use crate::{Circuit, LinearCombination, Variable, R1CS};
use snarkvm_curves::edwards_bls12::Fq;
use snarkvm_fields::PrimeField;
use indexmap::IndexMap;
struct Converter {
public: IndexMap<u64, snarkvm_algorithms::r1cs::Variable>,
private: IndexMap<u64, snarkvm_algorithms::r1cs::Variable>,
}
impl snarkvm_algorithms::r1cs::ConstraintSynthesizer<Fq> for Circuit {
fn generate_constraints<CS: snarkvm_algorithms::r1cs::ConstraintSystem<Fq>>(
&self,
cs: &mut CS,
) -> Result<(), snarkvm_algorithms::r1cs::SynthesisError> {
crate::circuit::CIRCUIT.with(|circuit| (*(**circuit).borrow()).generate_constraints(cs))
}
}
impl<F: PrimeField> R1CS<F> {
fn generate_constraints<CS: snarkvm_algorithms::r1cs::ConstraintSystem<F>>(
&self,
cs: &mut CS,
) -> Result<(), snarkvm_algorithms::r1cs::SynthesisError> {
let mut converter = Converter { public: Default::default(), private: Default::default() };
assert_eq!(1, cs.num_public_variables());
assert_eq!(0, cs.num_private_variables());
assert_eq!(0, cs.num_constraints());
for (i, public) in self.to_public_variables().iter().enumerate() {
match public {
Variable::Public(index, value) => {
assert_eq!(
i as u64, *index,
"Public variables in first system must be processed in lexicographic order"
);
let gadget = cs.alloc_input(|| format!("Public {i}"), || Ok(**value))?;
assert_eq!(
snarkvm_algorithms::r1cs::Index::Public((index + 1) as usize),
gadget.get_unchecked(),
"Public variables in the second system must match the first system (with an off-by-1 for the public case)"
);
let result = converter.public.insert(*index, gadget);
assert!(result.is_none(), "Overwrote an existing public variable in the converter");
}
_ => unreachable!("Public variables in the first system are not well-formed"),
}
}
for (i, private) in self.to_private_variables().iter().enumerate() {
match private {
Variable::Private(index, value) => {
assert_eq!(
i as u64, *index,
"Private variables in first system must be processed in lexicographic order"
);
let gadget = cs.alloc(|| format!("Private {i}"), || Ok(**value))?;
assert_eq!(
snarkvm_algorithms::r1cs::Index::Private(i),
gadget.get_unchecked(),
"Private variables in the second system must match the first system"
);
let result = converter.private.insert(*index, gadget);
assert!(result.is_none(), "Overwrote an existing private variable in the converter");
}
_ => unreachable!("Private variables in the first system are not well-formed"),
}
}
for (i, constraint) in self.to_constraints().iter().enumerate() {
let convert_linear_combination =
|lc: &LinearCombination<F>| -> snarkvm_algorithms::r1cs::LinearCombination<F> {
let mut linear_combination = snarkvm_algorithms::r1cs::LinearCombination::<F>::zero();
for (variable, coefficient) in lc.to_terms() {
match variable {
Variable::Constant(_) => {
unreachable!(
"Failed during constraint translation. The first system by definition cannot have constant variables in the terms"
)
}
Variable::Public(index, _) => {
let gadget = converter.public.get(index).unwrap();
assert_eq!(
snarkvm_algorithms::r1cs::Index::Public((index + 1) as usize),
gadget.get_unchecked(),
"Failed during constraint translation. The public variable in the second system must match the first system (with an off-by-1 for the public case)"
);
linear_combination += (*coefficient, *gadget);
}
Variable::Private(index, _) => {
let gadget = converter.private.get(index).unwrap();
assert_eq!(
snarkvm_algorithms::r1cs::Index::Private(*index as usize),
gadget.get_unchecked(),
