1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<E: Environment> Elligator2<E> {
/// Returns the encoded affine group element, given a field element.
/// Note: Unlike the console implementation, this function does not return the sign bit.
pub fn encode(input: &Field<E>) -> Group<E> {
// Ensure D on the twisted Edwards curve is a quadratic nonresidue.
debug_assert!(console::Group::<E::Network>::EDWARDS_D.legendre().is_qnr());
// Ensure the input is nonzero.
E::assert_neq(input, &Field::<E>::zero());
// Define `1` as a constant.
let one = Field::one();
// Define the Montgomery curve coefficients A and B.
let montgomery_a = Field::constant(console::Group::<E::Network>::MONTGOMERY_A);
let montgomery_b = Field::constant(console::Group::<E::Network>::MONTGOMERY_B);
let montgomery_b_inverse = montgomery_b.inverse();
let montgomery_b2 = montgomery_b.square();
let montgomery_b3 = &montgomery_b2 * &montgomery_b;
// Define the twisted Edwards curve coefficient D.
let edwards_d = Field::constant(console::Group::<E::Network>::EDWARDS_D);
// Define the coefficients for the Weierstrass form: y^2 == x^3 + A * x^2 + B * x.
let a = &montgomery_a * &montgomery_b_inverse;
let a_half = &a * Field::constant(console::Field::half());
let b = montgomery_b_inverse.square();
// Define the MODULUS_MINUS_ONE_DIV_TWO as a constant.
let modulus_minus_one_div_two = match E::BaseField::from_bigint(E::BaseField::modulus_minus_one_div_two()) {
Some(modulus_minus_one_div_two) => Field::constant(console::Field::new(modulus_minus_one_div_two)),
None => E::halt("Failed to initialize MODULUS_MINUS_ONE_DIV_TWO as a constant"),
};
// Compute the mapping from Fq to E(Fq) as a Montgomery element (u, v).
let (u, v) = {
// Let ur2 = D * input^2;
let ur2 = edwards_d * input.square();
let one_plus_ur2 = &one + &ur2;
// Verify A^2 * ur^2 != B(1 + ur^2)^2.
E::assert_neq(a.square() * &ur2, &b * one_plus_ur2.square());
// Let v = -A / (1 + ur^2).
let v = -&a / one_plus_ur2;
// Let e = legendre(v^3 + Av^2 + Bv).
let v2 = v.square();
let e = ((&v2 * &v) + (&a * &v2) + (&b * &v)).pow(modulus_minus_one_div_two);
// Let x = ev - ((1 - e) * A/2).
let x = (&e * &v) - ((&one - &e) * a_half);
// Let y = -e * sqrt(x^3 + Ax^2 + Bx).
let x2 = x.square();
let x3 = &x2 * &x;
let rhs = &x3 + (&a * &x2) + (&b * &x);
let y = -&e * rhs.square_root();
// Ensure v * e * x * y != 0.
E::assert_neq(&v * &e * &x * &y, Field::<E>::zero());
// Ensure (x, y) is a valid Weierstrass element on: y^2 == x^3 + A * x^2 + B * x.
let y2 = y.square();
E::assert_eq(&y2, rhs);
// Convert the Weierstrass element (x, y) to Montgomery element (u, v).
let u = x * &montgomery_b;
let v = y * &montgomery_b;
// Ensure (u, v) is a valid Montgomery element on: B * v^2 == u^3 + A * u^2 + u
let u2 = &x2 * &montgomery_b2;
let u3 = &x3 * &montgomery_b3;
let v2 = &y2 * &montgomery_b3;
E::assert_eq(v2, u3 + (montgomery_a * u2) + &u);
(u, v)
};
// Convert the Montgomery element (u, v) to the twisted Edwards element (x, y).
let x = &u / v;
let y = (&u - &one) / (u + &one);
// Recover the point and check that it is 1) on the curve, and 2) in the correct subgroup.
let encoding = Group::from_xy_coordinates_unchecked(x, y);
// Ensure the encoding is on the curve.
encoding.enforce_on_curve();
// Cofactor clear the twisted Edwards element (x, y).
encoding.mul_by_cofactor()
}
}
#[cfg(all(test, console))]
mod tests {
use super::*;
use snarkvm_circuit_types::environment::Circuit;
use snarkvm_utilities::{TestRng, Uniform};
const ITERATIONS: u64 = 1_000;
fn check_encode(mode: Mode, num_constants: u64, num_public: u64, num_private: u64, num_constraints: u64) {
let mut rng = TestRng::default();
for _ in 0..ITERATIONS {
// Sample a random element.
let given = Uniform::rand(&mut rng);
// Compute the expected native result.
let (expected, _sign) = console::Elligator2::<<Circuit as Environment>::Network>::encode(&given).unwrap();
// Initialize the input field element.
let input = Field::<Circuit>::new(mode, given);
// Encode the input.
Circuit::scope("Elligator2::encode", || {
let candidate = Elligator2::encode(&input);
assert_eq!(expected, candidate.eject_value());
assert_scope!(num_constants, num_public, num_private, num_constraints);
});
Circuit::reset();
}
}
#[test]
fn test_encode_constant() {
check_encode(Mode::Constant, 274, 0, 0, 0);
}
#[test]
fn test_encode_public() {
check_encode(Mode::Public, 263, 0, 370, 373);
}
#[test]
fn test_encode_private() {
check_encode(Mode::Private, 263, 0, 370, 373);
}
}