1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, const TYPE: u8, const VARIANT: usize> Hash for Keccak<E, TYPE, VARIANT> {
    type Input = Boolean<E>;
    type Output = Vec<Boolean<E>>;

    /// Returns the Keccak hash of the given input as bits.
    #[inline]
    fn hash(&self, input: &[Self::Input]) -> Self::Output {
        // The bitrate `r`.
        // The capacity is twice the digest length (i.e. twice the variant, where the variant is in {224, 256, 384, 512}),
        // and the bit rate is the width (1600 in our case) minus the capacity.
        let bitrate = PERMUTATION_WIDTH - 2 * VARIANT;
        debug_assert!(bitrate < PERMUTATION_WIDTH, "The bitrate must be less than the permutation width");
        debug_assert!(bitrate % 8 == 0, "The bitrate must be a multiple of 8");

        // Ensure the input is not empty.
        if input.is_empty() {
            E::halt("The input to the hash function must not be empty")
        }

        // The root state `s` is defined as `0^b`.
        let mut s = vec![Boolean::constant(false); PERMUTATION_WIDTH];

        // The padded blocks `P`.
        let padded_blocks = match TYPE {
            0 => Self::pad_keccak(input, bitrate),
            1 => Self::pad_sha3(input, bitrate),
            2.. => unreachable!("Invalid Keccak type"),
        };

        /* The first part of the sponge construction (the absorbing phase):
         *
         * for i = 0 to |P| − 1 do
         *   s = s ⊕ (P_i || 0^c) # Note: |P_i| + c == b, since |P_i| == r
         *   s = f(s)
         * end for
         */
        for block in padded_blocks {
            // s = s ⊕ (P_i || 0^c)
            for (j, bit) in block.into_iter().enumerate() {
                s[j] = &s[j] ^ &bit;
            }
            // s = f(s)
            s = Self::permutation_f::<PERMUTATION_WIDTH, NUM_ROUNDS>(s, &self.round_constants, &self.rotl);
        }

        /* The second part of the sponge construction (the squeezing phase):
         *
         * Z = s[0..r-1]
         * while |Z| < d do // d is the digest length
         *   s = f(s)
         *   Z = Z || s[0..r-1]
         * end while
         * return Z[0..d-1]
         */
        // Z = s[0..r-1]
        let mut z = s[..bitrate].to_vec();
        // while |Z| < l do
        while z.len() < VARIANT {
            // s = f(s)
            s = Self::permutation_f::<PERMUTATION_WIDTH, NUM_ROUNDS>(s, &self.round_constants, &self.rotl);
            // Z = Z || s[0..r-1]
            z.extend(s.iter().take(bitrate).cloned());
        }
        // return Z[0..d-1]
        z.truncate(VARIANT);
        z
    }
}

impl<E: Environment, const TYPE: u8, const VARIANT: usize> Keccak<E, TYPE, VARIANT> {
    /// In Keccak, `pad` is a multi-rate padding, defined as `pad(M) = M || 0x01 || 0x00…0x00 || 0x80`,
    /// where `M` is the input data, and `0x01 || 0x00…0x00 || 0x80` is the padding.
    /// The padding extends the input data to a multiple of the bitrate `r`, defined as `r = b - c`,
    /// where `b` is the width of the permutation, and `c` is the capacity.
    fn pad_keccak(input: &[Boolean<E>], bitrate: usize) -> Vec<Vec<Boolean<E>>> {
        debug_assert!(bitrate > 0, "The bitrate must be positive");

        // Resize the input to a multiple of 8.
        let mut padded_input = input.to_vec();
        padded_input.resize((input.len() + 7) / 8 * 8, Boolean::constant(false));

        // Step 1: Append the bit "1" to the message.
        padded_input.push(Boolean::constant(true));

        // Step 2: Append "0" bits until the length of the message is congruent to r-1 mod r.
        while (padded_input.len() % bitrate) != (bitrate - 1) {
            padded_input.push(Boolean::constant(false));
        }

        // Step 3: Append the bit "1" to the message.
        padded_input.push(Boolean::constant(true));

        // Construct the padded blocks.
        let mut result = Vec::new();
        for block in padded_input.chunks(bitrate) {
            result.push(block.to_vec());
        }
        result
    }