"Failed during constraint translation. The private variable in the second system must match the first system"
);
linear_combination += (*coefficient, *gadget);
}
}
}
if !lc.to_constant().is_zero() {
linear_combination += (
lc.to_constant(),
snarkvm_algorithms::r1cs::Variable::new_unchecked(snarkvm_algorithms::r1cs::Index::Public(
0,
)),
);
}
linear_combination
};
let (a, b, c) = constraint.to_terms();
cs.enforce(
|| format!("Constraint {i}"),
|lc| lc + convert_linear_combination(a),
|lc| lc + convert_linear_combination(b),
|lc| lc + convert_linear_combination(c),
);
}
assert_eq!(self.num_public() + 1, cs.num_public_variables() as u64);
assert_eq!(self.num_private(), cs.num_private_variables() as u64);
assert_eq!(self.num_constraints(), cs.num_constraints() as u64);
Ok(())
}
}
#[cfg(test)]
mod tests {
use snarkvm_algorithms::{r1cs::ConstraintSynthesizer, AlgebraicSponge, SNARK};
use snarkvm_circuit::prelude::*;
use snarkvm_curves::bls12_377::Fr;
fn create_example_circuit<E: Environment>() -> Field<E> {
let one = snarkvm_console_types::Field::<E::Network>::one();
let two = one + one;
const EXPONENT: u64 = 64;
let mut candidate = Field::<E>::new(Mode::Public, one);
let mut accumulator = Field::new(Mode::Private, two);
for _ in 0..EXPONENT {
candidate += &accumulator;
accumulator *= Field::new(Mode::Private, two);
}
assert_eq!((accumulator - Field::one()).eject_value(), candidate.eject_value());
assert_eq!(2, E::num_public());
assert_eq!(2 * EXPONENT + 1, E::num_private());
assert_eq!(EXPONENT, E::num_constraints());
assert!(E::is_satisfied());
candidate
}
#[test]
fn test_constraint_converter() {
let _candidate_output = create_example_circuit::<Circuit>();
let mut cs = snarkvm_algorithms::r1cs::TestConstraintSystem::new();
Circuit.generate_constraints(&mut cs).unwrap();
{
use snarkvm_algorithms::r1cs::ConstraintSystem;
assert_eq!(Circuit::num_public() + 1, cs.num_public_variables() as u64);
assert_eq!(Circuit::num_private(), cs.num_private_variables() as u64);
assert_eq!(Circuit::num_constraints(), cs.num_constraints() as u64);
assert!(cs.is_satisfied());
}
}
#[test]
fn test_marlin() {
let _candidate_output = create_example_circuit::<Circuit>();
let one = snarkvm_console_types::Field::<<Circuit as Environment>::Network>::one();
use snarkvm_algorithms::{
crypto_hash::PoseidonSponge,
snark::marlin::{ahp::AHPForR1CS, MarlinHidingMode, MarlinSNARK},
};
use snarkvm_curves::bls12_377::{Bls12_377, Fq};
use snarkvm_utilities::rand::TestRng;
type FS = PoseidonSponge<Fq, 2, 1>;
type MarlinInst = MarlinSNARK<Bls12_377, FS, MarlinHidingMode>;
let rng = &mut TestRng::default();
let max_degree = AHPForR1CS::<Fr, MarlinHidingMode>::max_degree(200, 200, 300).unwrap();
let universal_srs = MarlinInst::universal_setup(max_degree).unwrap();
let universal_prover = &universal_srs.to_universal_prover().unwrap();
let universal_verifier = &universal_srs.to_universal_verifier().unwrap();
let fs_pp = FS::sample_parameters();
let (index_pk, index_vk) = MarlinInst::circuit_setup(&universal_srs, &Circuit).unwrap();
println!("Called circuit setup");
let proof = MarlinInst::prove(universal_prover, &fs_pp, &index_pk, &Circuit, rng).unwrap();
println!("Called prover");
assert!(MarlinInst::verify(universal_verifier, &fs_pp, &index_vk, [*one, *one], &proof).unwrap());
println!("Called verifier");
println!("\nShould not verify (i.e. verifier messages should print below):");
assert!(!MarlinInst::verify(universal_verifier, &fs_pp, &index_vk, [*one, *one + *one], &proof).unwrap());
}
}