snarkvm_circuit_algorithms/pedersen/
hash_uncompressed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

use std::borrow::Cow;

impl<E: Environment, const NUM_BITS: u8> HashUncompressed for Pedersen<E, NUM_BITS> {
    type Input = Boolean<E>;
    type Output = Group<E>;

    /// Returns the Pedersen hash of the given input as an affine group element.
    fn hash_uncompressed(&self, input: &[Self::Input]) -> Self::Output {
        // Ensure the input is within the size bounds.
        let mut input = Cow::Borrowed(input);
        match input.len() <= NUM_BITS as usize {
            // Pad the input if it is under the required parameter size.
            true => input.to_mut().resize(NUM_BITS as usize, Boolean::constant(false)),
            // Ensure the input size is within the parameter size.
            false => E::halt(format!("The Pedersen hash input cannot exceed {NUM_BITS} bits.")),
        }

        // Compute the sum of base_i^{input_i} for all i.
        input
            .iter()
            .zip_eq(&self.base_window)
            .map(|(bit, base)| Group::ternary(bit, base, &Group::zero()))
            .fold(Group::<E>::zero(), |acc, x| acc + x)
    }
}

impl<E: Environment, const NUM_BITS: u8> Metrics<dyn HashUncompressed<Input = Boolean<E>, Output = Group<E>>>
    for Pedersen<E, NUM_BITS>
{
    type Case = Vec<Mode>;

    #[inline]
    fn count(case: &Self::Case) -> Count {
        // Calculate the counts for constructing each of the individual group elements from the bits of the input.
        let group_initialization_counts = case
            .iter()
            .map(|mode| {
                count!(
                    Group<E>,
                    Ternary<Boolean = Boolean<E>, Output = Group<E>>,
                    &(*mode, Mode::Constant, Mode::Constant)
                )
            })
            .fold(Count::zero(), |cumulative, count| cumulative + count);

        // Determine the modes of each of the group elements.
        let mut modes = case.iter().map(|mode| {
            // The `first` and `second` inputs to `Group::ternary` are always constant so we can directly determine the mode instead of
            // using the `output_mode` macro. This avoids the need to use `CircuitType` as a parameter, simplifying the logic of this function.
            match mode.is_constant() {
                true => Mode::Constant,
                false => Mode::Private,
            }
        });

        // Calculate the cost of summing the group elements.
        let sum_counts = match modes.next() {
            Some(start_mode) => {
                modes
                    .fold((start_mode, Count::zero()), |(prev_mode, cumulative), curr_mode| {
                        let mode = output_mode!(Group<E>, Add<Group<E>, Output = Group<E>>, &(prev_mode, curr_mode));
                        let sum_count = count!(Group<E>, Add<Group<E>, Output = Group<E>>, &(prev_mode, curr_mode));
                        (mode, cumulative + sum_count)
                    })
                    .1
            }
            None => Count::zero(),
        };

        group_initialization_counts + sum_counts
    }
}

impl<E: Environment, const NUM_BITS: u8> OutputMode<dyn HashUncompressed<Input = Boolean<E>, Output = Group<E>>>
    for Pedersen<E, NUM_BITS>
{
    type Case = Vec<Mode>;

    #[inline]
    fn output_mode(parameter: &Self::Case) -> Mode {
        match parameter.iter().all(|mode| mode.is_constant()) {
            true => Mode::Constant,
            false => Mode::Private,
        }
    }
}

#[cfg(all(test, feature = "console"))]
mod tests {
    use super::*;
    use snarkvm_circuit_types::environment::Circuit;
    use snarkvm_utilities::{TestRng, Uniform};

    const ITERATIONS: u64 = 10;
    const MESSAGE: &str = "PedersenCircuit0";
    const NUM_BITS_MULTIPLIER: u8 = 8;

    fn check_hash_uncompressed<const NUM_BITS: u8>(mode: Mode, rng: &mut TestRng) {
        use console::HashUncompressed as H;

