1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, const RATE: usize> HashMany for Poseidon<E, RATE> {
    type Input = Field<E>;
    type Output = Field<E>;

    #[inline]
    fn hash_many(&self, input: &[Self::Input], num_outputs: u16) -> Vec<Self::Output> {
        // Construct the preimage: [ DOMAIN || LENGTH(INPUT) || [0; RATE-2] || INPUT ].
        let mut preimage = Vec::with_capacity(RATE + input.len());
        preimage.push(self.domain.clone());
        preimage.push(Field::constant(console::Field::from_u128(input.len() as u128)));
        preimage.resize(RATE, Field::zero()); // Pad up to RATE.
        preimage.extend_from_slice(input);

        // Initialize a new sponge.
        let mut state = vec![Field::zero(); RATE + CAPACITY];
        let mut mode = DuplexSpongeMode::Absorbing { next_absorb_index: 0 };

        // Absorb the input and squeeze the output.
        self.absorb(&mut state, &mut mode, &preimage);
        self.squeeze(&mut state, &mut mode, num_outputs)
    }
}

#[allow(clippy::needless_borrow)]
impl<E: Environment, const RATE: usize> Poseidon<E, RATE> {
    /// Absorbs the input elements into state.
    #[inline]
    fn absorb(&self, state: &mut [Field<E>], mode: &mut DuplexSpongeMode, input: &[Field<E>]) {
        if !input.is_empty() {
            // Determine the absorb index.
            let (mut absorb_index, should_permute) = match *mode {
                DuplexSpongeMode::Absorbing { next_absorb_index } => match next_absorb_index == RATE {
                    true => (0, true),
                    false => (next_absorb_index, false),
                },
                DuplexSpongeMode::Squeezing { .. } => (0, true),
            };

            // Proceed to permute the state, if necessary.
            if should_permute {
                self.permute(state);
            }

            let mut remaining = input;
            loop {
                // Compute the starting index.
                let start = CAPACITY + absorb_index;

                // Check if we can exit the loop.
                if absorb_index + remaining.len() <= RATE {
                    // Absorb the state elements into the input.
                    remaining.iter().enumerate().for_each(|(i, element)| state[start + i] += element);
                    // Update the sponge mode.
                    *mode = DuplexSpongeMode::Absorbing { next_absorb_index: absorb_index + remaining.len() };
                    return;
                }

                // Otherwise, proceed to absorb `(rate - absorb_index)` elements.
                let num_absorbed = RATE - absorb_index;
                remaining.iter().enumerate().take(num_absorbed).for_each(|(i, element)| state[start + i] += element);

                // Permute the state.
                self.permute(state);

                // Repeat with the updated input slice and absorb index.
                remaining = &remaining[num_absorbed..];
                absorb_index = 0;
            }
        }
    }

    /// Squeeze the specified number of state elements into the output.
    #[inline]
    fn squeeze(&self, state: &mut [Field<E>], mode: &mut DuplexSpongeMode, num_outputs: u16) -> Vec<Field<E>> {
        let mut output = vec![Field::zero(); num_outputs as usize];
        if num_outputs != 0 {
            self.squeeze_internal(state, mode, &mut output);
        }
        output
    }

    /// Squeeze the state elements into the output.
    #[inline]
    fn squeeze_internal(&self, state: &mut [Field<E>], mode: &mut DuplexSpongeMode, output: &mut [Field<E>]) {
        // Determine the squeeze index.
        let (mut squeeze_index, should_permute) = match *mode {
            DuplexSpongeMode::Absorbing { .. } => (0, true),
            DuplexSpongeMode::Squeezing { next_squeeze_index } => match next_squeeze_index == RATE {
                true => (0, true),
                false => (next_squeeze_index, false),
            },
        };

        // Proceed to permute the state, if necessary.
        if should_permute {
            self.permute(state);
        }

        let mut remaining = output;
        loop {
            // Compute the starting index.
            let start = CAPACITY + squeeze_index;

            // Check if we can exit the loop.
            if squeeze_index + remaining.len() <= RATE {
                // Store the state elements into the output.
                remaining.clone_from_slice(&state[start..(start + remaining.len())]);
                // Update the sponge mode.
                *mode = DuplexSpongeMode::Squeezing { next_squeeze_index: squeeze_index + remaining.len() };
                return;
            }

