1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, PH: PathHash<E>, const DEPTH: u8, const ARITY: u8> KaryMerklePath<E, PH, DEPTH, ARITY> {
    /// Returns `true` if the Merkle path is valid for the given root and leaf.
    pub fn verify<LH: LeafHash<Hash = PH::Hash>>(
        &self,
        leaf_hasher: &LH,
        path_hasher: &PH,
        root: &PH::Hash,
        leaf: &LH::Leaf,
    ) -> Boolean<E> {
        // Ensure the leaf index is within the tree depth.
        if (*self.leaf_index.eject_value() as u128) >= (ARITY as u128).pow(DEPTH as u32) {
            E::halt("Found an out of bounds Merkle leaf index")
        }
        // Ensure the path length matches the expected depth.
        else if self.siblings.len() != DEPTH as usize {
            E::halt("Found an incorrect Merkle path length")
        }

        // Ensure the Merkle path has the correct arity.
        for sibling in &self.siblings {
            if sibling.len() != ARITY.saturating_sub(1) as usize {
                return E::halt("Merkle path is not the correct depth");
            }
        }

        // Initialize a tracker for the current hash, by computing the leaf hash to start.
        let mut current_hash = leaf_hasher.hash_leaf(leaf);

        let arity = U64::<E>::new(Mode::Constant, console::U64::new(ARITY as u64));

        let indicator_indexes = (0..DEPTH).map(|i| {
            let index = U16::<E>::new(Mode::Constant, console::U16::new(i as u16));
            &self.leaf_index / (arity.clone().pow(index)) % arity.clone()
        });

        // Initialize the zero index.
        let zero_index = U64::<E>::zero();
        // Initialize the last index.
        let last_index = U64::<E>::new(Mode::Constant, console::U64::new(ARITY.saturating_sub(1) as u64));

        // Check levels between leaf level and root.
        for (indicator_index, sibling_hashes) in indicator_indexes.zip_eq(&self.siblings) {
            // Assemble the children based on the ternary results.
            let mut children = Vec::with_capacity(sibling_hashes.len() + 1);

            // Add the first child.
            let first_child =
                PH::Hash::ternary(&indicator_index.is_equal(&zero_index), &current_hash, &sibling_hashes[0]);

            children.push(first_child);

            // Calculate the middle children.
            for i in 1..sibling_hashes.len() {
                // Index of the current sibling
                let index = U64::<E>::new(Mode::Constant, console::U64::new(i as u64));

                // When the index is less than the indicator index, use the current index. Otherwise, use the previous index.
                let option_a = PH::Hash::ternary(
                    &index.is_less_than(&indicator_index),
                    &sibling_hashes[i],
                    &sibling_hashes[i - 1],
                );

                // When the index is equal to the indicator index, use the current hash.
                let option_b = PH::Hash::ternary(&index.is_equal(&indicator_index), &current_hash, &option_a);

                // Push the final option to the children
                children.push(option_b);
            }

            // Add the last child.
            let last_child = PH::Hash::ternary(
                &indicator_index.is_equal(&last_index),
                &current_hash,
                sibling_hashes.last().unwrap(),
            );

            children.push(last_child);

            // Update the current hash for the next level.
            current_hash = path_hasher.hash_children(&children);
        }

        // Ensure the final hash matches the given root.
        root.is_equal(&current_hash)
    }
}

#[cfg(all(test, console))]
mod tests {
    use super::*;
    use snarkvm_circuit_algorithms::{Keccak256, Poseidon2, Poseidon4, Sha3_256, BHP1024, BHP512};
    use snarkvm_circuit_types::environment::Circuit;
    use snarkvm_utilities::{TestRng, Uniform};

    use anyhow::Result;

    const ITERATIONS: u128 = 10;
    const DOMAIN: &str = "MerkleTreeCircuit0";

    macro_rules! check_verify {
        ($lh:ident, $ph:ident, $mode:ident, $depth:expr, $arity:expr, $num_inputs:expr, ($num_constants:expr, $num_public:expr, $num_private:expr, $num_constraints:expr)) => {{
            // Initialize the leaf hasher.
            let native_leaf_hasher =
                snarkvm_console_algorithms::$lh::<<Circuit as Environment>::Network>::setup(DOMAIN)?;
            let circuit_leaf_hasher = $lh::<Circuit>::constant(native_leaf_hasher.clone());

            let mut rng = TestRng::default();

