMap::new(); // inputs need to live longer than the rest of prover_state
        let num_unique_circuits = keys_to_constraints.len();
        let mut circuit_ids = Vec::with_capacity(num_unique_circuits);
        for pk in keys_to_constraints.keys() {
            let batch_size = prover_state.batch_size(&pk.circuit).ok_or(SNARKError::CircuitNotFound)?;
            let public_input = prover_state.public_inputs(&pk.circuit).ok_or(SNARKError::CircuitNotFound)?;
            let padded_public_input =
                prover_state.padded_public_inputs(&pk.circuit).ok_or(SNARKError::CircuitNotFound)?;
            let circuit_id = pk.circuit.id;
            batch_sizes.insert(circuit_id, batch_size);
            circuit_infos.insert(circuit_id, &pk.circuit_verifying_key.circuit_info);
            inputs_and_batch_sizes.insert(circuit_id, (batch_size, padded_public_input));
            public_inputs.insert(circuit_id, public_input);
            total_instances = total_instances.saturating_add(batch_size);

            circuit_ids.push(circuit_id);
        }
        ensure!(prover_state.total_instances == total_instances);

        let committer_key = CommitterUnionKey::union(keys_to_constraints.keys().map(|pk| pk.committer_key.deref()));

        let circuit_commitments =
            keys_to_constraints.keys().map(|pk| pk.circuit_verifying_key.circuit_commitments.as_slice());

        let mut sponge = Self::init_sponge(fs_parameters, &inputs_and_batch_sizes, circuit_commitments.clone());

        // --------------------------------------------------------------------
        // First round

        let prover_state = AHPForR1CS::<_, SM>::prover_first_round(prover_state, zk_rng)?;

        let first_round_comm_time = start_timer!(|| "Committing to first round polys");
        let (first_commitments, first_commitment_randomnesses) = {
            let first_round_oracles = prover_state.first_round_oracles.as_ref().unwrap();
            SonicKZG10::<E, FS>::commit(
                universal_prover,
                &committer_key,
                first_round_oracles.iter().map(Into::into),
                SM::ZK.then_some(zk_rng),
            )?
        };
        end_timer!(first_round_comm_time);

        Self::absorb_labeled(&first_commitments, &mut sponge);

        let (verifier_first_message, verifier_state) = AHPForR1CS::<_, SM>::verifier_first_round(
            &batch_sizes,
            &circuit_infos,
            prover_state.max_constraint_domain,
            prover_state.max_variable_domain,
            prover_state.max_non_zero_domain,
            &mut sponge,
        )?;
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Second round

        let (second_oracles, prover_state) =
            AHPForR1CS::<_, SM>::prover_second_round(&verifier_first_message, prover_state, zk_rng)?;

        let second_round_comm_time = start_timer!(|| "Committing to second round polys");
        let (second_commitments, second_commitment_randomnesses) = SonicKZG10::<E, FS>::commit(
            universal_prover,
            &committer_key,
            second_oracles.iter().map(Into::into),
            SM::ZK.then_some(zk_rng),
        )?;
        end_timer!(second_round_comm_time);

        Self::absorb_labeled(&second_commitments, &mut sponge);

        let (verifier_second_msg, verifier_state) =
            AHPForR1CS::<_, SM>::verifier_second_round(verifier_state, &mut sponge)?;
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Third round

        let (prover_third_message, third_oracles, prover_state) = AHPForR1CS::<_, SM>::prover_third_round(
            &verifier_first_message,
            &verifier_second_msg,
            prover_state,
            zk_rng,
        )?;

        let third_round_comm_time = start_timer!(|| "Committing to third round polys");
        let (third_commitments, third_commitment_randomnesses) = SonicKZG10::<E, FS>::commit(
            universal_prover,
            &committer_key,
            third_oracles.iter().map(Into::into),
            SM::ZK.then_some(zk_rng),
        )?;
        end_timer!(third_round_comm_time);