    /// In SHA-3, `pad` is a SHAKE, defined as `pad(M) = M || 0x06 || 0x00…0x00 || 0x80`,
    /// where `M` is the input data, and `0x06 || 0x00…0x00 || 0x80` is the padding.
    /// The padding extends the input data to a multiple of the bitrate `r`, defined as `r = b - c`,
    /// where `b` is the width of the permutation, and `c` is the capacity.
    fn pad_sha3(input: &[Boolean<E>], bitrate: usize) -> Vec<Vec<Boolean<E>>> {
        debug_assert!(bitrate > 1, "The bitrate must be greater than 1");

        // Resize the input to a multiple of 8.
        let mut padded_input = input.to_vec();
        padded_input.resize((input.len() + 7) / 8 * 8, Boolean::constant(false));

        // Step 1: Append the "0x06" byte to the message.
        padded_input.push(Boolean::constant(false));
        padded_input.push(Boolean::constant(true));
        padded_input.push(Boolean::constant(true));
        padded_input.push(Boolean::constant(false));

        // Step 2: Append "0" bits until the length of the message is congruent to r-1 mod r.
        while (padded_input.len() % bitrate) != (bitrate - 1) {
            padded_input.push(Boolean::constant(false));
        }

        // Step 3: Append the bit "1" to the message.
        padded_input.push(Boolean::constant(true));

        // Construct the padded blocks.
        let mut result = Vec::new();
        for block in padded_input.chunks(bitrate) {
            result.push(block.to_vec());
        }
        result
    }

    /// The permutation `f` is a function that takes a fixed-length input and produces a fixed-length output,
    /// defined as `f = Keccak-f[b]`, where `b := 25 * 2^l` is the width of the permutation,
    /// and `l` is the log width of the permutation.
    ///
    /// The round function `Rnd` is applied `12 + 2l` times, where `l` is the log width of the permutation.
    fn permutation_f<const WIDTH: usize, const NUM_ROUNDS: usize>(
        input: Vec<Boolean<E>>,
        round_constants: &[U64<E>],
        rotl: &[usize],
    ) -> Vec<Boolean<E>> {
        debug_assert_eq!(input.len(), WIDTH, "The input vector must have {WIDTH} bits");
        debug_assert_eq!(
            round_constants.len(),
            NUM_ROUNDS,
            "The round constants vector must have {NUM_ROUNDS} elements"
        );

        // Partition the input into 64-bit chunks.
        let mut a = input.chunks(64).map(U64::from_bits_le).collect::<Vec<_>>();
        // Permute the input.
        for round_constant in round_constants.iter().take(NUM_ROUNDS) {
            a = Self::round(a, round_constant, rotl);
        }
        // Return the permuted input.
        let mut bits = Vec::with_capacity(input.len());
        a.iter().for_each(|e| e.write_bits_le(&mut bits));
        bits
    }

    /// The round function `Rnd` is defined as follows:
    /// ```text
    /// Rnd = ι ◦ χ ◦ π ◦ ρ ◦ θ
    /// ```
    /// where `◦` denotes function composition.
    fn round(a: Vec<U64<E>>, round_constant: &U64<E>, rotl: &[usize]) -> Vec<U64<E>> {
        debug_assert_eq!(a.len(), MODULO * MODULO, "The input vector 'a' must have {} elements", MODULO * MODULO);

        /* The first part of Algorithm 1, θ:
         *
         * for x = 0 to 4 do
         *   C[x] = a[x, 0]
         *   for y = 1 to 4 do
         *     C[x] = C[x] ⊕ a[x, y]
         *   end for
         * end for
         */
        let mut c = Vec::with_capacity(MODULO);
        for x in 0..MODULO {
            c.push(&a[x] ^ &a[x + MODULO] ^ &a[x + (2 * MODULO)] ^ &a[x + (3 * MODULO)] ^ &a[x + (4 * MODULO)]);
        }

        /* The second part of Algorithm 1, θ:
         *
         * for x = 0 to 4 do
         *   D[x] = C[x−1] ⊕ ROT(C[x+1],1)
         *   for y = 0 to 4 do
         *     A[x, y] = a[x, y] ⊕ D[x]
         *   end for
         * end for
         */
        let mut d = Vec::with_capacity(MODULO);
        for x in 0..MODULO {
            d.push(&c[(x + 4) % MODULO] ^ Self::rotate_left(&c[(x + 1) % MODULO], 63));
        }
        let mut a_1 = Vec::with_capacity(MODULO * MODULO);
        for y in 0..MODULO {
            for x in 0..MODULO {
                a_1.push(&a[x + (y * MODULO)] ^ &d[x]);
            }
        }