            // Otherwise, proceed to squeeze `(rate - squeeze_index)` elements.
            let num_squeezed = RATE - squeeze_index;
            remaining[..num_squeezed].clone_from_slice(&state[start..(start + num_squeezed)]);

            // Permute.
            self.permute(state);

            // Repeat with the updated output slice and squeeze index.
            remaining = &mut remaining[num_squeezed..];
            squeeze_index = 0;
        }
    }

    /// Apply the additive round keys in-place.
    #[inline]
    fn apply_ark(&self, state: &mut [Field<E>], round: usize) {
        for (i, element) in state.iter_mut().enumerate() {
            *element += &self.ark[round][i];
        }
    }

    /// Apply the S-Box based on whether it is a full round or partial round.
    #[inline]
    fn apply_s_box(&self, state: &mut [Field<E>], is_full_round: bool) {
        if is_full_round {
            // Full rounds apply the S Box (x^alpha) to every element of state
            for element in state.iter_mut() {
                *element = (&*element).pow(&self.alpha);
            }
        } else {
            // Partial rounds apply the S Box (x^alpha) to just the first element of state
            state[0] = (&state[0]).pow(&self.alpha);
        }
    }

    /// Apply the Maximally Distance Separating (MDS) matrix in-place.
    #[inline]
    fn apply_mds(&self, state: &mut [Field<E>]) {
        let mut new_state = Vec::with_capacity(state.len());
        for i in 0..state.len() {
            let mut accumulator = Field::zero();
            for (j, element) in state.iter().enumerate() {
                accumulator += element * &self.mds[i][j];
            }
            new_state.push(accumulator);
        }
        state.clone_from_slice(&new_state);
    }

    /// Apply the permutation for all rounds in-place.
    #[inline]
    fn permute(&self, state: &mut [Field<E>]) {
        // Determine the partial rounds range bound.
        let full_rounds_over_2 = self.full_rounds / 2;
        let partial_round_range = full_rounds_over_2..(full_rounds_over_2 + self.partial_rounds);

        // Iterate through all rounds to permute.
        for i in 0..(self.partial_rounds + self.full_rounds) {
            let is_full_round = !partial_round_range.contains(&i);
            self.apply_ark(state, i);
            self.apply_s_box(state, is_full_round);
            self.apply_mds(state);
        }
    }
}

#[cfg(all(test, console))]
mod tests {
    use super::*;
    use snarkvm_circuit_types::environment::Circuit;

    use anyhow::Result;

    const DOMAIN: &str = "PoseidonCircuit0";
    const ITERATIONS: usize = 10;
    const RATE: u16 = 4;

    fn check_hash_many(
        mode: Mode,
        num_inputs: usize,
        num_outputs: u16,
        num_constants: u64,
        num_public: u64,
        num_private: u64,
        num_constraints: u64,
        rng: &mut TestRng,
    ) -> Result<()> {
        use console::HashMany as H;

        let native = console::Poseidon::<<Circuit as Environment>::Network, { RATE as usize }>::setup(DOMAIN)?;
        let poseidon = Poseidon::<Circuit, { RATE as usize }>::constant(native.clone());

        for i in 0..ITERATIONS {
            // Prepare the preimage.
            let native_input = (0..num_inputs)
                .map(|_| console::Field::<<Circuit as Environment>::Network>::rand(rng))
                .collect::<Vec<_>>();
            let input = native_input.iter().map(|v| Field::<Circuit>::new(mode, *v)).collect::<Vec<_>>();

            // Compute the native hash.
            let expected = native.hash_many(&native_input, num_outputs);

            // Compute the circuit hash.
            Circuit::scope(format!("Poseidon {mode} {i} {num_outputs}"), || {
                let candidate = poseidon.hash_many(&input, num_outputs);
                for (expected_element, candidate_element) in expected.iter().zip_eq(&candidate) {
                    assert_eq!(*expected_element, candidate_element.eject_value());
                }
                let case = format!("(mode = {mode}, num_inputs = {num_inputs}, num_outputs = {num_outputs})");
                assert_scope!(case, num_constants, num_public, num_private, num_constraints);
            });
            Circuit::reset();
        }
        Ok(())
    }