        Self::absorb_labeled_with_sums(
            &third_commitments,
            &prover_third_message.sums.clone().into_iter().flatten().collect_vec(),
            &mut sponge,
        );

        let (verifier_third_msg, verifier_state) =
            AHPForR1CS::<_, SM>::verifier_third_round(verifier_state, &mut sponge)?;
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Fourth round

        let (prover_fourth_message, fourth_oracles, mut prover_state) =
            AHPForR1CS::<_, SM>::prover_fourth_round(&verifier_second_msg, &verifier_third_msg, prover_state, zk_rng)?;

        let fourth_round_comm_time = start_timer!(|| "Committing to fourth round polys");
        let (fourth_commitments, fourth_commitment_randomnesses) = SonicKZG10::<E, FS>::commit(
            universal_prover,
            &committer_key,
            fourth_oracles.iter().map(Into::into),
            SM::ZK.then_some(zk_rng),
        )?;
        end_timer!(fourth_round_comm_time);

        Self::absorb_labeled_with_sums(&fourth_commitments, &prover_fourth_message.sums, &mut sponge);

        let (verifier_fourth_msg, verifier_state) =
            AHPForR1CS::<_, SM>::verifier_fourth_round(verifier_state, &mut sponge)?;
        // --------------------------------------------------------------------

        // We take out values from state before they are consumed.
        let first_round_oracles = prover_state.first_round_oracles.take().unwrap();
        let index_a_polys =
            prover_state.circuit_specific_states.values_mut().flat_map(|s| s.a_polys.take().unwrap()).collect_vec();
        let index_b_polys =
            prover_state.circuit_specific_states.values_mut().flat_map(|s| s.b_polys.take().unwrap()).collect_vec();

        // --------------------------------------------------------------------
        // Fifth round
        let fifth_oracles = AHPForR1CS::<_, SM>::prover_fifth_round(verifier_fourth_msg, prover_state, zk_rng)?;

        let fifth_round_comm_time = start_timer!(|| "Committing to fifth round polys");
        let (fifth_commitments, fifth_commitment_randomnesses) = SonicKZG10::<E, FS>::commit(
            universal_prover,
            &committer_key,
            fifth_oracles.iter().map(Into::into),
            SM::ZK.then_some(zk_rng),
        )?;
        end_timer!(fifth_round_comm_time);

        Self::absorb_labeled(&fifth_commitments, &mut sponge);

        let verifier_state = AHPForR1CS::<_, SM>::verifier_fifth_round(verifier_state, &mut sponge)?;
        // --------------------------------------------------------------------

        // Gather prover polynomials in one vector.
        let polynomials: Vec<_> = index_a_polys
            .into_iter()
            .chain(index_b_polys)
            .chain(first_round_oracles.into_iter())
            .chain(second_oracles.into_iter())
            .chain(third_oracles.into_iter())
            .chain(fourth_oracles.into_iter())
            .chain(fifth_oracles.into_iter())
            .collect();
        ensure!(
            polynomials.len()
                == num_unique_circuits * 6 + // numerator and denominator for each matrix sumcheck
            AHPForR1CS::<E::Fr, SM>::num_first_round_oracles(total_instances) +
            AHPForR1CS::<E::Fr, SM>::num_second_round_oracles() +
            AHPForR1CS::<E::Fr, SM>::num_third_round_oracles() +
            AHPForR1CS::<E::Fr, SM>::num_fourth_round_oracles(num_unique_circuits) +
            AHPForR1CS::<E::Fr, SM>::num_fifth_round_oracles()
        );

        // Gather commitments in one vector.
        let witness_comm_len = if SM::ZK { first_commitments.len() - 1 } else { first_commitments.len() };
        let mask_poly = SM::ZK.then(|| *first_commitments[witness_comm_len].commitment());
        let witness_commitments = first_commitments[..witness_comm_len]
            .iter()
            .map(|c| proof::WitnessCommitments { w: *c.commitment() })
            .collect_vec();
        let fourth_commitments_chunked = fourth_commitments.chunks_exact(3);
        let (g_a_commitments, g_b_commitments, g_c_commitments) = fourth_commitments_chunked
            .map(|c| (*c[0].commitment(), *c[1].commitment(), *c[2].commitment()))
            .multiunzip();