        /* Algorithm 3, π:
         *
         * for x = 0 to 4 do
         *   for y = 0 to 4 do
         *     (X, Y) = (y, (2*x + 3*y) mod 5)
         *     A[X, Y] = a[x, y]
         *   end for
         * end for
         *
         * Algorithm 2, ρ:
         *
         * A[0, 0] = a[0, 0]
         * (x, y) = (1, 0)
         * for t = 0 to 23 do
         *   A[x, y] = ROT(a[x, y], (t + 1)(t + 2)/2)
         *   (x, y) = (y, (2*x + 3*y) mod 5)
         * end for
         */
        let mut a_2 = a_1.clone();
        for y in 0..MODULO {
            for x in 0..MODULO {
                // This step combines the π and ρ steps into one.
                a_2[y + ((((2 * x) + (3 * y)) % MODULO) * MODULO)] =
                    Self::rotate_left(&a_1[x + (y * MODULO)], rotl[x + (y * MODULO)]);
            }
        }

        /* Algorithm 4, χ:
         *
         * for y = 0 to 4 do
         *   for x = 0 to 4 do
         *     A[x, y] = a[x, y] ⊕ ((¬a[x+1, y]) ∧ a[x+2, y])
         *   end for
         * end for
         */
        let mut a_3 = Vec::with_capacity(MODULO * MODULO);
        for y in 0..MODULO {
            for x in 0..MODULO {
                let a = &a_2[x + (y * MODULO)];
                let b = &a_2[((x + 1) % MODULO) + (y * MODULO)];
                let c = &a_2[((x + 2) % MODULO) + (y * MODULO)];
                a_3.push(a ^ ((!b) & c));
            }
        }

        /* ι:
         *
         * A[0, 0] = A[0, 0] ⊕ RC
         */
        a_3[0] = &a_3[0] ^ round_constant;
        a_3
    }

    /// Performs a rotate left operation on the given `u64` value.
    fn rotate_left(value: &U64<E>, n: usize) -> U64<E> {
        // Perform the rotation.
        let mut bits_le = value.to_bits_le();
        bits_le.rotate_left(n);
        // Return the rotated value.
        U64::from_bits_le(&bits_le)
    }
}

#[cfg(all(test, console))]
mod tests {
    use super::*;
    use console::Rng;
    use snarkvm_circuit_types::environment::Circuit;

    const ITERATIONS: usize = 3;

    macro_rules! check_equivalence {
        ($console:expr, $circuit:expr) => {
            use console::Hash as H;

            let rng = &mut TestRng::default();

            let mut input_sizes = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128, 256, 512, 1024];
            input_sizes.extend((0..5).map(|_| rng.gen_range(1..1024)));

            for num_inputs in input_sizes {
                println!("Checking equivalence for {num_inputs} inputs");

                // Prepare the preimage.
                let native_input = (0..num_inputs).map(|_| Uniform::rand(rng)).collect::<Vec<bool>>();
                let input = native_input.iter().map(|v| Boolean::<Circuit>::new(Mode::Private, *v)).collect::<Vec<_>>();

                // Compute the console hash.
                let expected = $console.hash(&native_input).expect("Failed to hash console input");

                // Compute the circuit hash.
                let candidate = $circuit.hash(&input);
                assert_eq!(expected, candidate.eject_value());
                Circuit::reset();
            }
        };
    }

    fn check_hash(
        mode: Mode,
        num_inputs: usize,
        num_constants: u64,
        num_public: u64,
        num_private: u64,
        num_constraints: u64,
        rng: &mut TestRng,
    ) {
        use console::Hash as H;

        let native = console::Keccak256::default();
        let keccak = Keccak256::<Circuit>::new();

        for i in 0..ITERATIONS {
            // Prepare the preimage.
            let native_input = (0..num_inputs).map(|_| Uniform::rand(rng)).collect::<Vec<bool>>();
            let input = native_input.iter().map(|v| Boolean::<Circuit>::new(mode, *v)).collect::<Vec<_>>();

            // Compute the native hash.
            let expected = native.hash(&native_input).expect("Failed to hash native input");

            // Compute the circuit hash.
            Circuit::scope(format!("Keccak {mode} {i}"), || {
                let candidate = keccak.hash(&input);
                assert_eq!(expected, candidate.eject_value());
                let case = format!("(mode = {mode}, num_inputs = {num_inputs})");
                assert_scope!(case, num_constants, num_public, num_private, num_constraints);
            });
            Circuit::reset();
        }
    }