            // Initialize the path hasher.
            let native_path_hasher =
                snarkvm_console_algorithms::$ph::<<Circuit as Environment>::Network>::setup(DOMAIN)?;
            let circuit_path_hasher = $ph::<Circuit>::constant(native_path_hasher.clone());

            for i in 0..ITERATIONS {
                // Determine the number of leaves.
                let num_leaves = core::cmp::min(($arity as u128).pow($depth as u32), i);
                // Compute the leaves.
                let leaves = (0..num_leaves)
                    .map(|_| (0..$num_inputs).map(|_| Uniform::rand(&mut rng)).collect::<Vec<_>>())
                    .collect::<Vec<_>>();
                // Compute the Merkle tree.
                let merkle_tree = console::kary_merkle_tree::KaryMerkleTree::<_, _, $depth, $arity>::new(
                    &native_leaf_hasher,
                    &native_path_hasher,
                    &leaves,
                )?;

                for (index, merkle_leaf) in leaves.iter().enumerate() {
                    // Compute the Merkle path.
                    let merkle_path = merkle_tree.prove(index, merkle_leaf)?;

                    // Initialize the Merkle path.
                    let path =
                        KaryMerklePath::<Circuit, $ph<Circuit>, $depth, $arity>::new(Mode::$mode, merkle_path.clone());

                    assert_eq!(merkle_path, path.eject_value());
                    // Initialize the Merkle root.
                    let root = Field::new(Mode::$mode, *merkle_tree.root());
                    // Initialize the Merkle leaf.
                    let leaf: Vec<_> = Inject::new(Mode::$mode, merkle_leaf.clone());

                    Circuit::scope(format!("Verify {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &root, &leaf);
                        assert!(candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();

                    // Initialize an incorrect Merkle root.
                    let incorrect_root = root.clone() + Field::one();

                    Circuit::scope(format!("Verify (Incorrect Root) {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &incorrect_root, &leaf);
                        assert!(!candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();

                    // Initialize an incorrect Merkle leaf.
                    let mut incorrect_leaf = leaf.clone();
                    let mut incorrect_value = Uniform::rand(&mut rng);
                    while incorrect_value == incorrect_leaf[0].eject_value() {
                        incorrect_value = Uniform::rand(&mut rng);
                    }
                    incorrect_leaf[0] = Inject::new(Mode::$mode, incorrect_value);

                    Circuit::scope(format!("Verify (Incorrect Leaf) {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &root, &incorrect_leaf);
                        assert!(!candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();
                }
            }
            Ok(())
        }};
    }

    macro_rules! check_verify_keccak {
        ($lh:ident, $ph:ident, $mode:ident, $depth:expr, $arity:expr, $num_inputs:expr, ($num_constants:expr, $num_public:expr, $num_private:expr, $num_constraints:expr)) => {{
            // Initialize the leaf hasher.
            let native_leaf_hasher = snarkvm_console_algorithms::$lh::default();
            let circuit_leaf_hasher = $lh::<Circuit>::new();

            let mut rng = TestRng::default();

            // Initialize the path hasher.
            let native_path_hasher = snarkvm_console_algorithms::$ph::default();
            let circuit_path_hasher = $ph::<Circuit>::new();

            for i in 0..ITERATIONS {
                // Determine the number of leaves.
                let num_leaves = core::cmp::min(($arity as u128).pow($depth as u32), i);
                // Compute the leaves.
                let leaves = (0..num_leaves)
                    .map(|_| (0..$num_inputs).map(|_| Uniform::rand(&mut rng)).collect::<Vec<_>>())
                    .collect::<Vec<_>>();
                // Compute the Merkle tree.
                let merkle_tree = console::kary_merkle_tree::KaryMerkleTree::<_, _, $depth, $arity>::new(
                    &native_leaf_hasher,
                    &native_path_hasher,
                    &leaves,
                )?;

                for (index, merkle_leaf) in leaves.iter().enumerate() {
                    // Compute the Merkle path.
                    let merkle_path = merkle_tree.prove(index, merkle_leaf)?;