    #[test]
    fn test_hash_many_constant() -> Result<()> {
        let mut rng = TestRng::default();

        for num_inputs in 0..=RATE {
            for num_outputs in 0..=RATE {
                check_hash_many(Mode::Constant, num_inputs as usize, num_outputs, 1, 0, 0, 0, &mut rng)?;
            }
        }
        Ok(())
    }

    #[test]
    fn test_hash_many_public() -> Result<()> {
        let mut rng = TestRng::default();

        for num_outputs in 0..=RATE {
            check_hash_many(Mode::Public, 0, num_outputs, 1, 0, 0, 0, &mut rng)?;
        }
        for num_outputs in 1..=RATE {
            check_hash_many(Mode::Public, 1, num_outputs, 1, 0, 335, 335, &mut rng)?;
            check_hash_many(Mode::Public, 2, num_outputs, 1, 0, 340, 340, &mut rng)?;
            check_hash_many(Mode::Public, 3, num_outputs, 1, 0, 345, 345, &mut rng)?;
            check_hash_many(Mode::Public, 4, num_outputs, 1, 0, 350, 350, &mut rng)?;
            check_hash_many(Mode::Public, 5, num_outputs, 1, 0, 705, 705, &mut rng)?;
            check_hash_many(Mode::Public, 6, num_outputs, 1, 0, 705, 705, &mut rng)?;
        }
        for num_outputs in (RATE + 1)..=(RATE * 2) {
            check_hash_many(Mode::Public, 1, num_outputs, 1, 0, 690, 690, &mut rng)?;
            check_hash_many(Mode::Public, 2, num_outputs, 1, 0, 695, 695, &mut rng)?;
            check_hash_many(Mode::Public, 3, num_outputs, 1, 0, 700, 700, &mut rng)?;
            check_hash_many(Mode::Public, 4, num_outputs, 1, 0, 705, 705, &mut rng)?;
            check_hash_many(Mode::Public, 5, num_outputs, 1, 0, 1060, 1060, &mut rng)?;
            check_hash_many(Mode::Public, 6, num_outputs, 1, 0, 1060, 1060, &mut rng)?;
        }
        Ok(())
    }

    #[test]
    fn test_hash_many_private() -> Result<()> {
        let mut rng = TestRng::default();

        for num_outputs in 0..=RATE {
            check_hash_many(Mode::Private, 0, num_outputs, 1, 0, 0, 0, &mut rng)?;
        }
        for num_outputs in 1..=RATE {
            check_hash_many(Mode::Private, 1, num_outputs, 1, 0, 335, 335, &mut rng)?;
            check_hash_many(Mode::Private, 2, num_outputs, 1, 0, 340, 340, &mut rng)?;
            check_hash_many(Mode::Private, 3, num_outputs, 1, 0, 345, 345, &mut rng)?;
            check_hash_many(Mode::Private, 4, num_outputs, 1, 0, 350, 350, &mut rng)?;
            check_hash_many(Mode::Private, 5, num_outputs, 1, 0, 705, 705, &mut rng)?;
            check_hash_many(Mode::Private, 6, num_outputs, 1, 0, 705, 705, &mut rng)?;
        }
        for num_outputs in (RATE + 1)..=(RATE * 2) {
            check_hash_many(Mode::Private, 1, num_outputs, 1, 0, 690, 690, &mut rng)?;
            check_hash_many(Mode::Private, 2, num_outputs, 1, 0, 695, 695, &mut rng)?;
            check_hash_many(Mode::Private, 3, num_outputs, 1, 0, 700, 700, &mut rng)?;
            check_hash_many(Mode::Private, 4, num_outputs, 1, 0, 705, 705, &mut rng)?;
            check_hash_many(Mode::Private, 5, num_outputs, 1, 0, 1060, 1060, &mut rng)?;
            check_hash_many(Mode::Private, 6, num_outputs, 1, 0, 1060, 1060, &mut rng)?;
        }
        Ok(())
    }
}