        #[rustfmt::skip]
        let commitments = proof::Commitments {
            witness_commitments,
            mask_poly,
            h_0: *second_commitments[0].commitment(),
            g_1: *third_commitments[0].commitment(),
            h_1: *third_commitments[1].commitment(),
            g_a_commitments,
            g_b_commitments,
            g_c_commitments,
            h_2: *fifth_commitments[0].commitment(),
        };

        // Gather commitment randomness together.
        let indexer_randomness = vec![Randomness::<E>::empty(); 6 * num_unique_circuits];
        let commitment_randomnesses: Vec<Randomness<E>> = indexer_randomness
            .into_iter()
            .chain(first_commitment_randomnesses)
            .chain(second_commitment_randomnesses)
            .chain(third_commitment_randomnesses)
            .chain(fourth_commitment_randomnesses)
            .chain(fifth_commitment_randomnesses)
            .collect();

        let empty_randomness = Randomness::<E>::empty();
        if SM::ZK {
            ensure!(commitment_randomnesses.iter().any(|r| r != &empty_randomness));
        } else {
            ensure!(commitment_randomnesses.iter().all(|r| r == &empty_randomness));
        }

        // Compute the AHP verifier's query set.
        let (query_set, verifier_state) = AHPForR1CS::<_, SM>::verifier_query_set(verifier_state);
        let lc_s = AHPForR1CS::<_, SM>::construct_linear_combinations(
            &public_inputs,
            &polynomials,
            &prover_third_message,
            &prover_fourth_message,
            &verifier_state,
        )?;

        let eval_time = start_timer!(|| "Evaluating linear combinations over query set");
        let mut evaluations = std::collections::BTreeMap::new();
        for (label, (_, point)) in query_set.to_set() {
            if !AHPForR1CS::<E::Fr, SM>::LC_WITH_ZERO_EVAL.contains(&label.as_str()) {
                let lc = lc_s.get(&label).ok_or_else(|| AHPError::MissingEval(label.to_string()))?;
                let evaluation = polynomials.get_lc_eval(lc, point)?;
                evaluations.insert(label, evaluation);
            }
        }

        let evaluations = proof::Evaluations::from_map(&evaluations, batch_sizes.clone());
        end_timer!(eval_time);

        sponge.absorb_nonnative_field_elements(evaluations.to_field_elements());

        let pc_proof = SonicKZG10::<E, FS>::open_combinations(
            universal_prover,
            &committer_key,
            lc_s.values(),
            polynomials,
            &commitment_randomnesses,
            &query_set.to_set(),
            &mut sponge,
        )?;

        let proof = Proof::<E>::new(
            batch_sizes,
            commitments,
            evaluations,
            prover_third_message,
            prover_fourth_message,
            pc_proof,
        )?;
        proof.check_batch_sizes()?;
        ensure!(proof.pc_proof.is_hiding() == SM::ZK);

        end_timer!(prover_time);
        Ok(proof)
    }

    /// This is the main entrypoint for verifying proofs.
    /// You can find a specification of the verifier algorithm in:
    /// https://github.com/ProvableHQ/protocol-docs
    fn verify_batch<B: Borrow<Self::VerifierInput>>(
        universal_verifier: &Self::UniversalVerifier,
        fs_parameters: &Self::FSParameters,
        keys_to_inputs: &BTreeMap<&Self::VerifyingKey, &[B]>,
        proof: &Self::Proof,
    ) -> Result<bool> {
        if keys_to_inputs.is_empty() {
            bail!(SNARKError::EmptyBatch);
        }

        proof.check_batch_sizes()?;
        let batch_sizes_vec = proof.batch_sizes();
        let mut batch_sizes = BTreeMap::new();
        for (i, (vk, public_inputs_i)) in keys_to_inputs.iter().enumerate() {
            batch_sizes.insert(vk.id, batch_sizes_vec[i]);

            if public_inputs_i.is_empty() {
                bail!(SNARKError::EmptyBatch);
            }

            if public_inputs_i.len() != batch_sizes_vec[i] {
                bail!(SNARKError::BatchSizeMismatch);
            }
        }