                    // Initialize the Merkle path.
                    let path =
                        KaryMerklePath::<Circuit, $ph<Circuit>, $depth, $arity>::new(Mode::$mode, merkle_path.clone());

                    assert_eq!(merkle_path, path.eject_value());
                    // Initialize the Merkle root.
                    let root = <$ph<Circuit> as PathHash<Circuit>>::Hash::new(Mode::$mode, *merkle_tree.root());
                    // Initialize the Merkle leaf.
                    let leaf: Vec<_> = Inject::new(Mode::$mode, merkle_leaf.clone());

                    Circuit::scope(format!("Verify {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &root, &leaf);
                        assert!(candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();

                    // Initialize an incorrect Merkle root.
                    let incorrect_root =
                        <$ph<Circuit> as PathHash<Circuit>>::Hash::new(Mode::$mode, Default::default());

                    Circuit::scope(format!("Verify (Incorrect Root) {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &incorrect_root, &leaf);
                        assert!(!candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();

                    // Initialize an incorrect Merkle leaf.
                    let mut incorrect_leaf = leaf.clone();
                    let mut incorrect_value = Uniform::rand(&mut rng);
                    while incorrect_value == incorrect_leaf[0].eject_value() {
                        incorrect_value = Uniform::rand(&mut rng);
                    }
                    incorrect_leaf[0] = Inject::new(Mode::$mode, incorrect_value);

                    Circuit::scope(format!("Verify (Incorrect Leaf) {}", Mode::$mode), || {
                        let candidate = path.verify(&circuit_leaf_hasher, &circuit_path_hasher, &root, &incorrect_leaf);
                        assert!(!candidate.eject_value());
                        assert_scope!($num_constants, $num_public, $num_private, $num_constraints);
                    });
                    Circuit::reset();
                }
            }
            Ok(())
        }};
    }

    #[test]
    fn test_verify_bhp512_constant() -> Result<()> {
        check_verify!(BHP1024, BHP512, Constant, 10, 4, 1024, (39234, 0, 0, 0))
    }

    #[test]
    fn test_verify_bhp512_public() -> Result<()> {
        check_verify!(BHP1024, BHP512, Public, 10, 4, 1024, (9465, 0, 53876, 54056))
    }

    #[test]
    fn test_verify_bhp512_private() -> Result<()> {
        check_verify!(BHP1024, BHP512, Private, 10, 4, 1024, (9465, 0, 53876, 54056))
    }

    #[test]
    fn test_verify_poseidon2_constant() -> Result<()> {
        check_verify!(Poseidon4, Poseidon2, Constant, 10, 4, 4, (3584, 0, 0, 0))
    }

    #[test]
    fn test_verify_poseidon2_public() -> Result<()> {
        check_verify!(Poseidon4, Poseidon2, Public, 10, 4, 4, (4843, 0, 14152, 14232))
    }

    #[test]
    fn test_verify_poseidon2_private() -> Result<()> {
        check_verify!(Poseidon4, Poseidon2, Private, 10, 4, 4, (4843, 0, 14152, 14232))
    }

    #[test]
    fn test_verify_keccak256_constant() -> Result<()> {
        check_verify_keccak!(Keccak256, Keccak256, Constant, 10, 4, 256, (6388, 0, 0, 0))
    }

    #[test]
    fn test_verify_keccak256_public() -> Result<()> {
        check_verify_keccak!(Keccak256, Keccak256, Public, 10, 4, 256, (7648, 0, 1696439, 1696519))
    }

    #[test]
    fn test_verify_keccak256_private() -> Result<()> {
        check_verify_keccak!(Keccak256, Keccak256, Private, 10, 4, 256, (7648, 0, 1696439, 1696519))
    }

    #[test]
    fn test_verify_sha3_256_constant() -> Result<()> {
        check_verify_keccak!(Sha3_256, Sha3_256, Constant, 10, 4, 256, (6388, 0, 0, 0))
    }

    #[test]
    fn test_verify_sha3_256_public() -> Result<()> {
        check_verify_keccak!(Sha3_256, Sha3_256, Public, 10, 4, 256, (7648, 0, 1696439, 1696519))
    }

    #[test]
    fn test_verify_sha3_256_private() -> Result<()> {
        check_verify_keccak!(Sha3_256, Sha3_256, Private, 10, 4, 256, (7648, 0, 1696439, 1696519))
    }
}