        // Initialize the Pedersen hash.
        let native = console::Pedersen::<<Circuit as Environment>::Network, NUM_BITS>::setup(MESSAGE);
        let circuit = Pedersen::<Circuit, NUM_BITS>::constant(native.clone());

        for i in 0..ITERATIONS {
            // Sample a random input.
            let input = (0..NUM_BITS).map(|_| bool::rand(rng)).collect::<Vec<bool>>();
            // Compute the expected hash.
            let expected = native.hash_uncompressed(&input).expect("Failed to hash native input");
            // Prepare the circuit input.
            let circuit_input: Vec<Boolean<_>> = Inject::new(mode, input);

            Circuit::scope(format!("Pedersen {mode} {i}"), || {
                // Perform the hash operation.
                let candidate = circuit.hash_uncompressed(&circuit_input);
                assert_eq!(expected, candidate.eject_value());

                // Check constraint counts and output mode.
                let modes = circuit_input.iter().map(|b| b.eject_mode()).collect::<Vec<_>>();
                assert_count!(
                    Pedersen<Circuit, NUM_BITS>,
                    HashUncompressed<Input = Boolean<Circuit>, Output = Group<Circuit>>,
                    &modes
                );
                assert_output_mode!(
                    Pedersen<Circuit, NUM_BITS>,
                    HashUncompressed<Input = Boolean<Circuit>, Output = Group<Circuit>>,
                    &modes,
                    candidate
                );
            });
        }
    }

    fn check_homomorphic_addition<C: Display + Eject + Add<Output = C> + ToBits<Boolean = Boolean<Circuit>>>(
        pedersen: &impl HashUncompressed<Input = Boolean<Circuit>, Output = Group<Circuit>>,
        first: C,
        second: C,
    ) {
        println!("Checking homomorphic addition on {first} + {second}");

        // Compute the expected hash, by hashing them individually and summing their results.
        let a = pedersen.hash_uncompressed(&first.to_bits_le());
        let b = pedersen.hash_uncompressed(&second.to_bits_le());
        let expected = a + b;

        // Sum the two integers, and then hash the sum.
        let candidate = pedersen.hash_uncompressed(&(first + second).to_bits_le());
        assert_eq!(expected.eject(), candidate.eject());
        assert!(Circuit::is_satisfied());
    }

    #[test]
    fn test_hash_uncompressed_constant() {
        // Set the number of windows, and modulate the window size.
        let mut rng = TestRng::default();
        check_hash_uncompressed::<NUM_BITS_MULTIPLIER>(Mode::Constant, &mut rng);
        check_hash_uncompressed::<{ 2 * NUM_BITS_MULTIPLIER }>(Mode::Constant, &mut rng);
        check_hash_uncompressed::<{ 3 * NUM_BITS_MULTIPLIER }>(Mode::Constant, &mut rng);
        check_hash_uncompressed::<{ 4 * NUM_BITS_MULTIPLIER }>(Mode::Constant, &mut rng);
        check_hash_uncompressed::<{ 5 * NUM_BITS_MULTIPLIER }>(Mode::Constant, &mut rng);
    }

    #[test]
    fn test_hash_uncompressed_public() {
        // Set the number of windows, and modulate the window size.
        let mut rng = TestRng::default();
        check_hash_uncompressed::<NUM_BITS_MULTIPLIER>(Mode::Public, &mut rng);
        check_hash_uncompressed::<{ 2 * NUM_BITS_MULTIPLIER }>(Mode::Public, &mut rng);
        check_hash_uncompressed::<{ 3 * NUM_BITS_MULTIPLIER }>(Mode::Public, &mut rng);
        check_hash_uncompressed::<{ 4 * NUM_BITS_MULTIPLIER }>(Mode::Public, &mut rng);
        check_hash_uncompressed::<{ 5 * NUM_BITS_MULTIPLIER }>(Mode::Public, &mut rng);
    }

    #[test]
    fn test_hash_uncompressed_private() {
        // Set the number of windows, and modulate the window size.
        let mut rng = TestRng::default();
        check_hash_uncompressed::<NUM_BITS_MULTIPLIER>(Mode::Private, &mut rng);
        check_hash_uncompressed::<{ 2 * NUM_BITS_MULTIPLIER }>(Mode::Private, &mut rng);
        check_hash_uncompressed::<{ 3 * NUM_BITS_MULTIPLIER }>(Mode::Private, &mut rng);
        check_hash_uncompressed::<{ 4 * NUM_BITS_MULTIPLIER }>(Mode::Private, &mut rng);
        check_hash_uncompressed::<{ 5 * NUM_BITS_MULTIPLIER }>(Mode::Private, &mut rng);
    }