        // collect values into structures for our calculations
        let mut max_num_constraints = 0;
        let mut max_num_variables = 0;
        let mut max_non_zero_domain = None;
        let mut public_inputs = BTreeMap::new();
        let mut padded_public_vec = Vec::with_capacity(keys_to_inputs.len());
        let mut inputs_and_batch_sizes = BTreeMap::new();
        let mut input_domains = BTreeMap::new();
        let mut circuit_infos = BTreeMap::new();
        let mut circuit_ids = Vec::with_capacity(keys_to_inputs.len());
        for (&vk, &public_inputs_i) in keys_to_inputs.iter() {
            max_num_constraints = max_num_constraints.max(vk.circuit_info.num_constraints);
            max_num_variables = max_num_variables.max(vk.circuit_info.num_public_and_private_variables);

            let non_zero_domains = AHPForR1CS::<_, SM>::cmp_non_zero_domains(&vk.circuit_info, max_non_zero_domain)?;
            max_non_zero_domain = non_zero_domains.max_non_zero_domain;

            let input_domain = EvaluationDomain::<E::Fr>::new(vk.circuit_info.num_public_inputs)
                .ok_or(anyhow!("Failed to create EvaluationDomain from num_public_inputs"))?;
            input_domains.insert(vk.id, input_domain);

            let input_fields = public_inputs_i
                .iter()
                .map(|input| {
                    let input = input.borrow().to_field_elements()?;
                    ensure!(input.len() > 0);
                    ensure!(input[0] == E::Fr::one());
                    if input.len() > input_domain.size() {
                        bail!(SNARKError::PublicInputSizeMismatch);
                    }
                    Ok(input)
                })
                .collect::<Result<Vec<_>, _>>()?;

            let (padded_public_inputs_i, parsed_public_inputs_i): (Vec<_>, Vec<_>) = {
                input_fields
                    .iter()
                    .map(|input| {
                        let input_len = input.len().max(input_domain.size());
                        let mut new_input = Vec::with_capacity(input_len);
                        new_input.extend_from_slice(input);
                        new_input.resize(input_len, E::Fr::zero());
                        if cfg!(debug_assertions) {
                            println!("Number of padded public variables: {}", new_input.len());
                        }
                        let unformatted = prover::ConstraintSystem::unformat_public_input(&new_input);
                        (new_input, unformatted)
                    })
                    .unzip()
            };
            let circuit_id = vk.id;
            public_inputs.insert(circuit_id, parsed_public_inputs_i);
            padded_public_vec.push(padded_public_inputs_i);
            circuit_infos.insert(circuit_id, &vk.circuit_info);
            circuit_ids.push(circuit_id);
        }
        for (i, (vk, &batch_size)) in keys_to_inputs.keys().zip(batch_sizes.values()).enumerate() {
            inputs_and_batch_sizes.insert(vk.id, (batch_size, padded_public_vec[i].as_slice()));
        }
        let max_constraint_domain =
            EvaluationDomain::<E::Fr>::new(max_num_constraints).ok_or(SynthesisError::PolyTooLarge)?;
        let max_variable_domain =
            EvaluationDomain::<E::Fr>::new(max_num_variables).ok_or(SynthesisError::PolyTooLarge)?;
        let max_non_zero_domain = max_non_zero_domain.ok_or(SynthesisError::PolyTooLarge)?;

        let comms = &proof.commitments;
        let proof_has_correct_zk_mode = if SM::ZK {
            proof.pc_proof.is_hiding() & comms.mask_poly.is_some()
        } else {
            !proof.pc_proof.is_hiding() & comms.mask_poly.is_none()
        };
        if !proof_has_correct_zk_mode {
            eprintln!(
                "Found `mask_poly` in the first round when not expected, or proof has incorrect hiding mode ({})",
                proof.pc_proof.is_hiding()
            );
            return Ok(false);
        }