    #[test]
    fn test_keccak_256_hash_constant() {
        let mut rng = TestRng::default();

        check_hash(Mode::Constant, 1, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 2, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 3, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 4, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 5, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 6, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 7, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 8, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 16, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 32, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 64, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 128, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 256, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 511, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 512, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 513, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 1023, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 1024, 0, 0, 0, 0, &mut rng);
        check_hash(Mode::Constant, 1025, 0, 0, 0, 0, &mut rng);
    }

    #[test]
    fn test_keccak_256_hash_public() {
        let mut rng = TestRng::default();

        check_hash(Mode::Public, 1, 0, 0, 138157, 138157, &mut rng);
        check_hash(Mode::Public, 2, 0, 0, 139108, 139108, &mut rng);
        check_hash(Mode::Public, 3, 0, 0, 139741, 139741, &mut rng);
        check_hash(Mode::Public, 4, 0, 0, 140318, 140318, &mut rng);
        check_hash(Mode::Public, 5, 0, 0, 140879, 140879, &mut rng);
        check_hash(Mode::Public, 6, 0, 0, 141350, 141350, &mut rng);
        check_hash(Mode::Public, 7, 0, 0, 141787, 141787, &mut rng);
        check_hash(Mode::Public, 8, 0, 0, 142132, 142132, &mut rng);
        check_hash(Mode::Public, 16, 0, 0, 144173, 144173, &mut rng);
        check_hash(Mode::Public, 32, 0, 0, 145394, 145394, &mut rng);
        check_hash(Mode::Public, 64, 0, 0, 146650, 146650, &mut rng);
        check_hash(Mode::Public, 128, 0, 0, 149248, 149248, &mut rng);
        check_hash(Mode::Public, 256, 0, 0, 150848, 150848, &mut rng);
        check_hash(Mode::Public, 512, 0, 0, 151424, 151424, &mut rng);
        check_hash(Mode::Public, 1024, 0, 0, 152448, 152448, &mut rng);
    }

    #[test]
    fn test_keccak_256_hash_private() {
        let mut rng = TestRng::default();

        check_hash(Mode::Private, 1, 0, 0, 138157, 138157, &mut rng);
        check_hash(Mode::Private, 2, 0, 0, 139108, 139108, &mut rng);
        check_hash(Mode::Private, 3, 0, 0, 139741, 139741, &mut rng);
        check_hash(Mode::Private, 4, 0, 0, 140318, 140318, &mut rng);
        check_hash(Mode::Private, 5, 0, 0, 140879, 140879, &mut rng);
        check_hash(Mode::Private, 6, 0, 0, 141350, 141350, &mut rng);
        check_hash(Mode::Private, 7, 0, 0, 141787, 141787, &mut rng);
        check_hash(Mode::Private, 8, 0, 0, 142132, 142132, &mut rng);
        check_hash(Mode::Private, 16, 0, 0, 144173, 144173, &mut rng);
        check_hash(Mode::Private, 32, 0, 0, 145394, 145394, &mut rng);
        check_hash(Mode::Private, 64, 0, 0, 146650, 146650, &mut rng);
        check_hash(Mode::Private, 128, 0, 0, 149248, 149248, &mut rng);
        check_hash(Mode::Private, 256, 0, 0, 150848, 150848, &mut rng);
        check_hash(Mode::Private, 512, 0, 0, 151424, 151424, &mut rng);
        check_hash(Mode::Private, 1024, 0, 0, 152448, 152448, &mut rng);
    }

    #[test]
    fn test_keccak_224_equivalence() {
        check_equivalence!(console::Keccak224::default(), Keccak224::<Circuit>::new());
    }

    #[test]
    fn test_keccak_256_equivalence() {
        check_equivalence!(console::Keccak256::default(), Keccak256::<Circuit>::new());
    }

    #[test]
    fn test_keccak_384_equivalence() {
        check_equivalence!(console::Keccak384::default(), Keccak384::<Circuit>::new());
    }

    #[test]
    fn test_keccak_512_equivalence() {
        check_equivalence!(console::Keccak512::default(), Keccak512::<Circuit>::new());
    }

    #[test]
    fn test_sha3_224_equivalence() {
        check_equivalence!(console::Sha3_224::default(), Sha3_224::<Circuit>::new());
    }

    #[test]
    fn test_sha3_256_equivalence() {
        check_equivalence!(console::Sha3_256::default(), Sha3_256::<Circuit>::new());
    }

    #[test]
    fn test_sha3_384_equivalence() {
        check_equivalence!(console::Sha3_384::default(), Sha3_384::<Circuit>::new());
    }

    #[test]
    fn test_sha3_512_equivalence() {
        check_equivalence!(console::Sha3_512::default(), Sha3_512::<Circuit>::new());
    }
}