    #[test]
    fn test_pedersen64_homomorphism_private() {
        // Initialize Pedersen64.
        let pedersen = Pedersen64::constant(console::Pedersen64::setup("Pedersen64HomomorphismTest"));

        let mut rng = TestRng::default();

        for _ in 0..ITERATIONS {
            // Sample two random unsigned integers, with the MSB set to 0.
            let first = U8::<Circuit>::new(Mode::Private, console::U8::new(u8::rand(&mut rng) >> 1));
            let second = U8::new(Mode::Private, console::U8::new(u8::rand(&mut rng) >> 1));
            check_homomorphic_addition(&pedersen, first, second);

            // Sample two random unsigned integers, with the MSB set to 0.
            let first = U16::<Circuit>::new(Mode::Private, console::U16::new(u16::rand(&mut rng) >> 1));
            let second = U16::new(Mode::Private, console::U16::new(u16::rand(&mut rng) >> 1));
            check_homomorphic_addition(&pedersen, first, second);

            // Sample two random unsigned integers, with the MSB set to 0.
            let first = U32::<Circuit>::new(Mode::Private, console::U32::new(u32::rand(&mut rng) >> 1));
            let second = U32::new(Mode::Private, console::U32::new(u32::rand(&mut rng) >> 1));
            check_homomorphic_addition(&pedersen, first, second);

            // Sample two random unsigned integers, with the MSB set to 0.
            let first = U64::<Circuit>::new(Mode::Private, console::U64::new(u64::rand(&mut rng) >> 1));
            let second = U64::new(Mode::Private, console::U64::new(u64::rand(&mut rng) >> 1));
            check_homomorphic_addition(&pedersen, first, second);
        }
    }

    #[test]
    fn test_pedersen_homomorphism_private() {
        fn check_pedersen_homomorphism(
            pedersen: &impl HashUncompressed<Input = Boolean<Circuit>, Output = Group<Circuit>>,
        ) {
            let mut rng = TestRng::default();

            for _ in 0..ITERATIONS {
                // Sample two random unsigned integers, with the MSB set to 0.
                let first = U8::<Circuit>::new(Mode::Private, console::U8::new(u8::rand(&mut rng) >> 1));
                let second = U8::new(Mode::Private, console::U8::new(u8::rand(&mut rng) >> 1));
                check_homomorphic_addition(pedersen, first, second);

                // Sample two random unsigned integers, with the MSB set to 0.
                let first = U16::<Circuit>::new(Mode::Private, console::U16::new(u16::rand(&mut rng) >> 1));
                let second = U16::new(Mode::Private, console::U16::new(u16::rand(&mut rng) >> 1));
                check_homomorphic_addition(pedersen, first, second);

                // Sample two random unsigned integers, with the MSB set to 0.
                let first = U32::<Circuit>::new(Mode::Private, console::U32::new(u32::rand(&mut rng) >> 1));
                let second = U32::new(Mode::Private, console::U32::new(u32::rand(&mut rng) >> 1));
                check_homomorphic_addition(pedersen, first, second);

                // Sample two random unsigned integers, with the MSB set to 0.
                let first = U64::<Circuit>::new(Mode::Private, console::U64::new(u64::rand(&mut rng) >> 1));
                let second = U64::new(Mode::Private, console::U64::new(u64::rand(&mut rng) >> 1));
                check_homomorphic_addition(pedersen, first, second);

                // Sample two random unsigned integers, with the MSB set to 0.
                let first = U128::<Circuit>::new(Mode::Private, console::U128::new(u128::rand(&mut rng) >> 1));
                let second = U128::new(Mode::Private, console::U128::new(u128::rand(&mut rng) >> 1));
                check_homomorphic_addition(pedersen, first, second);
            }
        }

        // Check Pedersen128.
        let pedersen128 = Pedersen128::constant(console::Pedersen128::setup("Pedersen128HomomorphismTest"));
        check_pedersen_homomorphism(&pedersen128);
    }
}