        let verifier_time = start_timer!(|| format!("Varuna::Verify with batch sizes: {:?}", batch_sizes));

        let first_round_info = AHPForR1CS::<E::Fr, SM>::first_round_polynomial_info(batch_sizes.iter());

        let mut first_comms_consumed = 0;
        let mut first_commitments = batch_sizes
            .iter()
            .flat_map(|(circuit_id, &batch_size)| {
                let first_comms = comms.witness_commitments[first_comms_consumed..][..batch_size]
                    .iter()
                    .enumerate()
                    .map(|(j, w_comm)| {
                        LabeledCommitment::new_with_info(
                            &first_round_info[&witness_label(*circuit_id, "w", j)],
                            w_comm.w,
                        )
                    });
                first_comms_consumed += batch_size;
                first_comms
            })
            .collect_vec();

        if SM::ZK {
            first_commitments.push(LabeledCommitment::new_with_info(
                first_round_info.get("mask_poly").ok_or(anyhow!("Missing mask_poly"))?,
                comms.mask_poly.ok_or(anyhow!("Missing mask_poly"))?,
            ));
        }

        let second_round_info = AHPForR1CS::<E::Fr, SM>::second_round_polynomial_info();
        let second_commitments = [LabeledCommitment::new_with_info(&second_round_info["h_0"], comms.h_0)];

        let third_round_info = AHPForR1CS::<E::Fr, SM>::third_round_polynomial_info(max_variable_domain.size());
        let third_commitments = [
            LabeledCommitment::new_with_info(&third_round_info["g_1"], comms.g_1),
            LabeledCommitment::new_with_info(&third_round_info["h_1"], comms.h_1),
        ];

        let fourth_round_info =
            AHPForR1CS::<E::Fr, SM>::fourth_round_polynomial_info(circuit_infos.clone().into_iter());
        let fourth_commitments = comms
            .g_a_commitments
            .iter()
            .zip_eq(comms.g_b_commitments.iter())
            .zip_eq(comms.g_c_commitments.iter())
            .zip_eq(circuit_ids.iter())
            .flat_map(|(((g_a, g_b), g_c), circuit_id)| {
                [
                    LabeledCommitment::new_with_info(&fourth_round_info[&witness_label(*circuit_id, "g_a", 0)], *g_a),
                    LabeledCommitment::new_with_info(&fourth_round_info[&witness_label(*circuit_id, "g_b", 0)], *g_b),
                    LabeledCommitment::new_with_info(&fourth_round_info[&witness_label(*circuit_id, "g_c", 0)], *g_c),
                ]
            })
            .collect_vec();

        let fifth_round_info = AHPForR1CS::<E::Fr, SM>::fifth_round_polynomial_info();
        let fifth_commitments = [LabeledCommitment::new_with_info(&fifth_round_info["h_2"], comms.h_2)];

        let circuit_commitments = keys_to_inputs.keys().map(|vk| vk.circuit_commitments.as_slice());
        let mut sponge = Self::init_sponge(fs_parameters, &inputs_and_batch_sizes, circuit_commitments.clone());

        // --------------------------------------------------------------------
        // First round
        let first_round_time = start_timer!(|| "First round");
        Self::absorb_labeled(&first_commitments, &mut sponge);
        let (_, verifier_state) = AHPForR1CS::<_, SM>::verifier_first_round(
            &batch_sizes,
            &circuit_infos,
            max_constraint_domain,
            max_variable_domain,
            max_non_zero_domain,
            &mut sponge,
        )?;
        end_timer!(first_round_time);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Second round
        let second_round_time = start_timer!(|| "Second round");
        Self::absorb_labeled(&second_commitments, &mut sponge);
        let (_, verifier_state) = AHPForR1CS::<_, SM>::verifier_second_round(verifier_state, &mut sponge)?;
        end_timer!(second_round_time);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Third round
        let third_round_time = start_timer!(|| "Third round");
        Self::absorb_labeled_with_sums(
            &third_commitments,
            &proof.third_msg.sums.clone().into_iter().flatten().collect_vec(),
            &mut sponge,
        );
        let (_, verifier_state) = AHPForR1CS::<_, SM>::verifier_third_round(verifier_state, &mut sponge)?;
        end_timer!(third_round_time);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Fourth round
        let fourth_round_time = start_timer!(|| "Fourth round");

        Self::absorb_labeled_with_sums(&fourth_commitments, &proof.fourth_msg.sums, &mut sponge);
        let (_, verifier_state) = AHPForR1CS::<_, SM>::verifier_fourth_round(verifier_state, &mut sponge)?;
        end_timer!(fourth_round_time);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Fifth round
        let fifth_round_time = start_timer!(|| "Fifth round");

        Self::absorb_labeled(&fifth_commitments, &mut sponge);
        let verifier_state = AHPForR1CS::<_, SM>::verifier_fifth_round(verifier_state, &mut sponge)?;
        end_timer!(fifth_round_time);
        // --------------------------------------------------------------------

        // Collect degree bounds for commitments. Indexed polynomials have *no*
        // degree bounds because we know the committed index polynomial has the
        // correct degree.

        let commitments: Vec<_> = circuit_commitments
            .into_iter()
            .flatten()
            .zip_eq(AHPForR1CS::<E::Fr, SM>::index_polynomial_info(circuit_ids.iter()).values())
            .map(|(c, info)| LabeledCommitment::new_with_info(info, *c))
            .chain(first_commitments)
            .chain(second_commitments)
            .chain(third_commitments)
            .chain(fourth_commitments)
            .chain(fifth_commitments)
            .collect();

        let query_set_time = start_timer!(|| "Constructing query set");
        let (query_set, verifier_state) = AHPForR1CS::<_, SM>::verifier_query_set(verifier_state);
        end_timer!(query_set_time);

        sponge.absorb_nonnative_field_elements(proof.evaluations.to_field_elements());

        let mut evaluations = Evaluations::new();

        let mut current_circuit_id = "".to_string();
        let mut circuit_index: i64 = -1;

        for (label, (_point_name, q)) in query_set.to_set() {
            if AHPForR1CS::<E::Fr, SM>::LC_WITH_ZERO_EVAL.contains(&label.as_ref()) {
                evaluations.insert((label, q), E::Fr::zero());
            } else {
                if label != "g_1" {
                    let circuit_id = CircuitId::from_witness_label(&label).to_string();
                    if circuit_id != current_circuit_id {
                        circuit_index += 1;
                        current_circuit_id = circuit_id;
                    }
                }
                let eval = proof
                    .evaluations
                    .get(circuit_index as usize, &label)
                    .ok_or_else(|| AHPError::MissingEval(label.clone()))?;
                evaluations.insert((label, q), eval);
            }
        }

        let lc_time = start_timer!(|| "Constructing linear combinations");
        let lc_s = AHPForR1CS::<_, SM>::construct_linear_combinations(
            &public_inputs,
            &evaluations,
            &proof.third_msg,
            &proof.fourth_msg,
            &verifier_state,
        )?;
        end_timer!(lc_time);

        let pc_time = start_timer!(|| "Checking linear combinations with PC");
        let evaluations_are_correct = SonicKZG10::<E, FS>::check_combinations(
            universal_verifier,
            lc_s.values(),
            &commitments,
            &query_set.to_set(),
            &evaluations,
            &proof.pc_proof,
            &mut sponge,
        )?;
        end_timer!(pc_time);

        if !evaluations_are_correct {
            #[cfg(debug_assertions)]
            eprintln!("SonicKZG10::Check failed using final challenge: {:?}", verifier_state.gamma);
        }

        end_timer!(verifier_time, || format!(
            " SonicKZG10::Check for AHP Verifier linear equations: {}",
            evaluations_are_correct & proof_has_correct_zk_mode
        ));
        Ok(evaluations_are_correct & proof_has_correct_zk_mode)
    }
}